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Abstract— Monocular vision sensors are often affected by the
rapid direction change in load platform and violent illumination
change when the mobile device moves autonomously with high
maneuverability. The images collected by the visual sensor will
also have a lot of dynamic blur, which together with the weak
texture environment reduces the continuity and accuracy of the
visual autonomous navigation system. To enhance the stability of
the system, in the letter, we propose a vision-led multisource
data fusion navigation algorithm. The system combines the
visual information for trajectory estimation, adds the inertial
measurement unit (IMU) measurement information to the sliding
window for optimization, and finally uses the global navigation
satellite system (GNSS) data as a reconstraint condition through
factor graph optimization to further optimize the trajectory
accuracy. Experiments on the public datasets containing a variety
of different scene categories show that the trajectory tracking
results generated by our algorithm are more complete and
stable and can better meet the system’s autonomous navigation
requirements.

Index Terms— Factor graph, global navigation satellite system
(GNSS), multisource data fusion, visual autonomous navigation,
visual–inertial odometry (VIO).

I. INTRODUCTION

IN RECENT years, the technology of mobile intelligent
robot has attracted more and more attention both in the

society and research area. The simultaneous localization and
mapping (SLAM) technology provides key support in the
autonomous navigation of intelligent robots with real-time
trajectory and environmental information and further plays a
decisive role for the robot’s subsequent path planning and
navigation. In view of the uncertainty in outdoor environ-
ments, obtaining accurate pose and environmental information
through visual sensors and inertial navigation devices therefore
faces many challenges. At present, classic solutions such as
visual inertial system (VINS)-mono [1] and oriented FAST
and rotated BRIEF (ORB)-SLAM3 [2] system have higher
accuracy and robustness in ideal environment, but due to
the error from feature tracking, especially the ORB feature
matching [3], [4], with the error accumulation of inertial
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navigation device, the system would produce a huge trajectory
drift when the loop environment is not detected for a long time.

The current differential global navigation satellite system
(GNSS) technology [real-time kinematic (RTK)] based on
carrier phase has a positioning accuracy of centimeter level [5];
however, in practical applications of GNSS major-based sys-
tems, the occlusion of tall objects such as trees and buildings
will affect the strength of GNSS signals, resulting in position-
ing failure. For this reason, Miller et al. [6] proposed a map
assistance method that combines the GNSS data for visual
SLAM and particle filtering. Schleicher et al. [7] proposed a
method that combines the monocular vision ranging method
and GNSS measurement to restore position and attitude.
Berrabah et al. [8] proposed real-time extended Kalman filter
(EKF) hierarchical SLAM combined with the GNSS data,
but did not use the height information provided by GNSS.
Chu et al. [9] developed an integrated vision/inertial measure-
ment unit (IMU)/GNSS system based on the EKF design,
which can provide 15-state high-bandwidth navigation solu-
tions. However, the EKF only uses the latest state estimation
due to the marginalization of the past state. As a result, the
nonlinear factors representing these measured values cannot
be relinearized well during the estimation process.

Different from the above solutions, in the letter, we use
factor graph optimization to fuse the real-time vision, inertial
navigation, and GNSS data collected by the mobile platform.
Factor graph [10] is a probability graph model of state
variables and factor nodes. Given all the available sensor mea-
surements as factors, it will encode the posterior probability
of the state over time. The inertial/visual information fusion
method based on factor graph is a major direction of the factor
graph algorithm [11]. This kind of algorithms uses a factor
graph model to express the fusion of inertial information and
visual information, which is closely integrated with the SLAM
technology. Factor graph encodes the relationship between
unknown variable nodes and known measured values, and
fusing the observed values from different and asynchronous
sensors becomes a new problem of connecting the factor
defined by the measured value with the corresponding node
in the factor graph [12], [13], [14]. With the help of the
factor graph algorithm, the GNSS information is added as a
constraint in the visual–inertial odometry (VIO) system, which
can further improve the navigation quality of the system and
the accuracy of the final generated trajectory.

