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Abstract: A robust multisensor navigation filter design for the entry phase of next-generation Mars
entry, descent, and landing (EDL) is presented. The entry phase is the longest and most uncertain
portion of a Mars landing sequence. Navigation performance at this stage determines landing
precision at the end of the powered descent phase of EDL. In the present work, measurements
from a ground-based radio beacon array, an inertial measurement unit (IMU), as well as an array
of atmospheric and aerothermal sensors on the body of a Mars entry vehicle are fused using an M-
estimation-based iterated extended Kalman filtering (MIEKF) framework. The multisensor approach
enables an increased positioning accuracy as well as the estimation of parameters that are otherwise
unobservable. Furthermore, owing to the proposed statistically robust filter formulation, states
and parameters can be accurately estimated in the presence of non-Gaussian measurement noise.
Deviations from normally distributed observation noise correspond to outlier events such as sensor
faults or other sources of spurious sensor data such as interference. The proposed framework provides
a significant reduction in estimation error at the parachute phase of EDL, thereby increasing the
likelihood of a pinpoint landing at a chosen landing site. Six states and three parameters are estimated.
The suggested method is compared to the extended Kalman filter (EKF) and the unscented Kalman
filter (UKF). Detailed simulation results show that the presented fusion architecture is able to meet
future pinpoint planetary landing requirements in realistic sensor measurement scenarios.

Keywords: Mars EDL; autonomous multisensor navigation; robust statistics; EKF; UKF; M-estimation-
based iterated EKF; Mars pinpoint landing; entry phase navigation

1. Introduction
1.1. Background

As a planet that is believed to have conditions that could potentially support human
life, Mars has been the focus of many interplanetary missions thus far. For future missions
to Mars such as a Mars sample return and a Mars base, the need to have high-performance
autonomous guidance, navigation, and control (GNC) systems has become apparent [1].
The 2020 NASA technology taxonomy presents entry, descent, and landing (EDL) as one of
the foremost enablers of autonomous space exploration [2]. Future space missions will be
expected to increasingly rely less on human intervention [3,4], this is especially true for the
case of interplanetary missions because of large signal delays in communication systems
which render real-time teleoperation impossible. A number of successful Mars landing
missions have been carried out in the past few decades with a majority of them using
Viking era EDL technology [5]. The accuracy requirements for future pinpoint landings on
planetary surfaces have now become stringent. Significant strides have been made in the
last few missions to Mars. However, the ability to have an increased total landed mass at
high altitudes while at the same time having a high landing precision together with hazard
avoidance capabilities still remains a challenge. Meeting future precision requirements
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necessitates innovations at different stages in the GNC pipeline which are beyond the state
of the art [6].

The Safe and Precise Landing Integrated Capabilities Evolution (SPLICE) project has
recently been introduced by NASA to meet future precision landing and hazard avoidance
(PL and HA) requirements [7–10]. This project has set the landing requirement for future
autonomous planetary and lunar missions to be a 50 m uncertainty ellipse (i.e., a maximum
error of 50 m in both downrange and cross-range). The reasons for these requirements are
the need to precisely land on areas with high scientific return, to be able to land fleets of
autonomous spacecraft in close proximity to each other while mitigating the risk of collision
and plume interaction between them, and the need to land safely within a region that
contains landing hazards. Such high-precision requirements are particularly important for
future Mars sample return, manned Mars landing, and Mars base missions. It is indicated
within the SPLICE project that a cost- and performance-optimized multisensor approach at
various stages of EDL is required to meet future landing requirements. Hence, the current
IMU-only navigation procedures during Mars entry are inadequate for future precision
landing missions.

The EDL procedure consists of an approach phase, a hypersonic entry phase, a
parachute phase, and a powered descent phase [11,12]. The approach phase starts at
the later stages of an Earth–Mars trajectory. Several trajectory correction maneuvers (TCMs)
are performed in this stage in order to prepare for entry. The entry phase starts at about
125 km from the surface of Mars and terminates in a parachute deployment at approxi-
mately 10 km above the Mars surface. The entry vehicle loses much of its kinetic energy
during that phase. The parachute phase further decelerates the lander and continues until
the descent engines are activated. The powered descent stage is a rocket-powered ma-
neuver that performs a soft landing and ends at touchdown. Guidance and navigation in
this stage have received significant attention in the past decade [13–15]. The EDL sequence
for NASA’s most recent mission called Mars 2020 is shown in Figure 1. At a high level, the
present research focuses on increasing navigation accuracy during the entry phase so as to
meet future autonomous pinpoint landing requirements.

Figure 1. Entry, descent, and landing sequence at Jezero Crater for Mars 2020 mission by NASA
(Image Credit: NASA/JPL-Caltech).

The entry phase is the longest part of EDL. Furthermore, it is the most critical in
terms of determining overall landing precision. The largest uncertainties within EDL
are accumulated during that stage. There are three major factors that affect EDL perfor-
mance during the entry phase: delivery errors at the atmospheric entry point, uncertain
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atmospheric conditions and wind disturbances on Mars, and errors in the estimates of
aerodynamic parameters [16,17]. Accurate state and parameter estimation at the entry
stage can significantly enhance the guidance and control performance of a lander, thereby
giving desirable landing precision. Various aspects of Mars entry phase GNC are detailed
in the aforementioned reference [1].

In contrast to other phases of EDL, there is a limited set of sensors that can be used
for the entry phase navigation. In fact, all Mars missions so far have only used IMUs for
entry navigation. Unless they are aided by external measurements, IMU-based navigation
solutions are known to drift over time and give inadequate results for the needs of future
Mars missions. Due to the entry vehicle heat-shield cover, onboard optical or radio naviga-
tion cannot be utilized during entry. In the literature, early work on improving Mars entry
navigation was introduced by Pastor et al. [18]. That work proposed a set of surface or
orbiting radio beacons to provide improved position solutions. IMU measurements were
not included in the beacon-only filtering scheme that was presented. Furthermore, details
on aerodynamic models and parameters were not provided. The authors in [19] described
an IMU-based entry navigation method using a hierarchical filter architecture. Yet another
IMU-based entry navigation scheme was the one introduced by Marschke et al. [20] where
a multiple-model adaptive filter was utilized. The first comprehensive approach to inte-
grated entry navigation for Mars landing was presented by Lévesque and Lafontaine [21].
The authors introduced a navigation scheme in which surface radio beacons and IMU
data were fused using an unscented Kalman filter (UKF). A reasonably complete dynamic
model as well as detailed observability analyses were provided for four different navigation
scenarios. Robustness to any of the aforementioned error sources was not addressed in
that work. Moreover, Doppler measurement, which is an important source of information,
was not considered. Wu et al. [22] and Xiao et al. [23] presented an integrated navigation
scheme in which unknown inputs to entry dynamics were considered. Their work illus-
trated the design of a robust three-stage Kalman filter to mitigate the effects of systematic
errors caused by parameter uncertainties. The authors demonstrated three stages of a
specific transformation that was applied in order to decouple the covariance matrices of an
augmented system consisting of states and unknown inputs. The aforementioned work
did not consider the estimation of the vehicle ballistic coefficient as well as the lift-to-drag
ratio, which is critical for accurate control. Moreover, the unknown inputs were modeled
as stochastic processes driven by white Gaussian noise. This assumption is relaxed in the
present research to tackle non-Gaussian input measurement noise.

Research presented in [24] provided a mechanism to select optimized beacon locations
for an integrated Mars entry navigation scheme that enhanced state estimation performance.
The authors provided extensive observability analyses for various navigation scenarios.
A desensitized extended Kalman filter for radio- and IMU-based entry navigation was
presented by Li et al. [25]. An approach that attempted to mitigate the effects of unobserv-
able uncertain parameters during entry was demonstrated in [26]. A multisensor approach
that utilized real-time flush air data system information in addition to a single orbiting
radio beacon and an IMU was detailed in [27]. An UKF was used to blend information
from the three sources. This is the most recent approach in terms of adding more sensor
modalities to enhance navigation performance and one that is being considered for future
missions as well [28,29]. However, the authors did not consider the estimation of the vehicle
ballistic coefficient nor the lift-to drag ratio, which are critical parameters for real-time entry
navigation. Furthermore, the robustness of the navigation solution was not considered
within its scope. Although not directly comparable to the present research, other research
works that deserve mentioning involve methods that focus on a postflight analysis of EDL
performance by combining data from various onboard sensors. Karlgaard et al. [30–33]
produced a series of publications detailing the trajectory and atmospheric reconstruction
for various Mars missions. The techniques outlined therewith were offline smoothing
techniques that used data from IMU, aerodynamic, and aerothermal sensors for trajectory
and atmospheric reconstruction.
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1.2. Contribution

In the present research, the real-time fusion of measurements from multiple ground-
based radio beacons, an IMU, and onboard environmental sensors for pressure and aero-
heating is conducted to give highly accurate state and parameter estimates. The use of
aerodynamic pressure and aerothermal sensor data for real-time navigation has not been
realized on a Mars landing mission so far. The proposed sensor fusion is performed using
a statistically robust (by statistically robust, we are referring to distributional robustness
in particular) M-estimation-based iterated extended Kalman filter (MIEKF). Methods of
robustifying the linear and extended Kalman filters against non-Gaussian noise have been
presented in [34,35]. The present work handles non-Gaussian measurement noise in an
iterated Kalman filtering context to get the added benefit of reduced linearization errors.
This is a first attempt for the application considered in this paper, as far as the authors
are aware. Outliers can occur in a number of realistic scenarios; in the case of sensor
measurements, they can occur when sensors produce spurious data due to faults or they
experience interference from external sources. The peculiar nature of noise phenomena
that are influenced by outliers is that they are heavy-tailed (non-Gaussian). Hence, the
conventional Gaussian noise model is inadequate to represent them. The performance of
standard versions of the extended Kalman filter (EKF) and unscented Kalman filter (UKF)
degrades appreciably in the face of outliers. On the contrary, the proposed method exhibits
excellent performance when the Gaussian assumption on observation noise is violated.
(Particle filters are good candidates for filtering in a non-Gaussian context. However, their
computational expense is too high for potential onboard implementation for the application
that is considered in this paper.)

