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Abstract
Background  Differentiating early-stage Parkinson's disease (PD) from essential tremor (ET) is challenging since they have 
some overlapping clinical features. Since early-stage PD may present with slight gait impairment and ET generally does not, 
gait analysis could be used to differentiate PD from ET using machine learning.
Objective  To differentiate early-stage PD from ET via machine learning using gait and postural transition parameters cal-
culated using the raw kinematic signal captured from inertial measurement unit (IMU) sensors.
Methods  Gait and postural transition parameters were collected from 84 early-stage PD and 80 ET subjects during the Time 
Up and Go (TUG) test. We randomly split our data into training and test data. Within the training data, we separated the TUG 
test into four components: standing, straight walk, turning, and sitting to build weighted average ensemble classification 
models. The four components’ weight indices were trained using logistic regression. Several ensemble models’ leave-one-
out cross-validation (LOOCV) performances were compared. Independent test data were used to evaluate the model with 
the best LOOCV performance.
Results  The best weighted average ensemble classification model LOOCV results included an accuracy of 84%, Kappa of 
0.68, sensitivity of 85.9%, specificity of 82.1%, and AUC of 0.912. Thirty-three gait and postural transition parameters, 
such as Arm–Symbolic Symmetry Index and 180° Turn–Max Angular Velocity, were included in Feature Group III. The 
independent test data achieved a 75.8% accuracy.
Conclusions  Our findings suggest that gait and postural transition parameters obtained from wearable sensors combined 
with machine learning had the potential to distinguish between early-stage PD and ET.
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Introduction

Essential tremor (ET) and Parkinson's disease (PD) are two 
common movement disorders in older populations [1–3] 
and have some overlapping clinical features, e.g., rest and 

postural tremors, making it difficult to differentiate ET and 
PD in their early stages [4–7].

Early-stage PD and ET can be distinguished by the fol-
lowing clinical symptoms: (1) Tremor features: rest tremor is 
usually an early sign in PD, while action tremor is usually an 
early sign of ET, and rest tremor may be present years after 
disease onset in ET. Re-emergent tremor can be present in 
PD but absent in ET. (2) Bradykinesia: bradykinesia is the 
prerequisite for PD diagnosis, and bradykinesia in patients 
with PD often manifests as poor hand flexibility in the early 
stages. However, ET is not usually associated with bradyki-
nesia. (3) Rigidity: PD is associated with rigidity, whereas 
ET usually is not. (4) Gait: early-stage PD may manifest 
as reduced stride length, slow speed, poor symmetry, and 
reduced amplitude of arm swing on the affected side. How-
ever, gait disorder is usually not present in ET [8].
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However, despite the differences in the above symptoms 
between PD and ET, it is still challenging to distinguish 
early-stage PD from ET. First, rest tremor, postural tremor, 
or action tremor can be present in both ET and PD patients 
at the early stage. Second, some PD patients are only with 
tremor and other motor symptoms are very mild or not obvi-
ous, which are difficult to be detected by subjective observa-
tion and physical examination. Therefore, in recent years, 
some researchers have begun to use devices to quantita-
tively identify the above-mentioned motor symptoms, such 
as bradykinesia, tremor, and gait, hoping to achieve early 
diagnosis of PD.

In previous studies, researchers have mainly focused on 
the characteristics of the patient’s tremors to differentiate the 
diseases [9–12]. Long-term EMG recordings with/without 
combined accelerometers were used to differentiate the two 
disorders [9, 11]. EMG analysis might help differentiate the 
two disorders, but it is an invasive examination and is limited 
for application when patients have mixed types of tremors.

Gait impairment and bradykinesia have been reported in 
early-stage PD [13]. However, it is not easy to distinguish 
the gait impairment of early-stage PD from ET by subjec-
tive assessment, since these symptoms are minor. Therefore, 
advanced technologies, such as wearable sensors and motion 
capture systems, have been used for clinical differentiation 
of the diseases according to gait and balance parameters [14, 
15]. Moon et al. [14] obtained some gait and balance char-
acteristics from inertial measurement unit (IMU) sensors 
during the instrumented stand and walk test to discriminate 
PD and ET (average durations (years), PD: 8.2, ET: 13.83). 
The results showed that the cross-validation F1 score was 
0.61 for the best model. However, it was not clear if this 
classification system could be applied to differentiate early-
stage PD from ET. The Time Up and Go (TUG) test has been 
widely used as an assessment for gait and balance problems 
in movement disorders, including PD and ET [16, 17], and 
its use in combination with IMU sensors was recommended 
for capturing the raw kinematic signal to quantitatively ana-
lyze the gait [18, 19].

Segmentation of the TUG test into phases provides 
additional parameters [20] that might be helpful for dif-
ferentiating PD from ET. Therefore, we separated the 
entire TUG test into four components (standing, straight 
walk, turning, and sitting) and integrated them into a final 
weighted average ensemble classification model. In our 
diagnostic study, we primarily examined whether wear-
able sensor-based gait and postural transition parameters 
obtained from the TUG test could be used as input features 
in machine learning algorithms to differentiate early-stage 
PD from ET.

Materials and methods

Participants

This study was approved by the Ethics Committee of Rui-
jin Hospital, Shanghai Jiao Tong University School of 
Medicine. Written informed consent was obtained from 
all the participants. Eighty-four subjects with PD (age: 
58.13 ± 10.43) and eighty age-matched ET subjects (age: 
58.7 ± 13.9) participated in this study at Ruijin Hospi-
tal, Shanghai Jiao Tong University School of Medicine 
between October 2019 and November 2021. PD and 
ET subjects were diagnosed by two movement disorder 
specialists according to the Movement Disorder Society 
(MDS) PD criteria [21] and ET criteria [22]. Only early-
stage PD [Hoehn and Yahr (H&Y) stage 1–1.5)] [23] and 
ET patients who had limb tremor symptoms were recruited 
into this study. The exclusion criteria were as follows: 
(1) a history of cerebrovascular disease (e.g., infarction, 
hemorrhage), brain tumor, head trauma or any psychiat-
ric disorders; (2) a history of medication known to cause 
parkinsonism or affect clinical assessment; (3) orthopedic 
impairment or other disease that likely contributed sig-
nificantly to gait disturbance; (4) MMSE < 24 or cogni-
tive disorder that likely contributed significantly to gait 
disturbance; and (5) participants who had both PD and 
ET. The demographic data and clinical characteristics of 
participants are provided in Table 1.