II. METHODOLOGY

As shown in Fig. 1, based on the VIO system with visual
constraints and IMU constraints, we use the node coordinate
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Fig. 1. Algorithm overall flow.

Fig. 2. Illustration of VIO.

information provided by GNSS as a further constraint through
the factor graph and reconstrain the trajectory synchronized
with GNSS time nodes.

A. Basic Principles of the VIO System

Fig. 2 shows the basic principle of visual inertial navigation
odometer and stipulates the following notation [15]. ci and
bi , respectively, represent the camera observation and IMU
observation at time t = i . (.)c represents the observation value
in frame c. qbc and pbc are the internal parameters between the
camera system and the IMU system. f j indicates the landmark
point of the point feature. z represents the observation on the
image frame.

1) Point Feature Measurement Model: According to the
point features, assuming that the normalized plane coordinate
of point k on the c j th frame is zci

fk
= [uci

fk
, vci

fk
, 1]T , the

reprojection error can be defined as

r f
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where zbi b j is the feature point on the normalized plane first
observed by ci frame, and λk is the inverse depth of the feature
point in this frame.

2) IMU Measurement Model: The IMU measurement resid-
ual model is constructed by preintegrating the original IMU
observations of two consecutive frames bi and b j . The model
can be defined as follows:
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where zbi b j = [α̂bi b j , β̂bi b j , q̂bi b j ] is the preintegration mea-
surement of IMU. [·]xyz is the real part of quaternion, which
is used to estimate the 3-D rotation error.

3) Optimization of the VIO System:
In the letter, we use the sliding window algorithm to

optimize the point feature visual measurement error and IMU
measurement error, so as to optimize the tight coupling of
visual information and inertial navigation information. The
variable optimized in the sliding window at time t can be
defined as follows:

X = [
xn, xn+1, . . . , xn+N , λm, λm+1, . . . , λm+M

]

xi = [
pwbi , qwbi , v

w
i , bbi

a , bbi
g

]T
, i ∈ [

nn + N
]

(3)

where xi represents the state variable of the IMU body at
the i th moment, pwbi is the position of the IMU body in the
world coordinate system, while qwbi represents its direction
and vw

i represents its speed in the same coordinate system. bbi
a

and bbi
g represent the acceleration and angular velocity bias

at the same moment, respectively. Subscripts n indicate the
IMU body state variables, and m represents the number of
the beginning of the feature point in the sliding window. N is
the number of keyframes in the sliding window, and M is the
number of feature points observed by all the keyframes in the
sliding window. k is the inverse depth of the kth landmark in
the camera coordinate system where the landmark is first time
observed.

By constructing the residual equation to optimize all the
state variables in the sliding window, the least-square solution
is obtained as

minρ
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In the formula, {rp, Jp} is the prior information calcu-
lated after one frame of edge in the sliding window. Jp

is the prior Jacobian matrix obtained by calculating the
Hessian matrix according to the last sliding window optimiza-
tion. rb(zbi bi +1, X) represents the IMU measurement residual
between states xi and xi+1. r f (z

ci
fi
, X) is the reprojection

error of point feature. B is the set of all the preproduct
components in the sliding window. F represents the set of
point features observed by the camera. ρ is the Cauchy robust
kernel function.

B. GNSS Double-Difference Positioning

The observations between the rover and the reference value
are taken as the single difference between stations, and the
previous observations continue to participate with the obser-
vations from different satellites p and q to make the single
difference between the stars. The station–satellite double-
difference observation equation can be taken as

λ � ��
pq
i j = ρ

q
j − ρ

q
i − ρ

p
j + ρ

p
i − λ � �N pq

i j + � � e pq
�,i j

(5)

where λ is the wavelength of the carrier phase, � is the
observed value of the carrier phase, ρ is the geometric distance
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Fig. 3. Multiple constraint factor graph.

between the stars and the ground, N is the ambiguity of the
whole week, � is the difference operator between stars, and
�� is the station star double-difference operator. At the same
time, there is λ � ��

pq
i j = λ � �
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i j − λ � �
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i j , that is, λ(�
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In the equations, ρ
q
j0 and ρ

p
j0 are the approximate coordinates.