Succinctly, the contribution of the present work is twofold:

1. To our knowledge, this work is the first in the literature to tackle real-time multisensor
Mars entry navigation in the face of non-Gaussian measurement noise. This accounts
for more realistic measurement scenarios during the lander entry.

2. Due to the utilization of additional sensors, the proposed scheme is, to our knowledge,
the first to estimate the ballistic coefficient and reference atmospheric density indepen-
dently and with high accuracy. Other related research works either estimate products
of these parameters or require another projectile with a known ballistic coefficient to
be launched from the entry vehicle to make the ballistic coefficient observable [21].
Other approaches involve trying to mitigate the effects of unobservable parameters
on the state estimation using the considered Kalman filtering [26].

1.3. Contents of the Paper

The rest of the paper is organized as follows: Section 2 gives the details of the dynamic
equations of motion and sensor observation relations. Section 3 provides a discussion on
robust statistical estimation in the presence of measurement outliers. In Section 4, using the
background developed in Section 3, the proposed M-estimation-based IEKF is introduced
as an integrated navigation filter. Furthermore, for completeness, a brief description of
alternative filtering methods is outlined in that section. In Section 5, the settings for our
simulation experiments are presented. Results and discussion thereof are given in Section 6.
Concluding remarks are made in Section 7. The appendices at the end of the paper provide
information that supplements the main discussion.

2. Problem Formulation
2.1. Mars Entry Dynamic Equations of Motion

The geometry of motion of a Mars lander and the forces it experiences during entry
are shown in Figure 2 [36].

The frame X, Y, Z corresponds to the Mars-centered Mars-fixed (MCMF) frame, m.
X′, Y′, Z′ represents the position (vehicle-pointing) coordinate frame, p, which aligns its
X′-axis with the position vector of the entry vehicle. Its Y′-axis points in the direction
parallel to the equatorial plane and its Z′-axis completes a right-handed system. For the
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illustration showing the aerodynamic forces, we take the vertical plane to be the r− v plane,
and the lift vector L is rotated out of this plane by the bank angle σ. M is the position of the
vehicle. X′′,Y′′,Z′′ is an axis from the vehicle position M parallel to the vehicle-pointing
axis. x1, y1, z1 is a frame generated by rotating the X′′, Y′′, Z′′ frame by ψ in the horizontal
plane and then by γ in the vertical plane. The vehicle is considered as a point-mass during
entry, which eliminates the need for consideration of attitude dynamics. This assumption
is widely supported in the literature [16,36]. Therefore, only a three-degree-of-freedom
translational model is considered in this research.

Figure 2. (a) Geometry of motion of entry vehicle. (b) Aerodynamic forces acting on the entry vehicle.

Assuming a spherical planet model, the entry equations of motion in the MCMF frame
are given by

ṙ(t) = v(t) sin γ(t)

v̇(t) = −D(t)− µ

r2(t)
sin γ(t)

+ ω2(t)r(t) cos φ(t)(sin γ(t) cos φ(t)− cos γ(t) sin φ(t) sin ψ(t))

γ̇(t) =
(

v(t)
r(t)
− µ

r2(t)v(t)

)
cos γ(t) +

L(t)
v(t)

cos σ(t) + 2ω(t) cos φ(t) cos ψ(t)

+ ω2(t)r(t) cos φ(t)(cos γ(t) cos φ(t) + sin γ(t) sin φ(t) sin ψ(t)) (1)

θ̇(t) =
v(t) cos γ(t) sin ψ(t)

r(t) cos φ(t)

φ̇(t) =
v(t) cos γ(t) cos ψ(t)

r(t)

ψ̇(t) =
v(t)
r(t)

sin ψ(t) cos γ(t) tan φ(t) +
L(t)

v(t) cos γ(t)
sin σ(t)

+ 2ω(t)(tan γ(t) cos φ(t) sin ψ(t)− sin ψ(t))

− ω2(t)r(t)
v(t) cos γ(t)

sin φ(t) cos φ(t) cos ψ(t),

where r(t) is the range of the vehicle from the center of Mars. v(t) is the magnitude of
the velocity vector, γ(t) is the flight path angle measured from the local horizontal plane
to the velocity vector, θ(t) is the longitude, φ(t) is the latitude, ψ(t) is the heading angle
measured from east to north about the X′-axis where ψ(t) = 0 indicates a heading in the east
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direction, and σ(t) is the commanded bank angle used as a control variable. ω(t) accounts
for planetary rotation. Terms involving this variable are small and can be ignored for short-
range flights such as the one considered in the present work. µ = 4.282837× 1013 m3

s2 is the
gravitational constant of Mars. D(t) and L(t) are aerodynamic drag and lift accelerations,
respectively, and are defined as

D(t) =
1
2

ρ(t)v(t)2 CD(t)S
m

, L(t) =
1
2

ρ(t)v(t)2 CL(t)S
m

, (2)

where ρ(t) is Mars’s atmospheric density, S is the reference surface area of the entry vehicle,
CD(t) and CL(t) are the aerodynamic drag and lift coefficients, respectively. We define
B(t) = CD(t)S

m as the inverse of the ballistic coefficient, and the dynamic pressure q̄(t) is
defined as 1

2 ρ(t)v(t)2. The atmospheric density ρ(t) follows an exponential model given by

ρ(t) = ρ0(t) exp
(

r0 − r(t)
hs

)
, (3)

where ρ0(t) is the reference atmospheric density of Mars, r0 = 3437.2 km is the reference
radial position at 40 km above Mars’s surface, and hs = 7.5 km is the atmospheric scale
height. The expression for D(t) can now be represented as

D(t) = B(t)q̄(t) =
B(t)ρ0(t)

2
exp

(
r0 − r(t)

hs

)
v(t)2. (4)

The control for the entry vehicle is computed using

u(t) =
L
D
(t) cos σ(t), (5)

which makes L
D (t) an important parameter to estimate for the purposes of accurate guidance

and control. Other critical parameters to estimate are the inverse ballistic coefficient B(t)
and the reference atmospheric density ρ0(t). Conventionally, ρ0(t) is taken to be a constant
based on empirical data assuming nominal conditions near Mars’s surface. If conditions
deviate significantly from the aforementioned nominal conditions, it can drastically affect
navigation performance. It is therefore important to have high-accuracy estimates of ρ0(t)
in real time during entry (Chapter 2, [37]). The augmented state and parameter vector,
x(t) ∈ R9, is given by

x(t) =
[
r(t) v(t) γ(t) θ(t) φ(t) ψ(t) B(t) ρ0(t) L

D (t)
]T

. (6)

We can now present the state-space representation of (1) with the aforementioned
parameters augmented as constants to be estimated. In a standard state-space form, we have

ẋ(t) = f (x(t), u(t), t) =



ṙ(t)

v̇(t)

γ̇(t)

θ̇(t)

φ̇(t)

ψ̇(t)

Ḃ(t)

ρ̇0(t)
˙( L
D )(t)



=



v(t) sin γ(t)

− B(t)ρ0(t)
2 exp

(
r0−r(t)

hs

)
v(t)2 − µ

r(t)2 sin γ(t)(
v(t)
r(t) −

µ

r(t)2v(t)

)
cos γ(t) + L

D (t) cos σ(t) B(t)ρ0(t)
2 exp

(
r0−r(t)

hs

)
v(t)

v(t) cos γ(t) sin ψ(t)
r(t) cos φ(t)

v(t) cos γ(t) cos ψ(t)
r(t)

v(t)
r(t) sin ψ(t) cos γ(t) tan φ(t) + L

D (t) sin σ(t)
cos γ(t)

B(t)ρ0(t)
2 exp

(
r0−r(t)

hs

)
v(t)

0

0

0



. (7)
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by adding process noise to the expression in (7), we can describe the continuous-time entry
dynamic equations of motion as

ẋ(t) = f (x(t), u(t), t) + w(t), (8)

where f : R9 7→ R9, u(t) ∈ R is the control input, and t ∈ R. The random vector w(t) ∈ R9

is normally distributed and satisfies

E[w(t)] = 0, E[w(t)wT(τ)] = Q(t)δ(t− τ) ∈ R9×9, ∀t, (9)

where Q(t) is the power spectral density function of w(t), and δ(t− τ) is the Dirac delta
function defined by the property (known as sifting property in signal processing).∫ ∞

−∞
g(t)δ(t− τ)dτ = g(τ), (10)

for any real-valued function g(t) which is continuous at t = τ. The initial state vector,
which we define to be x(t0) ∈ R9, has a mean random vector given by

E[x(t0)] = x̂0, (11)

and its covariance is given by

E[(x(t0)− x̂0)(x(t0)− x̂0)
T ] = P(t0) ∈ R9×9. (12)

we further assume that

E[w(t)(x(t0)− x̂0)
T ] = 0, ∀t. (13)

2.2. Measurement Models

Four information sources are considered in the proposed multisensor navigation
scheme: an IMU on board the entry vehicle, a set of radio beacons on Mars’s surface, an
array of pressure sensors on the entry vehicle heat shield, and a set of thermocouples on
the entry vehicle forebody. The measurement relations for each information source are
derived below.