Protocol and materials

A wearable motion and gait quantification assessment sys-
tem, MATRIX (GYENNO SCIENCE, Shenzhen, China), 
which is commercially available, was utilized in this study 
[24]. It is approved by the National Medical Products 
Administration (NMPA), U.S. Food and Drug Adminis-
tration (FDA), and Conformitè Europëenne Medical (CE 
Medical). All participants were equipped with 10 IMU 
sensors, with a sampling rate of 100 Hz (Fig. 1A). Each 
IMU provided inertial sensing results via a (1) tri-axial 
accelerometer (range = ± 16 g, sensitivity = 16,384 LSB/g) 
and a (2) tri-axial gyroscope (range =  ± 2000 dps, sensi-
tivity = 131 LSB/dps). Two hand sensors were bilaterally 
placed on the dorsal side of the wrist. The chest sensor was 
placed on the sternum of the chest, and the waist sensor 
was attached to the fifth lumbar vertebra. Two thigh sen-
sors were bilaterally placed 7 cm above the knee, while 
two shank sensors were bilaterally placed 7 cm below the 
knee. Two-foot sensors were bilaterally placed at the instep 
(dorsal side of the metatarsus) of each foot. All sensors 
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were tightened to designated locations by straps (Fig. 1B). 
The TUG test was performed (Fig. 1C). During the TUG 
test, participants were instructed to stand up from a chair, 
walk in a straight line for 5 m at a comfortable speed, turn 
180° around at the end of the 5 m marker, walk back to the 
start point, turn 180° around in front of the chair and sit 
down on the chair. The raw kinematical signals of partici-
pants during TUG tests were captured using the ten wear-
able sensors in real time and were transmitted to the host 
computer via a Bluetooth link for further analysis. A total 
of 184 gait and postural transition parameters (Appendix 
A, Table 4) based on the raw kinematical signals were cal-
culated automatically by our prebuilt MATLAB algorithm 
[24]. An introduction of the gait cycles and segmentation 
of the TUG test is shown in Appendix C.

Data analysis

Data were split into a training dataset and testing dataset

The entire dataset included 164 recordings (PD: 84, ET: 80), 
of which 80% of the recordings (PD: 67, ET: 64) were used 
for training, whereas the remaining 20% (ET: 13, PD: 20) 
were used for independent testing. In the training dataset, 

we ensured that the age, sex, and height between the PD and 
ET groups were matched. Leave-one-out cross-validation 
(LOOCV) was performed to fine-tune the model parameters 
in the training data. The final model was selected among 
different candidate models based on model LOOCV perfor-
mance. Independent testing was used to provide an unbiased 
evaluation of the final model (Fig. 2).

Weighted average ensemble classification model 
construction

Several feature selection methods were tried (Appendix D) 
and generated three different feature groups, FG I, FG II 
and FG III. We trained support vector machine (SVM) and 
random forest (RF) models on the training subset with fea-
tures from different feature groups. For each feature group, 
we trained the models for four components, straight walk, 
sitting, standing and turning, with corresponding compo-
nent features separately using LOOCV and obtained 4 prob-
abilities of having PD for each subject. These probabilities 
were used as input variables for building logistic regression 
models. The logistic regression coefficients were combined 
into weights used in a linear combination of the previous 4 
probabilities, resulting in an ensemble learning prediction 

Table 1   Demographic characteristics of the early-stage PD subjects and ET subjects

Data are shown as the mean (SD) for continuous variables and n (%) for categorical variables
ET essential tremor; PD Parkinson’s disease; MDS-UPDRS MDS-Unified Parkinson's Disease Rating Scale
a p value: Differences between groups were assessed using the chi-square test for categorical variables and two-sample t test (two-sided) for con-
tinuous variables

Entire dataset Training data Test data

ET (n = 80) PD (n = 84) p valuea ET (n = 67) PD (n = 64) p valuea ET (n = 13) PD (n = 20) p valuea

Age, y 58.70 (13.90) 58.13 (10.43) 0.767 58.57 (14.04) 57.06 (10.80) 0.494 59.38 (13.71) 61.55 (8.54) 0.579
Sex: Female no. (%) 43 (53.8) 38 (45.2) 0.351 37 (55.2) 29 (45.3) 0.337 6 (46.2) 9 (45.0) 1
Height, cm 164.12 (18.78) 165.75 (8.08) 0.469 165.90 (8.28) 165.94 (8.13) 0.977 155.00 (42.86) 165.15 (8.11) 0.307
Education: no. (%) 0.029 0.155 0.01
 No formal qualifica-

tion
4 (5.0) 3 (3.6) 3 (4.5) 1 (1.6) 1 (7.7) 2 (10.0)

 Primary school 11 (13.8) 10 (11.9) 11 (16.4) 8 (12.5) 0 (0.0) 2 (10.0)
 Junior high school 10 (12.5) 30 (35.7) 8 (11.9) 20 (31.2) 2 (15.4) 10 (50.0)
 Senior high school 23 (28.7) 15 (17.9) 17 (25.4) 15 (23.4) 6 (46.2) 0 (0.0)
 College/bachelor’s 

degree
29 (36.2) 24 (28.6) 25 (37.3) 18 (28.1) 4 (30.8) 6 (30.0)

 Advanced degree 3 (3.8) 2 (2.4) 3 (4.5) 2 (3.1) 0 (0) 0 (0)
Disease duration, y 9.65 (9.36) 4.56 (4.99)  < 0.001 9.67 (9.80) 4.77 (5.30) 0.001 9.56 (7.09) 3.91 (3.87) 0.006
H&Y: no. (%) – – – – – –
 1 39 (46.4) 31 (48.4) 8 (40.0)
 1.5 45 (53.6) 33 (51.6) 12 (60.0)