If � � e pq
�,i j is abbreviated, the linearized double-difference

carrier observation equation can be made as
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The above formula is the double-difference RTK positioning
error equation. Using the distance and spatial correlation char-
acteristics between the station and the satellite, the common
systematic errors of different observation values are eliminated
and weakened by double difference, and the fixed fuzzy real-
time high-precision mobile station position solution can be
obtained using the least square.

C. GNSS-VIO Fusion Factor Graph

As a kind of undirected graph, factor graph is usually
formed by combining two kinds of nodes, one is called the
variable node, which is used to represent optimized variables,
and the other is called the factor node, which is used to
represent factors. As shown in Fig. 3, in the multiconstraint
factor graph of GNSS-assisted VIO fusion in this letter, there
are three kinds of “variable nodes,” one is the visual input
variable node Ti , one is the IMU input variable node Mi , and
the other is a fixed node Pi generated from GNSS data. There
are also three types of “factor nodes,” which are visual factor
nodes in red, inertial navigation factor nodes in yellow, and
GNSS input variables as reconstraint factor nodes in blue of
landmark nodes Li . The edges represent different constraints,
through which the trajectory is optimized.

To facilitate optimization, the GNSS processing strategy
adopted in this letter is to first convert the GNSS date into

TABLE I

SPECIFIC DATA INFORMATION OF KITTI IMAGE SEQUENCE

general horizontal axis Mercator coordinates, and then asso-
ciate each GNSS data with the trajectory node [16]. Then the
position of GNSS can be used as a prior position information,
which becomes a node and a reconstraint in the factor graph.
The error between the translation vector of the trajectory node
and the GNSS position is defined as follows:

eg
i = Tt − Gi (10)

where Tt is the trajectory of the mobile platform at time t , and
Gi is the fixed node generated by GNSS data. The integrated
navigation algorithm based on factor graphs needs to solve
the maximum posterior probability of the parameter to be
estimated, that is,

XMAP = arg min
X

∑
i

‖Tt − Gi‖2∑
i . (11)

III. EXPERIMENTS AND ANALYSIS

A. Monocular/IMU/GNSS Fusion Navigation Experiment

At present, the industry still lacks a complete open solution
for monocular/IMU/GNSS integrated navigation. In the sec-
tion, we compared our own algorithm with the monocular/IMU
integrated navigation systems such as VINS-mono, OKVIS,
and ORB-SLAM3 to verify the constraint effect from GNSS
to the tight coupling system of monocular and IMU.

1) Description of Experimental Datasets: To evaluate the
performance of this algorithm, the observational datasets
KITTI 02, KITTI 07, and KITTI 08 in Table I are used includ-
ing both the categories: the extract and the sync data. The sync
data remove the distortion of the camera and synchronize the
IMU data with the GNSS data. This type of data releases only
10-Hz frequency of IMU and GNSS data, which cannot meet
the requirements of multisensor data fusion. And the extract
data (raw data) are the original observation data; although the
images are not removed distortion, the data release 100-Hz
frequency of IMU data and GNSS data. Thus, the 10-Hz
IMU data and global positioning system (GPS) data in the
corresponding sync dataset are replaced with the 100-Hz data
in the extract dataset. The specific information of the three
groups of KITTI data are as follows.

In the above datasets, the measured IMU data in the extract
dataset have intermittent and reverse time scales, as shown in
Fig. 4. We only preprocess the reverse order problem.