2.2.1. Inertial Measurement Unit (IMU)

An inertial measurement unit is used to measure the nongravitational accelerations
experienced by the entry vehicle. The measurements are carried out with respect to the
entry vehicle body frame. IMU observations are affected by errors such axis misalignment
∆a ∈ R3×3, scale-factor errors Sa ∈ R3×3, biases ba ∈ R3, and random noise ζa(ti) ∈ R3.
The accelerometer measurement ãb(ti) in the body frame, b, is given in terms of the true
acceleration, ab(ti) as

ãb(ti) = (I3×3 + ∆a)(I3×3 + Sa)(ab(ti) + ba + ζa(ti)), (14)

where

∆a =


0 δaxz −δaxy

−δayz 0 δayx

δazy −δazx 0

, Sa =


sax 0 0

0 say 0

0 0 sax

, (15)

and
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ba =


bax

bay

baz

, ζa(ti) =


ζax (ti)

ζay(ti)

ζaz(ti)

. (16)

the measured acceleration in the velocity coordinate frame av is given by

av =
[
−D(t), L(t) sin σ(t), L(t) cos σ(t)

]T

=
[
−D(t), D(t) L

D (t) sin σ(t), D(t) L
D (t) cos σ(t)

]T
, (17)

and the velocity frame is related to the body frame by ab = Tb
v av, where the definition of Tb

v
is given in Appendix A of this paper.

We chose the MCMF coordinate system for navigation. We therefore transformed the
accelerometer measurements in the velocity frame to the MCMF frame using the following
transformations.

Tp
v =


cos γ sin γ 0

− sin γ cos ψ cos γ cos ψ − sin ψ

− sin γ sin ψ cos γ sin ψ cos ψ

, Tm
p =


cos φ cos θ − sin θ − sin φ cos θ

cos φ cos θ cos θ − sin φ sin θ

sin φ 0 cos φ

, (18)

where p represents the position coordinate frame. We finally obtained the acceleration in
MCMF frame as

am = Tm
p Tp

v Tv
b ab. (19)

let Tm
p Tp

v Tv
b = Tm

b . The discrete-time IMU measurements in the MCMF frame become

ãm(ti) = (I3×3 + ∆a)(I3×3 + Sa)(Tm
b ab(ti) + ba + ζa(ti)). (20)

2.2.2. Ground-Based Radio Beacon Array

Using radio-based ranging to aid in entry navigation comes with a unique challenge.
The plasma sheath around the entry body can block radio waves, thereby causing signal
blackouts. However, it was indicated in [21,38] that radio beacons that work at high
frequencies can overcome the signal blackout issue. We propose using three beacons that
work in the UHF band placed on the surface of Mars. The Electra transceiver discussed
in [39] is well suited for such an application. The placement of the beacons is such that
observability is maximized according to the Fisher information criterion [24]. An illustration
of the measurement setup is shown in Figure 3. The range measurement from the kth beacon
to the lander is given by

R̃k(ti) = Rk(ti) + bRk + ζRk (ti), k = 1, . . . , 3, (21)

where Rk(ti) ∈ R is the true range from the kth beacon to the lander, bRk ∈ R is the range
bias, and ζRk (ti) ∈ R is the measurement noise.

The true range is given by

Rk(ti) = ‖rlander(ti)− rbeacon(ti)k‖2, (22)

where rlander(ti) ∈ R3 is the lander position given by

rlander(ti)
=


r(ti) cos φ(ti) cos θ(ti)

r(ti) cos φ(ti) sin θ(ti)

r(ti) sin φ(ti)

, (23)
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and rbeacon(ti)k ∈ R3 is the known location of the kth beacon. The UHF transceivers further
provide Doppler measurements. For the kth transceiver, we have

˜̇Rk(ti) = Ṽk(ti) =
(rlander(ti)− rbeacon(ti)k)

T(vlander(ti)− vbeacon(ti)k)

Rk(ti)
+ ζVk (ti), (24)

where Ṽk(ti), ζVk (ti) ∈ R and vlander(ti), vbeacon(ti)k ∈ R3. vlander(ti) and vbeacon(ti)k are the
lander and beacon velocity vectors respectively. For the ground-based beacons used in this
research, vbeacon(ti)k = 0. In vector form, we have

R̃(ti) = R(ti) + br + ζR(ti), (25)

Ṽ(ti) = V(ti) + ζV(ti). (26)

Figure 3. UHF transceiver-based measurement scheme.

2.2.3. Atmospheric and Aerothermal Sensor Suite

The Mars Entry, Descent, and Landing Instrumentation (MEDLI) used in Mars Science
Laboratory (MSL) and its successor MEDLI2 used in Mars 2020 has been utilized to measure
atmospheric and aerothermodynamic quantities [40–42]. However, these measurements
were only used for postflight trajectory and atmospheric reconstruction, as well as aero-
dynamic performance analysis purposes. The MEDLI2 sensor suite provides information
on the forebody and aftbody aeroheating and pressure of the entry vehicle. A similar
architecture is utilized here, but in our work, we assume a set of sensors that give us a
fairly accurate characterization of the stagnation-point pressure (using forebody pressure
sensors) and heating rate (using forebody thermocouples) in real time to inform onboard
guidance and control actions. (Measurement accuracy can be contingent upon flight regime;
for instance, pressure transducers that are accurate for hypersonic regime may not give
sufficient results for supersonic flight, but these details are not considered in this research.)
An illustration of the geometry of the sensors on the heat shield is given in Figure 4. We
use the location of sensors proposed in [28]. (The authors in that reference considered the
location of pressure sensors only; we propose a similar geometry for both pressure and
heating rate sensors in the present work. On actual Mars landers, the sensor placement
is done systematically using an optimization approach.) The measurement of dynamic
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pressure (we assumed that an aggregate measurement from all corresponding sensor arrays
was used) is given by

q̃s(ti) =
1
2

ρ(ti)v(ti)
2 + ζqs(ti), (27)

where ζqs(ti) ∈ R is the measurement noise. Upon incorporating the relation in (3), we
obtain the form

q̃s(ti) =
1
2

ρ0(ti) exp
(

r0 − r(ti)

hs

)
v(ti)

2 + ζqs(ti). (28)

the measured convective heating rate ˜̇Qs(ti) at the stagnation point is modeled by the
Sutton–Graves relation [43] represented by

˜̇Qs(ti) = k
(

ρ(t)v(ti)
2

Rn

) 1
2

v(ti)
3 + ζQ̇s

(ti), (29)

where k is a planet-dependent constant, which, for Mars, equals 1.9027× 10−4
√

Kg
m , Rn is

the vehicle nose radius, and ζQ̇s
(ti) ∈ R is the heating-rate measurement noise. Substituting

(3) into (29), we get

˜̇Qs(ti) = k

ρ0(ti) exp
(

r0−r(ti)
hs

)
v(ti)

2

Rn


1
2

v(ti)
3 + ζQ̇s

(ti). (30)

We now combine the measurements from all the sources mentioned so far into an
aggregate measurement relation stated as

z(ti) =



ãm(ti)

R̃(ti)

Ṽ(ti)

q̃s(ti)

Q̃s(ti)


=



(I3×3 + ∆a)(I3×3 + Sa)(Tm
b ab(ti) + ba)

R(ti) + br

V(ti)

1
2 ρ0(ti) exp

(
r0−r(ti)

hs

)
v(ti)

2

k

(
ρ0(ti) exp

(
r0−r(ti)

hs

)
v(ti)

2

Rn

) 1
2

v(ti)
3


+



ζa(ti))

ζR(ti)

ζV(ti)

ζqs(ti)

ζQ̇s
(ti)


. (31)

Equation (31) is finally cast as a general nonlinear observation equation of the form

z(ti) = h(x(ti), ti) + ζ(ti), (32)

where h is the surjection, h : R9 � R11. x(ti) ∈ R9, z(ti), ζ(ti) ∈ R11, and the following
properties hold

E[ζ(ti)] = 0, E[ζ(ti)ζ
T(tj)] = Rm(ti)δij, (33)

where Rm(ti) ∈ R11×11 is the measurement noise covariance matrix and δij is the Kronecker
delta function given by

δij =

{
1, f or i = j
0, f or i 6= j

. (34)

moreover, we have

E[ζ(ti)(x(t0)− x̂0)
T ] = 0, E[w(t)ζT(ti)] = 0, ∀i, t. (35)
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the key consideration made in this research is that, contrary to that of the process noise
w(t), we do not insist on the measurement noise ζ(ti) being Gaussian. This allows us to
model outlier events such as sensor faults and corrupted measurements.

Figure 4. (a) Layout of an array of sensors for measuring pressure (denoted by pmi , i = 1, . . . , 9)
and heating rate (denoted by tmi , i = 1, . . . , 8) on the heat shield of a Mars entry vehicle. (b) An
alternative view of the sensor locations geometry looking in the direction of the positive x-axis.