MDS-UPDRS III – 21.39 (12.49) – – 21.95 (13.32) – – 19.60 (9.44) –
Taking dopaminergic 

therapy: no. (%)
– 39 (46.4) – – 34 (53.1) – – 5 (25.0) –
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Fig. 1   A Sensor overview. B Sensor locations. C TUG test procedure
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probability score ( P_val ) for each subject in the training set. 
If P_val was > 0.5, the subject would be classified as having 
PD using our model; otherwise, they would be classified as 
having ET. This kind of model was called the weighted aver-
age ensemble classification model. We selected the weighted 
average ensemble classification model, which had the best 
model performance among all models, as our final model. 
Independent test data were used to evaluate the final model. 
We calculated the ensemble learning prediction probability 
score of each subject in the test data P by multiplying the 
weights obtained during the above training process with the 
test data predicted scores obtained from four different com-
ponent models. If P was > 0.5, the subject in the test data 
would be classified as having PD using our model, otherwise 
they would be classified as having ET (details about ensem-
ble classification model construction are in Appendix E).

Performance evaluation

The classification models were evaluated with accuracy, 
kappa, sensitivity, specificity, and AUC. An ROC curve is 
a graph showing the classification model performance at all 
different classification thresholds. AUC is the area under the 
ROC curve. In our case, we set PD as a positive case and ET 
as a negative case. The accuracy, sensitivity, specificity, and 
kappa [25] were calculated as follows (TP = true positive, 
TN = true negative, FP = false positive, FN = false negative):

Accuracy =
TP + TN

TP + TN + FP + FN

Results

Feature comparisons of gait and transition 
parameters between early‑stage PD and ET

Sixty-six out of 214 features were significantly different 
between early PD and ET (Table 2). Importantly, we found 
that some feature parameters that differed between early 
PD and ET were consistent with clinical observations. For 
example, the Arm–Symbolic Symmetry Index was higher 
in PD than in ET by approximately 16.0%. This parameter 
was used to describe the symmetry of the arms’ movements 
during the TUG test. The lower the parameter is, the bet-
ter the symmetry of the arms is. Our results showed that 
Arm–Symbolic Symmetry Index was higher in PD than in 
ET, indicating that PD presents with worse arm symmetry 
than ET. This finding was consistent with the clinical cases 
in which early PD usually reduces the arm swing range on 
the affected side, resulting in bilateral asymmetry, while ET 
arm swing was not affected. Stand To Sit–Trunk–Min Lean 

Kappa =
2 × (TP × TN − FN × FP)

(TP + FP) × (FP + TN) + (TP + FN) × (FN + TN)

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Fig. 2   Model training and independent test data evaluation
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Angle was lower in PD than in ET by approximately 5.38%. 
It was defined as the sagittal projection of the maximum 
backward tilt angle during the sitting process (backward: 
positive value, forward: negative value). The higher the 
parameter was, the larger backward tilt the participant had 
during the sitting process. Our results showed that Stand 
To Sit–Trunk–Min Lean Angle was lower in PD than in 
ET, indicating that PD has a smaller backward tilt range 
than ET. This finding was consistent with the clinical 
cases that PD usually has a smaller range of motion. Sit To 
Stand–Trunk–Max Sagittal Angular Velocity was smaller 
in PD than in ET by approximately 18.9%. This parameter is 
defined as the absolute value of the sagittal projection of the 

maximum angular velocity of the trunk during the standing 
process. The higher the parameter is, the faster the partici-
pants stand from the chair. Our results showed that Sit To 
Stand–Trunk–Max Sagittal Angular Velocity was smaller 
in PD than ET, indicating that PD stand slower from the 
chair during TUG testing compared to ET on average. The 
180° Turn–Max Angular Velocity was smaller in PD than 
in ET by approximately 13.0%. This parameter is defined as 
the maximum value of angular velocity during the turning 
process. The higher the value is, the faster the participants 
turn. Our results showed that the 180° Turn–Max Angular 
Velocity was smaller in PD than in ET, indicating that PD 
turned slower than ET on average. These two features, Sit 

Table 2   Significant gait and 
postural transition features 
obtained from the TUG test
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To Stand–Trunk–Max Sagittal Angular Velocity and 180° 
Turn–Max Angular Velocity, were consistent with the clini-
cal cases in which bradykinesia was the main symptom in 
patients with PD. Although these parameters differ between 
early PD and ET, box plots of these four features showed 
overlaps between early PD and ET (Fig. 3), so the combina-
tion of more features was needed to achieve a more accurate 
discrimination. 

Feature selection

Several feature selection methods were tried in the training 
data, and the feature combinations were organized into 3 
groups based on the feature selection method results.

Method 1: Sixty-six out of 214 features were signifi-
cantly different between early PD and ET (Table 2); thus, 
FG I contained 66 features. In addition, 56, 6, 2, and 2 

features were obtained from the straight walk, turning, 
sitting, and standing components, respectively.

Method 2: 34 out of 66 features were kept (eTable 1 
in the Online Resource); thus, FG II contained 34 fea-
tures. In addition, 29, 3, 1, and 1 were obtained from the 
straight walk, turning, sitting, and standing components, 
respectively.

Method 3: Out of the 66 significant features, 33 individual 
features were most discriminative in differentiating early PD 
from ET, with a fivefold cross-validation ROC AUC ≥ 0.6 
(Table 2, above the blue line); thus, FG III contained 33 
features. Among these 33 most discriminative features in 
differentiating early PD from ET, 25 were obtained from the 
straight walk component, and 5, 2, and 1 were obtained from 
the turning, sitting, and standing components, respectively.