2) Analysis of Experimental Results: In the letter, we evalu-
ate the test results of the above three sets from our algorithm,
VINS-mono algorithm, ORB-SLAM3 algorithm, and OKVIS
algorithm using absolute trajectory error (ATE).

As shown in Fig. 5, in terms of trajectory tracking results,
our algorithm has achieved best trajectory generation results
among the three sets of trajectories. The VINS-mono algorithm
also achieved better results, followed by the ORB-SLAM3
algorithm, but the OKVIS was weaker. Part of the reason
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Fig. 4. IMU time scale jump.

Fig. 5. Comparison of algorithm trajectories. (a) Algorithm trajectories of
KITTI 02. (b) Algorithm trajectories of KITTI 07. (c) Algorithm trajectories
of KITTI 08.

for these results is the issue of timescale jumps in the IMU
data. The intermittent timescale problem of KITTI data mainly
occurs in KITTI 08 data. Our algorithm preprocesses the
intermittent of IMU timescale in the program, so it can quickly
and accurately initialize the pose and track the trajectory. The
other algorithms, except VINS-mono, do not adopt the above
mechanism. When facing the problem of intermittent time
scale in IMU data, they may lose tracking and reinitialize map
points, resulting in large errors to the overall trajectory in the
continuous initialization steps.

TABLE II

TRAJECTORY ACCURACY RESULTS OF EACH METHOD ON THE KITTI
DATASET

Fig. 6. Comparison of trajectory accuracy. (a) Trajectory accuracy of
KITTI 02. (b) Trajectory accuracy of KITTI 07. (c) Trajectory accuracy of
KITTI 08.

In the letter, we listed the trajectory estimation accuracy
of all the algorithms in Table II. By the reconstrainted of
GNSS data, our algorithm is further refined from the original
VIO trajectory results. In the experiment, we use a low-weight
GNSS data for constraints, mainly considering that the actual
accuracy of GNSS data may be lower than the GNSS data
in the KITTI public dataset due to the accumulation of
errors such as occlusion and jitter during the actual operation.
A high-weight GNSS data constraint may affect the final
trajectory accuracy of the system.

As can be seen from Fig. 6, the accuracy of each algorithm
in the X direction and the Y direction is not much different
from the true trajectory. However, there seems to be large
differences in the Z direction (elevation direction). Since the
range of the Z -axis is different from X and Y (0–50 m or even
0–1 m vs. 0–100 m or even 0–500 m), the actual differences
are not so large. In Fig. 6(c), the trajectory trend of our method
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Fig. 7. Algorithm trajectory versus ground truth. (a) Error map of Algorithm
in KITTI 02. (b) Error map of Algorithm in KITTI 07. (c) Error map of
Algorithm in KITTI 08.

has a small difference from the ground truth, while the other
methods have a large one in the specific area, this is because
our method adopts a higher weight of the GNSS constraint
in the KITTI 08 dataset, which is close to the GNSS ground
truth and also lost in the same area due to occlusion and other
reasons, resulting in the jump of trajectory results. The result
also shows that a GNSS constraint with high weight may affect
the final trajectory accuracy of the system.

In Fig. 7, the coincidence degree between our method and
the ground truth is reflected by the color of the track. The
more the color is toward dark blue, the higher the track
coincidence, and the higher the track accuracy. As can be
seen, our method has error in the initial stage of the trajectory;
with the operation of the system and the gradual tracking
of the trajectory, the system accuracy is getting higher. This
indicates that under the continuous reconstraint of GNSS
data, the trajectory estimation accuracy of our method can be
continuously improved with the operation of the system.