3. Robust Statistical Methods in Estimation

One of the goals in statistical signal processing is estimating the parameters of signals
embedded in noise [44,45]. The statistical nature of the noise is usually characterized by a
Gaussian distribution. In a large number of applications, due to the central limit theorem,
this assumption holds. However, when the Gaussian assumption is no longer valid, the
estimation machinery that considers Gaussian noise can perform very poorly. In realistic
scenarios, we are usually interested in measurement data that are contaminated by outlier
of the type discussed in Section 1. Outliers are data points that are at a significant distance
away from the bulk of the observed data and they render the distribution of the observations
heavy-tailed [46]. Examples of well-known heavy-tailed distributions are Laplace, Cauchy,
and ε-contaminated Gaussian distribution. Consider a linear measurement model of the
form [47]

yi = χ + νi, i = 0, . . . , n, (36)

where yi is the observation, χ is the parameter to be estimated, and νi is the observation
noise. In the Gaussian case, the observation noise density, parameterized by the mean µv
and variance σ2

v , takes the form

p0(νi; µv, σv) =
1√

2πσ2
v

exp
(
− (νi − µv)2

2σ2
v

)
. (37)

for Laplace and Cauchy densities, the corresponding pdfs are given by

p0(νi; µv, σv) =
1√
2σ2

v
exp

(
−
√

2|νi − µv|
σv

)
, (38)

and

p0(νi; µv, σv) =
1

πσv

σ2
v

(νi − µv)2 + σ2
v

, (39)
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respectively. The ε-contaminated Gaussian model is a mixture that is given by

p0(νi; µv, λv) = (1− ε)
1√

2πσ2
v

exp
(
− (νi − µv)2

2σ2
v

)
+ ε

1√
2πτ2

v
exp

(
− (νi − µv)2

2τ2
v

)
, (40)

where ε is the fraction of outliers in the data, τ2
v is the variance of the contaminating distribution,

and λv is the standard deviation of the mixture. The aforementioned non-Gaussian densities
are shown in comparison to the Gaussian density in Figure 5. Using the ε-contaminated model
(40), an illustration of the characteristics of outlier-contaminated Gaussian noise, νi, is shown in
Figure 6 for varying percentages of outliers, ε, in the data. Distributionally robust procedures
that can mitigate the increase in estimation variance in the face of heavy-tailed noise are desirable
in real-world applications. One such procedure is discussed below.

Figure 5. Gaussian, Laplace, ε-contaminated Gaussian, and Cauchy densities. The latter three
densities have noticeably heavier tails.

Figure 6. Effect of additive outliers on Gaussian noise: (a) ε = 0, no outlier contamination;
(b) ε = 0.05, 5% outlier contamination; (c) ε = 0.10, 10% outlier contamination; (d) ε = 0.20,
20% outlier contamination.
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Once again, considering the measurement model (36) and assuming νi are independent
and identically distributed, the likelihood function is given by

LF (y1, . . . , yn; χ) =
n

∏
i=1

p0(yi − χ). (41)

the maximum likelihood estimator (MLE) of the parameter χ is the quantity χ̂ which
satisfies

χ̂ = χ̂(y1, . . . , yn) = arg max
χ

LF (y1, . . . , yn; χ). (42)

from the monotonicity property of the logarithmic function and assuming p0 is positive
everywhere, we have

χ̂ = arg min
χ

n

∑
i=1

η(yi − χ), (43)

where η = − ln(p0). Equation (43) is general in that it works for all distributions satisfying
the conditions imposed on p0. For instance, if p0 has a normal distribution

p0(y) =
1√

2πσv
exp

(
−(y− χ)2

2σ2
v

)
, (44)

η = −(y−χ)2

2σ2
v

, then we have (after ignoring constants that do not affect the optimization)

χ̂ = arg min
χ

n

∑
i=1

(yi − χ)2. (45)

if p0 has a Laplace distribution

p0(y) =
1√
2σv

exp

(
−
√

2|y− χ|
σv

)
, (46)

then η = |y− χ|, and the MLE for χ becomes

χ̂ = arg min
χ

n

∑
i=1
|yi − χ|. (47)

taking the derivative of the negative log-likelihood function η, the MLE χ̂ satisfies

n

∑
i=1

π(yi − χ̂) = 0. (48)

where π(·) = η′(·). (In the statistics literature, ρ(·) and ψ(·) are used as standard symbols
instead of η(·) and π(·) used in this paper. We changed the notation in order to avoid con-
fusion with the symbols for atmospheric density and heading angle used in the equations
of motion).

The function η(·) may be considered a penalty on measurement residuals (also referred
to as a loss function in the literature), while the function π(·) gives a measure of the
sensitivity of the estimator to outliers in the observation.

A class of estimators called M-estimators can provide outlier-robust estimates without
the need for preprocessing the data [48,49]. One such estimator is the Huber M-estimator.
For such an estimator, for some real r, η(r) is given by

η(r) =

{
1
2 r2 |r| ≤ α

α|r| − 1
2 α2 |r| > α.

(49)



Remote Sens. 2023, 15, 1139 14 of 32

η(r) is a hybrid of `1-norm penalty (corresponding to a Laplace observation noise) and
`2-norm penalty (corresponding to a Gaussian observation noise). An illustration of the `1
and `2 norm penalties is shown in Figure 7.

Differentiating (49), the sensitivity function π(r) for the Huber penalty becomes

π(r) =

{
r |r| ≤ α

α r
|r| |r| > α,

(50)

where α is a designer-chosen tuning parameter that defines the level of sensitivity of the
estimator to outliers. Illustrations of η(r) and π(r) for the Huber M-estimator are shown
in Figure 8. Depending on the choice of the parameter α, one can design an estimator
with varying degrees of response to outliers. Estimators such as the Huber M-estimator
with bounded sensitivities for large residuals provide robust performance. In fact, this
estimator is robust in the minimax sense [34,35], i.e., it is optimally robust against maximum
performance degradation for an ε-deviation of data from normality assumptions.

For the case of a dynamic estimation in a Kalman filtering setting, the update stage
is known to be equivalent to a static estimation problem [50]. Ruckdeschel et al. [35]
proposed a Huberization of the state update derived from the Huber penalty discussed
in the preceding section. In that formulation, the sensitivity function π(·) takes as an
argument the Kalman filter innovations sequence. This helps mitigate large measurements
(likely outliers) that enter the update equation in an unbounded manner. This seemingly
ad hoc procedure has minimax optimal robustness properties. (There are some conditions
attached to this result, the reader is referred to [35] for details.) We integrated this concept
into an iterated extended Kalman filter to gain the benefits of the reduced linearization
errors of the iterated EKF while adding robustness to non-Gaussian measurement noise.

Figure 7. (a) `2-norm penalty corresponding to Gaussian observation noise. (b) `1-norm penalty
corresponding to Laplace observation noise. (c) `2 norm given by ‖x‖2 =

√
(∑n

i=1 x2
i ) and its

contours in R2. (d) `1-norm given by ‖x‖2 =
√
(∑n

i=1 |xi|) and its contours in R2.
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Figure 8. (a) Loss function η(r) for the Huber M-estimator. For α = 10, the penalty for large
residuals is very high, implying outliers will have a significant influence on the estimation accuracy.
Alternatively, one can interpret this as the `2 component of the Huber penalty function dominating
over a wider span of residuals compared to the `1 component of the Huber penalty. For α = 1, the
slope of the curve is less steep making the contribution of outliers less influential in the estimation
performance. In this case, the `1 component of the Huber penalty has more influence on the estimation
performance. α = 2 gives a performance that is in between the former two. (b) Sensitivity function
π(r) for the Huber M-estimator. For robustness, we desire a continuous and bounded sensitivity
function [46]. Since the case of α = 1 is bounded over a smaller interval of residual values, it is less
sensitive to large outliers. The sensitivity increases for increasing values of α.

4. Navigation Filter Design

The discrete nonlinear state-space model containing the dynamics and observation
relations is given by [51,52]

x(ti+1) = f (x(ti), u(ti), ti) + w(ti), (51)

z(ti) = h(x(ti), ti) + ζ(ti), (52)

where t ∈ R, x(ti), w(ti) ∈ Rn, u(ti) ∈ Rp, and z(ti), ζ(ti) ∈ Rm. Furthermore, f and h
have the property that f : Rn 7→ Rn and h : Rn � Rm. The statistical properties of the
noise random vectors w(ti) and ζ(ti) are similar to those stated in Section 2. An important
difference in the case of the discretized dynamics (51) is that

E[w(ti)wT(tj)] = Q(ti)δij, (53)

in which case Q(ti) is the process noise’s covariance matrix rather than the process noise’s
power spectral density. Before explaining the proposed state estimation method, we briefly
discuss known techniques used for navigation filtering based on relations (51) and (52).

4.1. Established Methods
4.1.1. Extended Kalman Filter (EKF)

Based on a first-order Taylor series approximation of the dynamic and measurement
equations, a cycle of the well-known extended Kalman filter is provided in Algorithm 1.
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Algorithm 1 EKF
Step 0: Initialize state estimate and state estimation error covariance

x̂(t+0 ), P(t+0 ) (54)

Step 1: Compute a linearized version of the process equation

F(ti−1) =
∂ f (x(ti−1), u(ti−1), ti−1))

∂x

∣∣∣∣∣
x=x̂(t+i−1)

(55)

Step 2: Propagation

x̂(t−i ) = f (x(t+i−1), u(ti−1), ti−1) (56)

P(t−i ) = F(ti−1)P(t+i−1)FT(ti−1) + Q(ti−1) (57)

Step 3: Compute a linearized version of the measurement equation

H(ti) =
∂h(x(ti), ti)

∂x

∣∣∣∣∣
x=x̂(t−i )

(58)

Step 4: Update

K(ti) = P(t−i )HT(ti)(H(ti)P(t−i )HT(ti) + R−1
m (ti)) (59)

x̂(t+i ) = x̂(t−i ) + K(ti)(z(ti)− h(x̂(t−i ), ti)) (60)

P(t+i ) = (I − K(ti)H(ti))P(t−i )(I − K(ti)H(ti))
T + K(ti)Rm(ti)KT(ti) (61)

4.1.2. Unscented Kalman Filter (UKF)

The UKF uses 2n + 1 (where n is the dimension of the state space) deterministically
chosen points (called sigma points) to be transformed by the nonlinear dynamic and mea-
surement equations [53]. This procedure is capable of capturing higher-order information
compared to the linearization approach taken in the EKF. The UKF procedure is shown in
Algorithm 2.