Table 2   (continued)

Color coding for features:  
Blue line: The features above the blue line had AUC ≥ 0.6
ET essential tremor, PD Parkinson's disease, GCT​ Gait cycle time, ROM Range of motion, Max maxi-
mum value between the pair of left-sided and right-sided parameters, Min minimum value between the 
pair of left-sided and right-sided parameters, abs absolute value of the difference between the left-sided 
parameter and right-sided parameter in the pair
a P value was estimated using the Mann–Whitney U test for exploring feature discrimination ability 
between the PD and ET groups
b AUC_5-fold: fivefold cross-validation area under the ROC curve; AUC_5_fold for each of the 66 signifi-
cant features in descending order of AUC_5_fold
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Model LOOCV performance comparisons

The segmented model LOOCV performance results and 
weights of four different components (straight walk, turning, 
standing, and sitting) in all model (SVM or RF) and feature 
group (FG I, II, III) combinations are shown in Appendix 

B Table 5. We found that straight walk achieved the high-
est weights among the other components in all model and 
feature group combinations. An example of how to calculate 
the ensemble learning prediction probability score is shown 
in Appendix F.

Fig. 3   Representative feature comparison between early-stage PD 
and ET. The box plot represents the following data: the central line 
represents the median, the top and bottom line of the box represents 
the 75th quantile (Q3) and 25th quantile (Q1), the top and bottom of 
the error bar indicates the “Maximum” (Q3 + 1.5 × (Q3 − Q1)) and 

“Minimum” (Q1 − 1.5 × (Q3 − Q1)), dots represent outliers (outside 
the “Maximum” and “Minimum”). p: P value was estimated using 
the Mann‒Whitney U test for exploring feature discrimination ability 
between the PD and ET groups
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The average ensemble classification model validation per-
formance result was obtained as mentioned in the Methods. 
The validation results of SVM and RF with FG I, II, and III 
are shown in Table 3. SVM with FG III outperformed all 
the other models and feature group combinations [accuracy: 
84%, kappa: 0.68, sensitivity: 85.9%, specificity: 82.1%, 
AUC: 0.912]. Therefore, SVM with FG III was selected as 
our final weighted average ensemble classification model. 
Corresponding to this best ensemble model, the validation 
accuracy of the straight walk component (25 features) for 
discriminating early PD and ET was 78.6%, which achieved 
the highest accuracy among all four components since turn-
ing (5 features), standing (1 feature), and sitting (2 features) 
were 67.9%, 76.3% and 61.1%, respectively. Most of the 
information came from the straight walk component, such as 
bradykinesia, arm swing range, arm symmetry, etc. This may 
explain why such a component makes the main contribution 
to the classification process.

Independent clinical evaluation

In our study, the entire dataset had 164 recordings (PD: 84, 
ET: 80), in which 80% of the recordings were used for train-
ing, whereas the remaining 20% were used for independent 
testing. The selected final weighted average ensemble clas-
sification model (SVM with FG III) was evaluated on these 
20% recordings (13 ET, 20 PD). The test data performance 
of the Weight Average Ensemble Classification Model was 
as follows: accuracy: 75.8%, kappa: 0.492, sensitivity: 80%, 
specificity: 69.2%, and AUC: 0.823.

Discussion

The weighted average ensemble classification model with 
the basic SVM model and FG III outperformed the other 
ensemble classification models. Our final ensemble model 
was evaluated in independent test data and achieved 75.8% 
accuracy in discriminating between early-stage PD and ET.

Consistency of discriminative parameters 
and clinical manifestations

The 33 most classifying gait parameters and postural tran-
sition parameters (Table 2, above the blue line), such as 
Arm–Symbolic Symmetry Index, Stand To Sit–Trunk–Min 
Lean Angle, Sit To Stand–Trunk–Max Sagittal Angular 
Velocity, and 180° Turn–Max Angular Velocity, were 
consistent with clinical manifestations. PD patients are 
characterized by rest tremor, bradykinesia, rigidity and 
postural instability [26]. They showed speed slow-down 
and amplitude reduction in turning, arm swing, cadence, 
and trunk rotation compared with ET [15, 27]. When PD 
patients were at an early stage, motor symptom asymmetry 
was especially prominent. Thus, slow velocity of turning/
sit/stand, increased arm swing asymmetry, and reduced 
amplitude of trunk rotation were typical clinical features 
of early-PD patients [28]. Previously, PD was differenti-
ated from ET simply by physical examination and clinical 
experience. To our surprise, wearable sensors make it pos-
sible to sensitively detect these differential characteristics 
in early-stage PD patients. Moreover, wearable sensors also 
provide richer multidimensional information than subjective 
assessment, which greatly improves the accuracy of differ-
ential diagnosis.

Bradykinesia‑related gait parameters correlated 
with MDS‑UPDRS bradykinesia scores

In our study, the bradykinesia scores were calculated based 
on the MDS-UPDRS motor score according to previous cri-
teria (sum of items 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, and 3.14) [29]. 
The results showed that several gait parameters that could 
reflect bradykinesia during gait performance were associ-
ated with clinically subjective assessed bradykinesia scores. 
For example, 180° Turn–Mean Angular Velocity (r = -0.44, 
p = 0.00027), Sit To Stand–Trunk–Max Sagittal Angu-
lar Velocity (r = − 0.41, p = 0.0008) and 180° Turn–Max 

Table 3   LOOCV performance 
of the weighted average 
ensemble classification models

The significance of bold were used to highlight the best performance among all the others in Table 3
LOOCV Accuracy, Kappa, Sensitivity, Specificity and AUC of Support Vector Machine and Random For-
est with three different feature groups

Model Feature Group ACC (%) Kappa Sensitivity (%) Specificity (%) AUC​

SVM FG I 73.3 0.468 84.4 62.7 0.843
FG II 71.8 0.440 90.6 53.7 0.896
FG III 84.0 0.680 85.9 82.1 0.912

RF FG I 73.3 0.465 71.9 74.6 0.818
FG II 77.1 0.540 70.3 83.6 0.832
FG III 74.0 0.480 68.8 79.1 0.826
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Angular Velocity (r = − 0.33, p = 0.008) had a negative cor-
relation with bradykinesia scores, while 180° Turn–Dura-
tion had positive correlation (r = 0.44, p = 0.00027) with 
bradykinesia scores. Bradykinesia is the main symptom 
in PD. Bradykinesia is usually measured according to the 
UPDRS part III (motor section), but such measurement 
suffers from low reliability [30, 31]. Interestingly, our 
study revealed that bradykinesia manifestation could also 
be presented by our gait analysis system via velocity and 
time duration parameters. These bradykinesia-related gait 
parameters could also be used to differentiate between early 
PD and ET (Table 2, above the blue line).