IV. CONCLUSION

In the letter, a visual odometer optimization algorithm
integrating monocular vision, IMU inertial navigation data,
and GNSS data is proposed, in which the GNSS data can
be used for reconstraint with the monocular and IMU inertial
navigation data are tightly coupled. In the experiment, three
sets of KITTI original observation data are used to evaluate
the trajectory accuracy of our algorithm and other excellent
visual inertial navigation odometer systems as VINS-mono,
ORB-SLAM3, and OKVIS. The results show that in the
actual trajectory tracking process, the proposed algorithm
can further restrict the overall trajectory accuracy with the
help of GNSS data on the trajectory estimation of mobile
devices independently through monocular vision and inertial
navigation data. The experiment verifies the effectiveness of
our algorithm through the actual trajectory tracking results by
three sets of KITTI data: KITTI 02, KITTI 07, and KITTI 08.

REFERENCES

[1] T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34,
no. 4, pp. 1004–1020, Aug. 2018.

[2] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Trans. Robot., vol. 37,
no. 6, pp. 1874–1890, Dec. 2021.

[3] Y. Chen, L. Yan, B. Xu, and Y. Liu, “Multi-stage matching
approach for mobile platform visual imagery,” IEEE Access, vol. 7,
pp. 160523–160535, 2019.

[4] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in Proc. Int. Conf. Comput. Vis.,
Nov. 2011, pp. 2564–2571.

[5] M. Zhang, X. Xu, Y. Chen, and M. Li, “A lightweight and accurate
localization algorithm using multiple inertial measurement units,” IEEE
Robot. Autom. Lett., vol. 5, no. 2, pp. 1508–1515, Apr. 2020.

[6] I. Miller, M. Campbell, and D. Huttenlocher, “Map-aided localization in
sparse global positioning system environments using vision and particle
filtering,” J. Field Robot., vol. 28, no. 5, pp. 619–643, 2011.

[7] D. Schleicher, L. M. Bergasa, M. Ocana, R. Barea, and M. E. Lopez,
“Real-time hierarchical outdoor SLAM based on stereovision and GPS
fusion,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 3, pp. 440–452,
Sep. 2009.

[8] S. A. Berrabah, H. Sahli, and Y. Baudoin, “Visual-based simultaneous
localization and mapping and global positioning system correction for
geo-localization of a mobile robot,” Meas. Sci. Technol., vol. 22, no. 12,
Dec. 2011, Art. no. 124003.

[9] T. Chu, N. Guo, S. Backén, and D. Akos, “Monocular camera/
IMU/GNSS integration for ground vehicle navigation in challenging
GNSS environments,” Sensors, vol. 12, no. 3, pp. 3162–3185, 2012.

[10] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[11] Y. Ben Elisha and V. Indelman, “Active online visual-inertial navigation
and sensor calibration via belief space planning and factor graph based
incremental smoothing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2017, pp. 2616–2622.

[12] Q. Zeng, W. Chen, J. Liu, and H. Wang, “An improved multi-sensor
fusion navigation algorithm based on the factor graph,” Sensors, vol. 17,
no. 3, p. 641, Mar. 2017.

[13] C. Tang, L. Zhang, Y. Zhang, and Y. Wang, “Factor graph aided
distributed multi-navigation cooperative positioning algorithm,” in Proc.
31st Int. Tech. Meeting Satell. Division Inst. Navigat. (ION GNSS+),
Oct. 2018, pp. 2421–2428.

[14] G. Junqiang, T. Xiaqing, Z. Huan, and W. Meng, “Land vehicle
INS/GNSS/OD integrated navigation algorithm based on factor graph,”
Syst. Eng. Electron., vol. 40, no. 11, pp. 2547–2553, 2018.

[15] B. Xu, Y. Chen, S. Zhang, and J. Wang, “Improved point–line visual–
inertial odometry system using Helmert variance component estimation,”
Remote Sens., vol. 12, no. 18, p. 2901, 2020.

[16] Z. Yu and L. Jiang, “The application of improved 3D SLAM algorithm in
mobile robot,” (in Chinese), Mech. Des. Manuf., vol. 1, no. 1, pp. 29–32,
2020.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 13,2023 at 07:46:31 UTC from IEEE Xplore.  Restrictions apply. 