Algorithm 2 UKF
Step 0: Initialize state estimate and state estimation error covariance

x̂(t+0 ), P(t+0 ) (62)

step 1: Select sigma points

x̂(ti−1)
(k) = x̂(t+i−1) + x̃(k), k = 1, . . . , 2n (63)

x̃(k) =

(√
(n + κ)P(t+i−1)

)T

k

, k = 1, . . . , n (64)

x̃(n+k) = −
(√

(n + κ)P(t+i−1)

)T

k

, k = 1, . . . , n (65)

W(0) =
κ

n + κ
, (66)

W(k) =
1

2(n + κ)
, k = 1, . . . , 2n (67)

κ is a tuning parameter that can take on any real number as long as n + κ 6= 0.
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Algorithm 2 Cont.
Step 2: Transform sigma points using nonlinear process equation

x̂(ti)
(k) = f (x̂(ti−1)

(k), u(ti−1), ti−1) (68)

Step 3: Form a priori state estimate and covariance

x̂(t−i ) =
2n

∑
k=1

W(k) x̂(ti)
(k) (69)

P(t−i ) =
2n

∑
i=1

W(k)(x̂(ti)
(k) − x̂(t−i ))(x̂(ti)

(k) − x̂(t−i ))
T + Q(ti−1) (70)

Step 4: Perform measurement update

ẑ(ti)
(k) = h(x̂(ti)

(k), ti) (71)

ẑ(ti) =
2n

∑
k=1

W(k)ẑ(ti)
(k) (72)

Pz(ti) =
2n

∑
i=1

W(k)(ẑ(ti)
(k) − ẑ(ti))(ẑ(ti)

(k) − ẑ(ti))
T + Rm(ti) (73)

Pxz(ti) =
2n

∑
i=1

W(k)(x̂(ti)
(k) − x̂(t−i ))(ẑ(ti)

(k) − ẑ(ti))
T (74)

K(ti) = Pxz(ti)Pz
−1(ti) (75)

x̂(t+i ) = x̂(t−i ) + K(ti)(z(ti)− ẑ(ti)) (76)

P(t+i ) = P(t−i )− K(ti)Pz(ti)KT(ti) (77)

4.2. M-Estimation-Based Iterated Extended Kalman Filter (MIEKF)

In this subsection, we integrate the ideas of robust penalized estimation discussed in
Section 3 into an iterated extended Kalman filter to come up with the MIEKF proposed in
the present research. First, we present the iterated EKF algorithm and then add an extension
to make it robust. Contrary to the update step of the EKF which linearizes h(x(ti), ti) about
the prior estimate x̂(t−i ), the IEKF linearizes h(x(ti), ti) about the posterior estimate x̂(t+i ),
which is a better estimate of the state x(ti). A repeated application of this procedure reduces
linearization errors. (This improvement usually ceases after a small number of iterations.)
Let us define x(ti)

+
k as the posterior estimate of the state after k measurement update

iterations, P(ti)
+
k and K(ti)

+
k are the estimation error covariance and the Kalman gain at the

kth measurement update iteration, respectively. H(ti)k is the Jacobian of the measurement
equation evaluated at the state estimate at the kth relinearization. A complete derivation of
the IEKF using an optimization approach is provided in Appendix B. A single IEKF cycle is
shown in Algorithm 3.

The IEKF generally performs better than the standard EKF due to a reduction in the
linearization errors. However, in the presence of measurement outliers, The IEKF, EKF, and
UKF, give reduced performances. In order to obtain the proposed MIEKF (Algorithm 4),
we made modifications to the update step of the IEKF. Instead of the innovations term
z(ti)− h(x̂(t+i )k, ti)−H(ti)k)(x̂(t−i )− x̂(t+i )k), we used a robust version related to Huber’s
M-estimator discussed in Section 3.
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Algorithm 3 IEKF
Step 0: Initialize state estimate and state estimation error covariance

x̂(t+i−1), P(t+i−1) (78)

Step 1: Compute a linearized version of the process equation

F(ti−1) =
∂ f (x(ti−1), u(ti−1), ti−1))

∂x

∣∣∣∣∣
x=x̂(t+i−1)

(79)

Step 2: Propagation

x̂(t−i ) = f (x(t+i−1), u(ti−1), ti−1) (80)

P(t−i ) = F(ti−1)P(t+i−1)FT(ti−1) + Q(ti−1) (81)

Step 3: Update

Step 3.1: Set iteration count to k = 0 and initialize IEKF with the prior found from the
propagation step

x̂(t+i )0 = x̂(t−i ) (82)

P(t+i )0 = P(t−i ) (83)

Step 3.2: With k = k + 1, until ‖x̂(t+i )k+1 − x̂(t+i )k‖ < δ, perform N times

H(ti)k =
∂h(x(ti), ti)

∂x

∣∣∣∣∣
x=x̂(t+i )k

(84)

K(ti)k = P(t−i )HT(ti)k(H(ti)kP(t−i )HT(ti)k + Rm(ti))
−1 (85)

x̂(t+i )k+1 = x̂(t−i ) + K(ti)k(z(ti)− h(x̂(t+i )k, ti)− H(ti)k)(x̂(t−i )− x̂(t+i )k) (86)

P(t+i )k+1 = (I − K(ti)k H(ti)k)P(t−i )(I − K(ti)k H(ti)k)
T + K(ti)kRm(ti)KT(ti)k (87)

where δ is a user-specified termination threshold.
Step 3.3: Return posterior state estimate and estimation error covariance

x̂(t+i ) = x̂(t+i )N+1 (88)

P(t+i ) = P(t+i )N+1 (89)

Algorithm 4 MIEKF
Step 0: Initialize state estimate and state estimation error covariance

x̂(t+i−1), P(t+i−1) (90)

Step 1: Compute a linearized version of the process equation

F(ti−1) =
∂ f (x(ti−1), u(ti−1), ti−1))

∂x

∣∣∣∣∣
x=x̂(t+i−1)

(91)

Step 2: Propagation

x̂(t−i ) = f (x(t+i−1), u(ti−1), ti−1) (92)

P(t−i ) = F(ti−1)P(t+i−1)FT(ti−1) + Q(ti−1) (93)
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Algorithm 4 Cont.
Step 3: Update
Step 3.1: Set iteration count to k = 0 and initialize IEKF with the prior found from the
propagation step

x̂(t+i )0 = x̂(t−i ) (94)

P(t+i )0 = P(t−i ) (95)

Step 3.2: With k = k + 1, until ‖x̂(t+i )k+1 − x̂(t+i )k‖ < δ , perform N times

H(ti)k =
∂h(x(ti), ti)

∂x

∣∣∣∣∣
x=x̂(t+i )k

(96)

K(ti)k = P(t−i )HT(ti)k(H(ti)kP(t−i )HT(ti)k + Rm(ti))
−1 (97)

∆z(ti) = z(ti)− h(x̂(t+i )k , ti)− H(ti)k(x̂(t−i )− x̂(t+i )k) (98)

π(K(ti)k∆z(ti)) =

{
K(ti)k∆z(ti) |K(ti)k∆z(ti)| ≤ α

α
K(ti)k∆z(ti)
|K(ti)k∆z(ti)|

|K(ti)k∆z(ti)| > α
(99)

x̂(t+i )k+1 = x̂(t−i ) + π(K(ti)k∆z(ti)) (100)
P(t+i )k+1 = (I − K(ti)k H(ti)k)P(t−i )(I − K(ti)k H(ti)k)

T + K(ti)kRm(ti)KT(ti)k (101)

where δ is a user-specified termination threshold.
Step 3.3: Return posterior state estimate and estimation error covariance

x̂(t+i ) = x̂(t+i )N+1 (102)

P(t+i ) = P(t+i )N+1 (103)

∆z(ti) = z(ti)− h(x̂(t+i )k, ti)− H(ti)k(x̂(t−i )− x̂(t+i )k). (104)

The sensitivity function π defined in Section 3 now takes as an argument the product of
the Kalman gain K(ti)k and the innovations ∆z(ti) at the kth measurement update iteration.
The interpretation is that we are applying a robustifying procedure to each component for
the vector K(ti)k∆z(ti) to mitigate the outliers that enter unbounded through the sensor
measurements z(ti). According to (50), we have

π(K(ti)k∆z(ti)) =

{
K(ti)k∆z(ti) |K(ti)k∆z(ti)| ≤ α

α
K(ti)k∆z(ti)
|K(ti)k∆z(ti)|

|K(ti)k∆z(ti)| > α.
(105)

the MIEKF modifies the update iteration (step 3.2) of the IEKF. The rest of the algorithm is
the same as that of the IEKF.

The IEKF is a tried and tested method for real-world navigation filter design. The
MIEKF, which combines the practicality of the IEKF with the added feature of the robustness
of Huber’s M-estimation increases the applicability of the MIEKF to real mission scenarios
where the assumptions of Gaussianity on observation noise are not always applicable.