The advantage of our study

First, our study separated the entire TUG test into four com-
ponents and integrated them into a final weighted average 
ensemble classification model with different weights. The 
key reason for this separation was considering the differ-
ent levels of sensitivity to PD/ET for the four components, 
which should correspond to different weights while build-
ing the ensemble classification model. Second, to evaluate 
our model performance, we kept 20% of our whole dataset 
as our independent test data. Third, unlike previous studies 
that focused on PD with H&Y 1–4 [11], we included PD 
subjects with H&Y 1–1.5, and both PD and ET patients had 
limb tremor symptoms, which was more meaningful and 
challenging for the differentiation between early PD and ET 
in clinical practice. Fourth, our dataset and final model are 
highly stable. We added a process at the end to verify the 
stability of our data and the selected final ensemble model 
(eDiscussion in the Online Resource).

Comparison between our model and other methods

Other studies have used EMG or sensors to distinguish 
between PD and ET. Ghassemi et al. [9] utilized features 
that were extracted from the tremor component of the hand 
movement signal obtained from EMG and accelerometer 
while participants performed standardized upper extremity 
movement tests to distinguish PD from ET (13 PD and 11 
ET) and achieved a LOOCV accuracy of 83%. Although 
Ghassemi et al.’s study was comparable in accuracy to our 
study (LOOCV accuracy of 84%), the EMG they utilized is 
an invasive examination, and when participants had mixed 
types of tremors, the technology’s applications were limited. 
Moon et al. [14] utilized gait measures collected from wear-
able sensors combined with machine learning methods to 
distinguish PD from ET, which is similar to our research. 
However, the F1 score of their best model was 0.61. To make 

the comparison to their study, we calculated the F1 score 
based on our model and found that the F1 score of our best 
model was 0.84 for LOOCV and 0.8 for independent test 
data, suggesting that the accuracy of our model is better than 
theirs. Additionally, the average disease duration for PD in 
their study was 8.2 years; therefore, it was not clear if their 
study could be applied to discriminate between early-stage 
PD and ET. However, the differential diagnosis of early-
stage PD and ET is exactly the clinical challenge, and that 
is what we have worked on solving.

Limitations and future study

Our proposed early-stage PD and ET classification model 
(LOOCV accuracy: 84%, independent test accuracy: 75.8%) 
is good with proven feasibility and potential to differentiate 
early-stage PD from ET, but it is not outstanding. Some limita-
tions and future extension need to be considered to make the 
current study better. First, there are individual differences in 
gait and postural parameters even in participants who have the 
same disease. To better represent the population data, future 
research should include more participants to make the samples 
more representative and the research more reliable and accu-
rate. Second, in addition to the basic models SVM and RF, 
other models should also be taken into consideration, which 
may make the classification framework more accurate. Third, 
the assessments from our current study were all performed 
in the clinic with a gait quantitative evaluation system. It is 
affordable and readily available for the clinic; however, it may 
not be suitable for personal use at home. In addition to gait 
parameters obtained from a short and standard test such as 
the TUG test in the clinic, future work is required to extend 
this approach to real-world gait assessments with more flex-
ible devices and continuous monitoring and compare it with 
our current classification framework. Fourth, in addition to 
gait features, other measurements, such as the measurement of 
hand tremor variation acquired through tremor signal analysis 
from rest, postural and kinetic tasks [32] and the measurement 
of the temperature of participants before and after cold stimuli 
acquired through the cold stress test [33], could be integrated 
into our current study. Fifth, although no participants com-
plained about the number of sensors that they needed to wear 
during the test, sensor number minimization can be considered 
in our future work and compared with our study to see if we 
could balance the number of sensors and the overall accuracy 
of our classification model.

Conclusion

Our study showed that simple wearable sensors combined 
with machine learning algorithms and instrumented TUG 
test had the potential to differentiate early-stage PD from ET.
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Appendix A

See Table 4.

Table 4   Gait and postural transition parameters obtained from the wearable sensors during the TUG test

Gait parameters
 Step length L (cm) Shank–forward swing max SD (degree) Trunk–forward sway max SD (degree)
 Step length R (cm) Shank–backward swing max L (degree) Trunk–backward swaying max (degree)
 Step length (cm) Shank–backward swing max R (degree) Trunk–backward swaying max SD (degree)
 Step length L SD (cm) Shank–backward swing max (degree) Trunk–max transverse angular velocity 

(degree/s)
 Step length R SD (cm) Shank–backward swing max L SD (degree) Trunk–max transverse angular velocity SD 

(degree/s)
 Step length SD (cm) Shank–backward swing max R SD (degree) Trunk–right rotation max (degree)
 Gait speed L (m/s) Shank–backward swing max SD (degree) Trunk–right rotation max SD (degree )
 Gait speed R (m/s) Shank–max sagittal angular velocity L 

(degree/s)
Trunk–left rotation max (degree)

 Gait speed (m/s) Shank–max sagittal angular velocity R 
(degree/s)

Trunk–left rotation Max SD (degree)

 Gait speed L SD (m/s) Shank–max sagittal angular velocity 
(degree/s)

Lumbar–max coronal angular velocity 
(degree/s)

 Gait speed R SD (m/s) Shank–max sagittal angular velocity L SD 
(degree/s)

Lumbar–max coronal angular velocity SD 
(degree/s)

 Gait speed SD (m/s) Shank–max sagittal angular velocity R SD 
(degree/s)

Lumbar–right sway max (degree)

 Stride length L (cm) Shank–max sagittal angular velocity SD 
(degree/s)

Lumbar–right sway max SD (degree)

 Stride length R (cm) Stride velocity asymmetry (%) Lumbar–left sway max (degree)
 Stride length (cm) Stride velocity asymmetry SD (%) Lumbar–left sway max SD (degree)
 Stride length L SD (cm) Stride velocity difference (m/s) Lumbar–max sagittal angular velocity 