5. Simulation Experiments
Simulation Settings

Simulation experiments were carried out in MATLAB®. Estimation results were
obtained using non-Gaussian measurement noise using an ε-contaminated model with:
ε = 0.05 (5% contamination), ε = 0.20 (20% contamination), and a more severe case with
ε = 0.4 (40% contamination). The results of each of the three scenarios are shown in
Section 6. Initial conditions are taken from [21] and are shown in Table 1. Although the
entry phase of EDL typically takes around 240 to 250 s, we ran our simulations for a longer
time span to better visualize filter performance over a wide timeline. Time intervals in
which there were outlier-influenced measurements were specified to be: 50–90 s, 170–220 s,
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300–340 s, and 380–400 s (assuming outlier contamination throughout the entire entry phase
is also possible in the proposed framework).

Table 1. True and filter initial conditions for states and parameters used in simulations.

State/Parameter Initial True State Initial Filter State

Range (km) 3522.2 3521.2

Velocity ( m
s ) 6900 6910

Flight path angle (deg) −12 −13

Longitude (deg) 0 0.02

Latitude (deg) 1 1.02

Heading angle (deg) 89 90

Inv. ball. coeff. ( m2

kg ) 0.016 0.0176

Ref. atmospheric density ( kg
m3 ) 2× 10−4 2.2× 10−4

Lift-to-drag ratio 0.156 0.172

The bank angle σ was taken to be π
4 . The specifications of the IMU were directly taken

from Table 2 in [7]. A high-end IMU option was selected. The location of radio beacons on
Mars’s surface are given in Table 2.

Table 2. UHF transceiver locations on Mars’s surface.

Longitude (deg.) Latitude (deg.)

Beacon 1 0 0

Beacon 2 5.7 5.7

Beacon 3 −5.7 5.7

The filter parameters were chosen as follows:
Using the method outlined in (Chapter 9, [54]), the initial state error covariance was

taken as

P(t0) =



2× 106

104

3× 10−4

9× 10−8

1.23× 10−7

9× 10−8

2.56× 10−6

4× 10−10

2.56× 10−3


. (106)

the process noise covariance matrix Q(t0) was taken to be
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Q(t0) =



10−10

10−1

10−8

10−10

0
10−9

10−10

10−10

10−10


. (107)

the measurement noise covariance Rm(t0) was taken as (these values were chosen based
on actual sensor capabilities reported in [7], where applicable).

Rm(t0) =



102

102

102

2.5× 10−5

2.5× 10−5

2.5× 10−5

4.9× 10−7

4.9× 10−7

4.9× 10−7

10−6

10−6


. (108)

Outliers were generated using an ε-contaminated model for the kth element of mea-
surement noise vector. The model was given by (varying levels of outliers can be used in
this model for each sensor depending on the prior crude knowledge of the measurement
environment; here, we considered similar contamination levels for all sensors):

ζ(ti)k ∼ (1− ε)N (0, ς2
k) + εN (0, 150) (109)

where ς2
k is the measurement variance of each sensor (i.e., the diagonals of Rm(t0)). The

results of our simulation studies are given below. In each case, three candidate algorithms
were compared: EKF, UKF, and MIEKF.

6. Results and Discussion

Detailed plots showing the estimation performance of the proposed method and
comparison with alternative approaches are provided in Figures 9–18. Figure 9 shows the
estimation performance of the various filters in the presence of a relatively mild outlier
level of 5%.

The state estimates for the proposed method showed good adherence to the true
values while alternative methods deviated from the true values during the time intervals
where outlier influences occurred. The absolute values of the estimation errors are depicted
in Figure 10. In this figure, one can see the clear performance benefits of the MIEKF-based
navigation (shown in a solid black line) in outlier-influenced time intervals (shown in light
green). The MIEKF maintained a low estimation error throughout the simulation. We see
a similar pattern for the case of 20% outlier levels in Figures 11 and 12. The estimation
errors for all filters were correspondingly higher with a higher level of outliers. However,
the MIEKF performance degraded only marginally, while the performance degradation
in other filters was noticeable. Overall, the MIEKF still maintained the lowest estimation
error among all the filters considered in this research.
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Figure 9. State estimation performance comparison for 5% outlier contamination (ε = 0.05).

An outlier level of 40% is considered a high level of contamination. The trend we
observed in the previous two cases persisted in that case as well. This is shown in Figures 13
and 14. The MIEKF provided the lowest estimation errors among the alternatives. The
filter consistency plots in Figures 15–17 show that only the MIEKF-based estimates give
a good agreement with the theoretically predicted performance. The estimates based on
alternative approaches tend to show divergence within outlier-influenced regions and in
some cases, they show hang-off errors.

Plots for the relationship between altitude and atmospheric density, altitude and
velocity, as well as flight path angle and velocity are provided in Figure 18. This gives
yet another perspective on the enhanced performance of MIEKF. In passing, we note
that if the conventional Gaussian assumption for measurement noise (i.e., no outliers) is
assumed throughout the simulation duration, the UKF performs the best on a majority of
the state estimates.

As a final demonstration of the effectiveness of the proposed method, we provide
numerical RMSE values to show what level of performance we can expect from the pro-
posed multisensor navigation scheme. This is shown in Table 3. MIEKF consistently per-
forms better than the alternative approaches. For most states, the margin of improvement
is substantial.
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Figure 10. Absolute value of estimation errors with ε = 0.05 for the three candidate filters (the time
intervals shaded in light green are intervals in which outliers are present).

Figure 11. State estimation performance comparison for 20% outlier contamination (ε = 0.20).
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Figure 12. Absolute value of estimation errors with ε = 0.20 for the three candidate filters (the time
intervals shaded in light green are intervals in which outliers are present).

Figure 13. State estimation performance comparison for 40% outlier contamination (ε = 0.40).
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Figure 14. Absolute value of estimation errors with ε = 0.40 for the three candidate filters (the time
intervals shaded in light green are intervals in which outliers are present).

Figure 15. EKF estimation errors with 3σ bounds for ε = 0.4 (the time intervals shaded in light green
are intervals in which outliers are present).
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Figure 16. UKF estimation errors with 3σ bounds for ε = 0.4 (the time intervals shaded in light green
are intervals in which outliers are present).

Figure 17. MIEKF estimation errors with 3σ bounds for ε = 0.4 (the time intervals shaded in light
green are intervals in which outliers are present).
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Figure 18. For ε = 0.4: (a) Atmospheric density variation with altitude. (b) Velocity variation with
altitude. (c) Relationship between velocity and flight path angle. It is noteworthy that MIEKF-based
estimates are not affected by outliers and match the true relationships quite closely, while alternative
approaches exhibit noticeable errors in estimation.

Table 3. Filter performance comparison based on RMSE values.

ε = 0.05 (5% Outlier Level) ε = 0.20 (20% Outlier Level) ε = 0.40 (40% Outlier Level)

State/Param. EKF UKF MIEKF EKF UKF MIEKF EKF UKF MIEKF

Range, r (m) 555.4604 443.6054 58.5634 1023.6361 616.3866 96.6578 1883.3481 812.8448 141.4939
Vel., v ( m

s ) 0.9395 0.1408 0.0309 1.1502 0.2433 0.0796 3.5284 0.3599 0.1619
FPA, γ (deg) 0.6831 0.2771 0.0810 1.1463 0.5762 0.0834 1.9735 0.7493 0.1030
Long.,θ (deg) 0.0043 0.0013 0.0018 0.0068 0.0011 0.0018 0.01052 0.00167 0.00169
Lat. φ (deg) 0.0110 0.0017 0.0009 0.0162 0.0033 0.0010 0.0206 0.0055 0.0011
Heading., ψ (deg) 0.1947 0.1705 0.1814 0.2795 0.2908 0.1797 0.4493 0.3357 0.1820
Inv. Ball.
Coeff., B ( m2

kg ) 0.000573 0.000532 0.000562 0.000580 0.000549 0.000563 0.000589 0.000578 0.000565
Ref. atm.
density, ρ0 ( kg

m3 ) 0.000016 0.0000011 0.000002 0.000026 0.000018 0.000003 0.000042 0.000021 0.000004
Lift-to-drag
ratio, L

D 0.008955 0.040039 0.008069 0.065336 0.113399 0.015262 0.143800 0.130166 0.039634

7. Conclusions

A statistically robust sensor fusion framework for autonomous entry phase navigation
for Mars landing was presented. The method added positioning accuracy and parameter
observability by virtue of the multisensor approach and added distributional robustness to
non-Gaussian noise due to the M-estimation-based filter employed to fuse the data from
the sensors. The method had a similar computational complexity to existing tried and
proven filtering methods. The present design can account for sensor faults or external
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sources of spurious data that lead to outliers. In space, these events can be frequent.
Future Mars pinpoint landing missions require that landers touch down within an error
ellipse of at most 50 m around the chosen landing site. The main challenge in meeting this
requirement has been the limitation of inertial-only navigation during entry. By employing
a multimodal approach in a robust sensor fusion architecture, the research in this paper,
after additional practical considerations, has the potential to enable a highly accurate
entry phase navigation. Combining the advantages of the iterated extended Kalman filter
(IEKF) with the robustness properties of the M-estimation, the proposed M-estimation-
based IEKF (MIEKF) performed better than alternative approaches. We substantiated our
claim with experiments showing the estimation error performance for each candidate
method. There are several additional problems that require attention in future work. With
eventual onboard implementation in mind, using more stable versions of the covariance
propagation using factorization methods is required to avoid potential numerical problems.
Accounting for uncertainties in radio beacon location is an important consideration that
warrants attention. The assumption of a fairly accurate knowledge of entry conditions is a
serious limitation of the present work. The use of X-ray pulsar-based navigation during the
approach phase of Mars Entry, Descent, and Landing (EDL) to improve knowledge of entry
conditions is a promising technique. A more rigorous derivation of a different version of
the MIEKF directly from a maximum likelihood formulation is being developed by the
authors for future work. This will avoid some ad hoc assumptions presented in this paper
that may reduce estimation efficiency. Applying the distributionally robust sensor fusion
method discussed in this work to other phases of EDL, where more navigation sensors
such as cameras and radar are available, is yet another interesting avenue to consider.
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Appendix A. Coordinate Frame Definitions and Transformations

(1) Mars-centered inertial (MCI) frame (in):
It is centered on the planet and its z-axis aligned with Mars’s rotation axis, x-axis
pointing towards the vernal equinox, and the y-axis completes a right-handed system.

(2) Mars-centered Mars-fixed (MCMF) frame (m):
It is fixed to the planet and rotates with it. It shares the same rotation axis with the
planet and hence the MCI frame. A rotation of Ωm about the MCI frame’s z-axis gives
the MCMF frame. The transformation between the two frames is

Tm
in =

 cos Ωm sin Ωm 0
− sin Ωm cos Ωm 0

0 0 1

 (A1)

(3) Vehicle-pointing/position coordinate system (p):
It originates at the planet’s center with its x-axis pointing in the direction of the
vehicle’s position vector. Its y-axis points parallel to the equatorial plane and its z-axis
completes a right-handed system. The transformation from the position coordinate
frame to the MCMF frame can be done using the following matrix
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Tm
p =

cos φ cos θ − sin θ − sin φ cos θ
cos φ cos θ cos θ − sin φ sin θ

sin φ 0 cos φ

 (A2)

(4) Body frame (b):
Its origin is the vehicle center of mass. The axes for this frame are configured to align
with each axis of symmetry of the entry vehicle. IMU measurements are defined in
this coordinate frame.

(5) Velocity frame (v):
Its origin is centered on the lander vehicle with its x-axis aligned in the direction of
the flight path, its z-axis lies on a local vertical plane orthogonal to the x-axis, and the
y-axis completes a right-handed system. The transformation from the velocity frame
to the vehicle-pointing frame is given by

Tp
v =

 cos γ sin γ 0
− sin γ cos ψ cos γ cos ψ − sin ψ
− sin γ sin ψ cos γ sin ψ cos ψ

, (A3)

and the transformation from the velocity frame to the body frame is given by

Tb
v =

1 0 0
0 cos σ sin σ
0 − sin σ cos σ

 cos (α′) 0 sin (α′)
0 1 0

− sin (α′) 0 cos (α′)

−1

, (A4)

where σ is the bank angle and α′ is the angle of attack of the entry vehicle.

Appendix B. Derivation of the Standard Iterated Extended Kalman Filter (IEKF) via an
Optimization Approach

Consider the state-space formulation (51) and (52). Using a Bayesian approach, the
posterior density p(x(ti)|z(ti)) is related, up to a constant, to the likelihood p(z(ti)|x(ti))
and the prior pdf p(x(ti)|z(ti−1)) by

p(x(ti)|z(ti)) ∝ p(z(ti)|x(ti))p(x(ti)|z(ti−1))

∝ exp−1
2

(
[z(ti)− h(x(ti), ti)]

T Rm(ti)
−1[z(ti)− h(x(ti), ti)]

+ [x(ti)− x̂(t−i )]
TP(t−i )

−1[x(ti)− x̂(t−i )]

)
. (A5)

the maximum a posteriori (MAP) estimate is given by

x̂(t+i ) = arg max
x(ti)

p(x(ti)|z(ti)) (A6)

by taking the negative logarithm of the expression in (A5) and setting

V(x(ti)) = [z(ti)− h(x(ti), ti)]
T Rm(ti)

−1[z(ti)− h(x(ti), ti)]

+ [x(ti)− x̂(t−i )]
TP(t−i )

−1[x(ti)− x̂(t−i )], (A7)

we have

x̂(t+i ) = arg min
x(ti)

V(x(ti)). (A8)

let
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r(x(t)i) =

[
Rm(ti)

− 1
2 (z(ti)− h(x(ti), ti))

P(t−i )
− 1

2 (x(ti)− x̂(t−i ))

]
, (A9)

then the MAP estimate becomes

x̂(t+i ) = arg min
x(ti)

V(x(ti)) = arg min
x(ti)

1
2

r(x(ti))
Tr(x(ti)) = arg min

x(ti)

1
2
‖r(x(ti))‖2

2. (A10)

Equation (A10) is a nonlinear least squares problem, which in this case, we solve using the
Gauss–Newton method as it does not require the computation of second-order derivatives.
The gradient of V(x(ti)) is given by

∇V(x(ti)) = J(x(ti))
Tr(x(ti)), (A11)

where J(x(ti)) =
∂r(x(τi)
∂x(τi)

∣∣∣
x(τi)=x(ti)

.

An approximation of the Hessian is given by

∇2V(x(ti)) ≈ J(x(ti))
T J(x(ti)). (A12)

The Gauss–Newton iteration is carried out using (the simplest case of a fixed step size
is assumed) [55,56]

x̂(t+i )k+1 = x̂(t−i )k − (Jk(x(ti))
T Jk(x(ti)))

−1 Jk(x(ti))
Trk(x(ti), (A13)

with

Jk(x(ti)) = −
[

R−
1
2

m (ti)H(ti)k
P(t−i )

]
, (A14)

where H(ti)k =
∂h(x(ti),ti)

∂x(ti)

∣∣∣
x(ti)=x̂(t+i )k

. Substituting the quantities computed so far into the

Gauss–Newton iteration (A13) yields

x̂(t+i )k+1 = x̂(t−i )k + (HT(ti)kR−1
m (ti)HT(ti)k + P(t−i ))

−1

× (HT(ti)kRm(ti)
−1(z(ti)− hk(x̂(ti)k, ti) + P(t−i )(x̂(t−i )− x̂(t+i )k)). (A15)

rearranging (A15) and using the property

K(ti) = (H(ti)
T
k R−1

m (ti)H(ti)k + P(t−i ))
−1HT(ti)kR−1

m (ti) (A16)

= P(t−i )H(ti)
T
k (H(ti)kP(t−i )HT(ti)k + R−1

m (ti)), (A17)

which follows from the matrix inversion lemma, we have the final form of the IEKF state
update iteration as

x̂(t+i )k+1 = x̂(t−i )k + K(ti)(z(ti)− hk(x̂(ti)k, ti) + H(ti)k(x̂(t−i )− x̂(t+i )k)). (A18)

This is exactly the update equation stated in (86) in Section 4.
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13. Blackmore, L.; Açikmeşe, B.; Scharf, D.P. Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex
Optimization. J. Guid. Control Dyn. 2010, 33, 1161–1171. [CrossRef]

14. Açıkmese, B.; Casoliva, J.; Carson, J.M., III. G-FOLD: A Real-Time Implementable Fuel Optimal Large Divert Guidance Al-
gorithm for Planetary Pinpoint Landing. In Proceedings of the Concepts Approaches Mars Exploration, Houston, TX, USA,
12–14 June 2012.

15. Bishop, R.H.; Crain, T.P.; Hanak, C.; DeMars, K.; Carson, J.M.; Trawny, N.; Christiank, J. An Inertial Dual-State State Estimator for
Precision Planetary Landing with Hazard Detection and Avoidance. In Proceedings of the AIAA Guidance, Navigation, and
Control Conference, San Diego, CA, USA, 4–8 January 2016; pp. 1–21.

16. Lévesque, J.F. Advanced Navigation and Guidance for High-Precision Planetary Landing on Mars, Ph.D. Thesis, University of
Sherbrooke, Quebec, QC, Canada, 2006.

17. Wolf, A.A.; Graves, C.; Powell, R.; Johnson, W. Systems for Pinpoint Landing at Mars. Adv. Astronaut. Sci. 2005, 119, 2677–2696.
18. Pastor, P.R.; Gay, R.S.; Striepe, S.A.; Bishop, R.H. Mars Entry Navigation from EKF Processing of Beacon Data. In Proceedings of

the Astrodynamics Specialist Conference, Denver, CO, USA, 14–17 August 2000; pp. 518–528.
19. Bishop, R.H.; Dubios-Matra, O.; Ely, T. Robust Entry Navigation using Hierarchical Filter Architectures Regulated with Gating

Networks. In Proceedings of the 16th International Symposium on Space Flight Dynamics, Pasadena, CA, USA, 3–6 December
2001.

20. Marschke, J.M.; Crassidis, J.L.; Lam, Q.M. Multiple Model Adaptive Estimation for Inertial Navigation during Mars Entry. In
Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008.