(degree/s)
 Stride length R SD (cm) Stride Velocity Difference SD (m/s) Lumbar–max sagittal angular velocity SD 

(degree/s)
 Stride length SD (cm) Stride length asymmetry (%) Lumbar–forward sway max (degree)
 Gait cycle L (s) Stride length asymmetry SD (%) Lumbar–forward sway max SD (degree)
 Gait cycle R (s) Stride length difference (cm) Lumbar–backward swaying max (degree)
 Gait cycle (s) Stride length difference SD (cm) Lumbar–backward swaying max SD (degree)
 Gait cycle L SD (s) Swing asymmetry (%) Lumbar–max transverse angular velocity 

(degree/s)
 Gait cycle R SD (s) Swing asymmetry SD (%) Lumbar–max transverse angular velocity SD 

(degree/s)
 Gait cycle SD (s) Swing absolute difference (%) Lumbar–right rotation max (degree)
 Cadence L (step/min) Swing absolute difference SD (%) Lumbar–right rotation max SD (degree)
 Cadence R (step/min) Stance asymmetry (%) Lumbar–left rotation max (degree)
 Cadence (step/min) Stance asymmetry SD (%) Lumbar–left rotation max SD (degree)
 Cadence L SD (step/min) Stance absolute difference (%) Arm–max sagittal angular velocity L (degree/s)
 Cadence R SD (step/min) Stance absolute difference SD (%) Arm–max sagittal angular velocity L SD 

(degree/s)
 Cadence SD (step/min) Shank–ROM asymmetry (%) Arm–max sagittal angular velocity R (degree/s)
 Double support L (%GCT) Shank–ROM Asymmetry SD (%) Arm–max sagittal angular velocity R SD 

(degree/s)
 Double support R (%GCT) Shank–ROM Absolute Difference (degree) Arm–Max Sagittal Angular Velocity (degree/s)
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GCT​ gait cycle time; SD standard deviation

Table 4   (continued)

 Double support (%GCT) Shank–ROM absolute difference SD (degree) Arm–max sagittal angular velocity SD 
(degree/s)

 Double support L SD (%GCT) Shank–asymmetry of max sagittal angular 
velocity (%)

Arm–forward swing max L (degree)

 Double support R SD (%GCT) Shank–asymmetry of max sagittal angular 
velocity SD (%)

Arm–forward swing max L SD (degree)

 Double support SD (%GCT) Shank–difference of max sagittal angular 
velocity (degree/s)

Arm–forward swing max R (degree)

 Swing L (%GCT) Shank–difference of max sagittal angular 
velocity SD (degree/s)

Arm–forward swing max R SD (degree)

 Swing R (%GCT) Shank–symbolic Symmetry Index (%) Arm–forward swing max (degree)
 Swing (%GCT) Shank–symbolic symmetry index SD (%) Arm–forward swing max SD (degree)
 Swing L SD (%GCT) Mean phase difference (%) Arm–backward swing max L (degree)
 Swing R SD (%GCT) Mean phase difference SD (%) Arm–backward swing max L SD (degree)
 Swing SD (%GCT) Phase coordination index (%) Arm–backward swing max R (degree)
 Stance L (%GCT) Phase coordination index SD (%) Arm–backward swing max R SD (degree)
 Stance R (%GCT) Trunk–max coronal angular velocity 

(degree/s)
Arm–backward swing max (degree)

 Stance (%GCT) Trunk–max coronal angular velocity SD 
(degree/s)

Arm–backward swing max SD (degree)

 Stance L SD (%GCT) Trunk–right sway max (degree) Arm–asymmetry of max sagittal angular veloc-
ity (%)

 Stance R SD (%GCT) Trunk–right sway max SD (degree) Arm–asymmetry of max sagittal angular veloc-
ity SD (%)

 Stance SD (%GCT) Trunk–left sway max (degree) Arm–difference of max sagittal angular velocity 
(degree/s)

 Shank–Forward swing max L (degree) Trunk–left sway max SD (degree) Arm–difference of max sagittal angular velocity 
SD (degree/s)

 Shank–forward swing max R (degree) Trunk–max sagittal angular velocity 
(degree/s)

Arm–symbolic symmetry index (%)

 Shank–forward swing max (degree) Trunk–max sagittal angular velocity SD 
(degree/s)

Arm–symbolic symmetry index SD (%)

 Shank–forward swing max L SD (degree) Trunk–forward sway max (degree) Straight-walking–duration (s)
 Shank–forward swing max R SD (degree) Straight-walking–duration SD (s)

Postural transition parameters
 Sit to stand–duration (s) Stand to sit–duration (s) 180° Turn–duration (s)
 Sit to stand–duration SD (s) Stand to sit–duration SD (s) 180° Turn–duration SD (s)
 Sit to stand–trunk–max sagittal angular 

velocity (degrees/s)
Stand to sit–trunk–max sagittal angular veloc-

ity (degrees/s)
180° Turn–max angular velocity (degree/s)

 Sit to stand–trunk–max sagittal angular 
velocity SD (degrees/s)

Stand to sit–trunk–max sagittal angular veloc-
ity SD (degrees/s)

180° Turn–max angular velocity SD (degree/s)

 Sit to stand–trunk–min lean angle (degree) Stand to sit–trunk–min lean angle (degree) 180° Turn–step duration (s)
 Sit to stand–trunk–min lean angle SD 

(degree)
Stand to sit–trunk–min lean angle SD (degree) 180° Turn–step duration SD (s)

 Sit to stand -trunk–max lean angle (degree) Stand to sit–trunk–max lean angle (degree) 180° Turn–mean angular velocity (degree/s)
 Sit to stand -trunk–max lean angle SD 

(degree)
Stand to sit–trunk–max lean angle SD 

(degree)
180° Turn–mean angular velocity SD (degree/s)

180° Turn–steps (#)
180° Turn–steps SD (#)
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Appendix B

See Table 5.

Appendix C: Introduction of the gait cycles 
and segmentation of the TUG​

According to the wearing mode of each sensor, the IMU 
coordinate system was converted to the human body coor-
dinate system. Then, combined with the accelerometer and 
gyroscope of the IMU, and after complementary filtering, 
the attitude information of each sensor was calculated, 
including the pitch angle, roll angle and horizontal rota-
tion, and then the raw gyroscope data of the IMU were 
utilized to identify the moment when the toe-off (TO) and 
heel-strike (HS) events occurred and the attitude informa-
tion was utilized to identify the moment when the stand-
ing, straight walk, turning and sitting events occurred.

Gait cycles were detected by HS and TO events (Appen-
dix C Fig. 4). The right gait cycle begins from the right 
HS, then right TO, and then the right HS. The left gait 
cycle begins from the left HS, then the left TO, and then 
the left HS. Detailed definitions of gait phases are listed 
below—

1.	 Right (Left) Stance: In a right (left) gait cycle, the per-
centage of time from the right (left) HS to right (left) 
TO.

2.	 Right (Left) Swing: In a right (left) gait cycle, the per-
centage of time from the right (left) TO to right (left) 
HS.

Table 5   LOOCV performance and weights of four different components in all model and feature group combinations

The significance of bold were used to highlight the best performance among all the others in Table 5

Model Feature 
Group (FG)

Component Val ACC (%) Val kappa Val sensitivity (%) Val specificity (%) Val AUC​ Weight

SVM I Straight walk 78.6 0.573 79.7 77.6 0.821 0.457
Turning 67.9 0.354 51.6 83.6 0.692 0.202
Standing 60.3 0.213 79.7 41.8 0.700 0.314
Sitting 61.1 0.226 75.0 47.8 0.739 0.027

II Straight walk 76.3 0.529 87.5 65.7 0.807 0.392
Turning 66.4 0.332 78.1 55.2 0.715 0.217
Standing 76.3 0.531 95.3 58.2 0.920 0.354
Sitting 58.0 0.170 84.4 32.8 0.615 0.037

III Straight walk 78.6 0.572 76.6 80.6 0.850 0.435
Turning 67.9 0.356 57.8 77.6 0.702 0.188
Standing 76.3 0.531 95.3 58.2 0.920 0.352
Sitting 61.1 0.226 75.0 47.8 0.739 0.026

RF I Straight walk 73.3 0.465 72.0 75.0 0.780 0.723
Turning 64.9 0.295 56.0 73.0 0.658 0.016
Standing 67.2 0.342 62.0 72.0 0.698 0.163
Sitting 59.5 0.187 48.0 70.0 0.635 0.098

II Straight walk 79.4 0.586 70.0 88.0 0.836 0.490
Turning 61.8 0.235 58.0 66.0 0.677 0.395
Standing 74.0 0.482 81.0 67.0 0.689 0.104
Sitting 58.0 0.155 44.0 72.0 0.540 0.011

III Straight walk 71.8 0.433 64.0 79.0 0.811 0.489
Turning 64.9 0.295 58.0 72.0 0.658 0.299
Standing 74.0 0.482 81.0% 67.0% 0.689 0.203
Sitting 59.5 0.187 48.0% 70.0% 0.635 0.008
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Salarian et al. [34] found that the gyroscope signal of the 
shank was more sensitive in detecting TO and HS. The first 
minimum value before and after each peak angular velocity 
of the shank was considered the time when the TO and HS 
events occurred. In the same way, we detected TO and HS 
events during walking, as shown in Appendix C Fig. 5A, and 
combined them into a gait cycle.

The TUG test was divided into standing, straight walk, 
turning and sitting. Standing and sitting were recognized 
using a thigh sensor. As shown in Appendix C Fig. 5B, the 
first and second spots in the thigh pitch angle curve (blue 
line) indicate the start and end of standing, and the third 
and fourth spots indicate the start and end of sitting. The 
change in the waist horizontal rotation angle can identify 
the start and end moments of the two turns. The first and 
second spots of the waist horizontal rotation angle curve 
(orange line) indicate the start and end of the first turn, and 
the third and fourth spots indicate the start and end of the 
second turn. It can be seen that the first straight walk section 
is from the end of standing up to the beginning of the first 
turn, and the second straight walk section is from the end of 
the first turn to the start of the second turn, thus comprising 
the phase divisions in the TUG test. During the straight walk 
section, individual gait cycles were detected and analyzed 
across the whole trial, and the average values of the 158 gait 
parameters (Appendix A Table 4) were investigated. During 
the turning, standing, and sitting components, 10, 8 and 8 
postural transition parameters (Appendix A Table 4) were 
investigated, respectively. Feature construction (eMethods 
in the Online Resource) was then performed to address the 
gait and postural transition parameters.

Appendix D: Feature selection methods

Method 1: The Mann‒Whitney U test was performed to 
investigate which features differed significantly between 
PD and ET, and we called this feature combination Feature 
Group I (FG I).

Method 2: Spearman's rank correlation test was per-
formed for every pair of the above significant features to 
remove features with high correlations (Set threshold 
ρ = 0.6) following the High-correlation Features Removal 
Rule (eMethods in the Online Resource). We called this 
feature combination, which was kept as Feature Group II 
(FG II).

Method 3: Fivefold cross-validation ROC area under the 
curve (AUC) of the above significant features obtained from 
Method 1 was computed individually. Then, considering that 
(1) the AUC values of our features are all lower than 0.7 and 
(2) AUC ≥ 0.6 represents that it has the power to be at least 
not fail for a diagnostic test, which we found from one previ-
ous study [35], we extracted features that had AUC ≥ 0.6 and 
called this feature combination Feature Group III (FG III).

Appendix E: Weighted average ensemble 
classification model construction

This ensemble classification model construction included 
18 steps:

	 1.	 The entire TUG test was separated into four compo-
nents: straight walk, turning, standing, and sitting.

	 2.	 The response variable of each of the four component 
models was the diagnosis result – whether the subject 

Fig. 4   Gait phase of a normal gait cycle
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Fig. 5   A Toe-off and heel-strike detection. B TUG test segmentation
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was PD or ET (we defined PD as 1, ET as 0). Predic-
tors were considered among the three-feature selection 
method results FG I, FG II, and FG III.