21. Lévesque, J.F.; De Lafontaine, J. Innovative Navigation Schemes for State and Parameter Estimation during Mars Entry. J. Guid.
Control Dyn. 2007, 30, 169–184. [CrossRef]

22. Wu, Y.; Fu, H.; Xiao, Q.; Zhang, Y. Extension of Robust Three-Stage Kalman Filter for State Estimation during Mars Entry. IET
Radar Sonar Navig. 2014, 8, 895–906. [CrossRef]

23. Xiao, M.; Zhang, Y.; Wang, Z.; Fu, H. Augmented Robust Three-Stage Extended Kalman Filter for Mars Entry-Phase Autonomous
Navigation. Int. J. Syst. Sci. 2018, 49, 27–42. [CrossRef]

24. Yu, Z.; Cui, P.; Zhu, S. Observability-Based Beacon Configuration Optimization for Mars Entry Navigation. J. Guid. Control Dyn.
2015, 38, 643–650. [CrossRef]

25. Li, S.; Jiang, X.; Liu, Y. High-Precision Mars Entry Integrated Navigation under Large Uncertainties. J. Navig. 2014, 67, 327–342.
[CrossRef]

26. Lou, T.; Fu, H.; Zhang, Y.; Wang, Z. Consider Unobservable Uncertain Parameters Using Radio Beacon Navigation during Mars
Entry. Adv. Space Res. 2015, 55, 1038–1050. [CrossRef]

27. Jiang, X.; Li, S.; Huang, X. Radio/FADS/IMU Integrated Navigation for Mars Entry. Adv. Space Res. 2018, 61, 1342–1358.
[CrossRef]

28. Lugo, R.A.; Karlgaard, C.D.; Powell, R.W.; Cianciolo, A.D. Integrated Flush Air Data Sensing System Modeling for Planetary
Entry Guidance with Direct Force Control. In Proceedings of the AIAA Scitech Forum, San Diego, CA, USA, 7–11 January 2019;
pp. 1–14.

http://dx.doi.org/10.1016/j.paerosci.2017.08.002
http://dx.doi.org/10.2514/1.25116
http://dx.doi.org/10.3847/25c2cfeb.7f40f610
http://dx.doi.org/10.2514/1.47202
http://dx.doi.org/10.2514/1.25107
http://dx.doi.org/10.1049/iet-rsn.2013.0394
http://dx.doi.org/10.1080/00207721.2017.1397807
http://dx.doi.org/10.2514/1.G000014
http://dx.doi.org/10.1017/S0373463313000738
http://dx.doi.org/10.1016/j.asr.2014.11.016
http://dx.doi.org/10.1016/j.asr.2017.12.010


Remote Sens. 2023, 15, 1139 32 of 32

29. Karlgaard, C.D.; Stoffel, T.D.; White, T.R.; West, T.K. Data Fusion of In-Flight Aerothermodynamic Heating Measurements Using
Kalman Filtering. In Proceedings of the AIAA Aviation 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; pp. 1–13.

30. Karlgaard, C.D.; Tynis, J.A. Mars Phoenix EDL Trajectory and Atmosphere Reconstruction Using NewSTEP; NASA/TM-2019-220282;
NASA: Washington, DC, USA, 2019.

31. Karlgaard, C.D.; Korzun, A.M.; Schoenenberger, M.; Bonfiglio, E.P.; Kass, D.M.; Grover, M.R. Mars InSight Entry, Descent, and
Landing Trajectory and Atmosphere Reconstruction. J. Spacecr. Rockets 2021, 58, 865–878. [CrossRef]

32. Karlgaard, C.D.; Kutty, P.; Schoenenberger, M.; Munk, M.M.; Little, A.; Kuhl, C.A.; Shidner, J. Mars Science Laboratory Entry
Atmospheric Data System Trajectory and Atmosphere Reconstruction. J. Spacecr. Rockets 2014, 51, 1029–1047. [CrossRef]

33. Karlgaard, C.D.; Schoenenberger, M.; Dutta, S.; Way, D.W. Mars Entry, Descent, and Landing Instrumentation 2 Trajectory, Aero-
dynamics, and Atmosphere Reconstruction. In Proceedings of the AIAA Scitech Forum, San Diego, CA, USA, 3–7 January 2022.

34. Cipra, T.; Romera, R. Robust Kalman Filter and Its Application in Time Series Analysis. Kybernetika 1991, 27, 481–494.
35. Ruckdeschel, P.; Spangl, B.; Pupashenko, D. Robust Kalman tracking and smoothing with propagating and non-propagating

outliers. Stat. Pap. 2014 55, 93–123. [CrossRef]
36. Vinh, N.X.; Busemann, A.; Culp, R.D. Hypersonic and Planetary Entry Flight Mechanics; The University of Michigan Press: Ann

Arbor, MI, USA, 1980.
37. Regan, F.J.; Anandakrishnan, S.M. Dynamics of Atmospheric Re-Entry; AIAA Education Series; AIAA: Washington DC, USA, 1993.
38. Morabito, D.D. The Spacecraft Communications Blackout Problem Encountered during Passage or Entry of Planetary Atmospheres; IPN

Progress Report 42-150; NASA: Washington, DC, USA, August 2002; pp. 42–150.
39. Lightsey, E.G.; Mogensen, A.E.; Burkhart, P.D.; Ely, T.A.; Duncan, C. Real-Time Navigation for Mars Missions Using the Mars

Network. J. Spacecr. Rockets 2008, 45, 519–533. [CrossRef]
40. Gazarik, M.J.; Wright, M.J.; Little, A.; Cheatwood, F.M.; Herath, J.A.; Munk, M.M.; Novak, F.J.; Martinez, E.R. Overview of the

MEDLI Project. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–12.
41. Hwang, H.H.; Bose, D.; White, T.R.; Wright, H.S.; Schoenenberger, M.; Kuhl, C.A.; Trombetta, D.; Santos, J.A.; Oishi, T.;

Karlgaard, C.D.; et al. Mars 2020 Entry, Descent and Landing Instrumentation 2 (Medli2). In Proceedings of the 46th AIAA
Thermophysics Conference, Washington DC, USA, 13–17 June 2016; pp. 1–13.

42. White, T.R.; Mahzari, M.; Miller, R.A.; Tang, C.Y.; Monk, J.; Santos, J.A.B.; Karlgaard, C.D.; Alpert, H.S.; Wright, H.S.; Kuhl, C.
Mars Entry Instrumentation Flight Data and Mars 2020 Entry Environments. In Proceedings of the AIAA SCITECH 2022 Forum,
San Diego, CA, USA, 3–7 January 2022; pp. 1–17.

43. Benito, J.; Mease, K.D. Reachable and Controllable Sets for Planetary Entry and Landing. J. Guid. Control Dyn. 2010, 33, 641–654.
[CrossRef]

44. Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice Hall: Hoboken, NJ, USA, 1997.
45. Van Trees, H.L.; Bell, K.L.; Tian, Z. Detection Estimation and Modulation Theory, Part I: Detection, Estimation, and Filtering Theory;

Wiley: Hoboken, NJ, USA, 2013.
46. Hampel, F.R.; Ronchetti, E.M.; Rousseeuw, P.J.; Stahel, W.A. Robust Statistics: The Approach Based on Influence Functions; Wiley:

Hoboken, NJ, USA, 2005.
47. Maronna, R.A.; Martin, R.D.; Yohai, V.J.; Salibiàn-Barrera, M. Robust Statistics: Theory and Methods (with R); Wiley:

Hoboken, NJ, USA, 2019.
48. Zoubir, A.M.; Koivunen, V.; Ollila, E.; Muma, M. Robust Statistics for Signal Processing; Cambridge University Press:

Cambridge, UK, 2018.
49. Huber, P.; Ronchetti, E.M. Robust Statistics; Wiley: Hoboken, NJ, USA, 2009.
50. Bell, B.M.; Cathey, F.W. The Iterated Kalman Filter Update as a Gauss—Newton Method. IEEE Trans. Autom. Contr. 1993,

38, 294–297. [CrossRef]
51. Maybeck, P.S. Stochastic Models, Estimation and Control; Academic Press: New York, NY, USA, 1982; Volume 2.
52. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley-Interscience: Hoboken, NJ, USA, 2006.
53. Julier, S.J.; Uhlmann, J.K. Unscented Filtering and Nonlinear Estimation. Proc. IEEE 2004, 92, 401–422. [CrossRef]
54. Zarchan, P.; Musoff, H. Fundamentals of Kalman Filtering: A Practical Approach, 4th ed.; American Inst of Aeronautics & Astronautics:

Reston, VA, USA, 2015.
55. Havlík, J.; Straka, O. Performance Evaluation of Iterated Extended Kalman Filter with Variable Step-Length. J. Phys. Conf. Ser.

2015, 659, 12022. [CrossRef]
56. Skoglund, M.A.; Hendeby, G.; Axehill, D. Extended Kalman Filter Modifications Based on an Optimization View Point. In

Proceedings of the International Conference on Information Fusion, Washington, DC, USA, 6–9 July 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.A34913
http://dx.doi.org/10.2514/1.A32770
http://dx.doi.org/10.1007/s00362-012-0496-4
http://dx.doi.org/10.2514/1.30974
http://dx.doi.org/10.2514/1.47577
http://dx.doi.org/10.1109/9.250476
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1088/1742-6596/659/1/012022

	Introduction
	Background
	Contribution
	Contents of the Paper

	Problem Formulation
	Mars Entry Dynamic Equations of Motion
	Measurement Models
	Inertial Measurement Unit (IMU)
	Ground-Based Radio Beacon Array
	Atmospheric and Aerothermal Sensor Suite


	Robust Statistical Methods in Estimation
	Navigation Filter Design
	Established Methods
	Extended Kalman Filter (EKF)
	Unscented Kalman Filter (UKF)

	M-Estimation-Based Iterated Extended Kalman Filter (MIEKF)

	Simulation Experiments
	Results and Discussion
	Conclusions
	Appendix A. Coordinate Frame Definitions and Transformations
	Appendix B. Derivation of the Standard Iterated Extended Kalman Filter (IEKF) via an Optimization Approach
	References