	 3.	 Four components, namely, straight walk, turning, 
standing, and sitting, were trained separately using 
the training data with features from the correspond-
ing components through LOOCV. Two types of basic 
models were tried here: support vector machine (SVM) 
and random forest (RF) models. For example, for the 
straight walk component, we only extracted the fea-
tures related to straight walk from FG I and then uti-
lized these features as input features to train the basic 
SVM and RF models ordinally through LOOCV to 
fine-tune the model parameters to obtain the best 
SVM model and best RF model for the straight walk 
component. Turning, sitting, and standing components 
followed the same process as the Straight Walk compo-
nent. Therefore, there were 6 model and feature group 
combinations in total: FG I + basic model SVM, FG 
I + basic model RF, FG II + basic model SVM, FG 
II + basic model RF, FG III + basic model SVM, and 
FG III + basic model RF.

	 4.	 For each of the feature groups and basic model com-
binations mentioned in Step 3, we repeated Step 5 to 
Step 13.

	 5.	 The predicted probabilities of the disease being PD for 
each subject in the training data group obtained from 
each of the four component models were calculated 
and saved. In this case, each subject in the training data 
group should have four probabilities of being a PD, 
which were called predicted scores, corresponding to 
the four different components. The 4 predicted scores 
were noted as Pstraight_walk_train , Pturning_train , Pstanding_train 
and Psitting_train.

	 6.	 We combined the original response variable (diagno-
sis result) in the training data and 4 columns of the 
predicted probabilities above as a new dataset. The 
original response variable was also the response vari-
able in the new dataset, and the other 4 columns of the 
predicted probabilities were used as the predictors.

	 7.	 Logistic regression was run on this new dataset with a 
fivefold cross-validation method to fine-tune the model 
parameters to obtain the best logistic regression model.

	 8.	 The captured 4 coefficients (ignoring the intercept) 
derived from the above logistic regression analysis 
corresponded to the four different components. These 
4 coefficients were annotated as Coefficientstraight_walk
,Coefficientturning,Coefficientstanding , and Coefficientsitting 
respectively.

	 9.	 Four linear weights were calculated based on the coef-
ficients obtained in Step 8:

(1)Weightstraight_walk =
|Coefficientstraight_walk|

|Coefficientstraight_walk| + |Coefficientturning| + |Coefficientstanding| + |Coefficientsitting|

(2)Weightturning =
|Coefficientturning|

|Coefficientstraight_walk| + |Coefficientturning| + |Coefficientstanding| + |Coefficientsitting|

(3)Weightstanding =
|Coefficientstanding|

|
|
|
Coefficientstraight_walk

|
|
|
+
|
|
|
Coefficientturning

|
|
|
+
|
|
|
Coefficientstanding

|
|
|
+
|
|
|
Coefficientsitting

|
|
|

(4)Weightsitting =

|
|
|
Coefficientsitting

|
|
|

|
|
|
Coefficientstraight_walk

|
|
|
+
|
|
|
Coefficientturning

|
|
|
+
|
|
|
Coefficientstanding

|
|
|
+
|
|
|
Coefficientsitting

|
|
|
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	10.	 The calculated ensemble learning prediction probabil-
ity score of each subject in the training data, P_val 
was obtained by multiplying the weights obtained from 
Step 9 with the predicted scores from the training data 
obtained from the four different component models in 
Step 5: 

	11.	 If the P_val was > 0.5, the subject would be classified 
as having PD using our model; otherwise, they would 
be classified as having ET.

	12.	 The confusion matrix was constructed using the pre-
dicted label obtained from Step 11 and the true label 
(true diagnosis result) from the subjects in the training 
data.

	13.	 The cross-validation performance (accuracy, kappa, 
sensitivity, and specificity) of this weighted average 
ensemble classification model was calculated based on 
the confusion matrix constructed in Step 12, and the 
cross-validation performance (AUC) was calculated 
using the predicted value, P_val obtained in Step 10 
and the true labels from the training data.

	14.	 The weighted average ensemble classification model, 
which had the best validation performance among the 
models, was selected as our final model.

	15.	 Predicted on test data using four trained models 
(straight walk, turning, standing, and sitting) from the 
best weighted average ensemble classification model 
separately and obtain the corresponding predicted 
probabilities of being a PD corresponding to the four 
different components for each subject in the test data. 
The 4 predicted probabilities were noted as Pstraight_walk , 
Pturning , Pstanding and Psitting.

	16.	 The calculated ensemble learning prediction probabil-
ity score of each subject in the test data group P was 
obtained by multiplying weights obtained from Step 
9 with test data predicted scores obtained from four 
different component models in Step 15:

	17.	 If P was > 0.5, the subject in the test data would be 
classified as having PD using our model; otherwise, 
they would be classified as having ET.

(5)

P_val =Weightstraight_walk × Pstraight_walk_train

+Weightturning × Pturning_train

+Weightstanding × Pstanding_train

+Weightsitting × Psitting_train

(6)

P =Weightstraight_walk × Pstraight_walk

+Weightturning × Pturning

+Weightstanding × Pstanding

+Weightsitting × Psitting

	18.	 The test data performance (AUC) was calculated using 
the predicted value, P , obtained in Step 16 and the 
true labels of the test data; the test data performance 
(accuracy, kappa, sensitivity, specificity) was calcu-
lated using the predicted labels obtained in Step 17 and 
the true labels of the test data.

Appendix F: Example of the ensemble 
learning prediction probability score 
calculation

For example, the ensemble learning prediction probabil-
ity score P_val of each subject in the training data group 
obtained from the weighted average ensemble classifica-
tion models with the basic model SVM and FG III was 
calculated as follows:

where  Weightstraight_walk  =  0 .435 ,  Weightturning  =  0 .188 , 
Weightstanding

 = 0.352, Weightsitting = 0.026 and Pstraight_walk_train , 
Pturning_train , Pstanding_train , Psitting_train are the predicted prob-
abilities of the disease being PD for each subject in the train-
ing data group obtained from each of the four component 
models in SVM with FG III.
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