
Biomedical Signal Processing and Control 82 (2023) 104508

Available online 5 January 2023
1746-8094/© 2022 Elsevier Ltd. All rights reserved.

ViT-LLMR: Vision Transformer-based lower limb motion recognition from 
fusion signals of MMG and IMU 

Hanyang Zhang a, Ke Yang a, Gangsheng Cao a, Chunming Xia a,b,* 

a Department of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China 
b School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China   

A R T I C L E  I N F O   

Keywords: 
Mechanomyography 
Vision Transformer 
Attention mechanism 
Signal fusion 

A B S T R A C T   

One of the key problems in lower limb-based human–computer interaction (HCI) technology is to use wearable 
devices to recognize the wearer’s lower limb motions. The information commonly used to discriminate human 
motion mainly includes biological and kinematic signals. Considering that unimodal signals do not provide 
enough information to recognize lower limb movements, in this paper, we proposed a Vision Transformer (ViT)- 
based architecture for lower limb motion recognition from multichannel Mechanomyography (MMG) signals and 
kinematic data. Firstly, we applied the self-attention mechanism to enhance each input channel signal. Then the 
data was fed into ViT model. Vision Transformer-based Lower Limb Motion Recognition (ViT - LLMR) archi
tecture proposed in this paper can avoid the model training problems such as autonomous feature extraction and 
feature selection for machine learning, and the model can recognize eight lower limb motions containing six 
subjects with an accuracy of 94.62%. In addition, we analyzed the generalization ability of the model when 
undersampling and only collecting fragment signals. In conclusion, the proposed ViT - LLMR architecture could 
provide a basis for practical applications in different HCI fields.   

1. Introduction 

Human lower limb motion pattern recognition technology has been 
applied to multiple fields related to human–computer interaction (HCI) 
such as medical monitoring, auxiliary rehabilitation training, intelligent 
prosthetics, and exoskeleton robots. In recent years, with the develop
ment of artificial intelligence, great progress has been made in the study 
of human lower limb motion pattern recognition. Due to the robustness 
to the environment, some physiological information related to the 
movement process gradually replaces the image to complete the motion 
classification, such as Electromyography (EMG) [1,2], Mechanomyog
raphy (MMG) [3], and some kinematic signals [4–6]. 

EMG is a signal generated by neuromuscular excitation and 
bioelectrical release during voluntary movement of the human body, 
which is commonly used in wearable devices for lower limb motion 
recognition. EMG has been widely used in describing both neuromus
cular activities and muscular morphology [7]. The EMG signal on the 
skin surface is called the surface electromyography (sEMG) signal. Since 
sEMG is non-invasive, it has become an ideal signal source in the field of 
HCI. sEMG signals have been used for motion recognition of single joints 
of lower limbs: ankle joint [8,9], knee joint [10], and hip joint [11], as 

well as complex lower limb motion recognition involving multiple joints 
[12].As a counterpart of sEMG signal, MMG is a low-frequency me
chanical signal generated by lateral vibration during muscle movement 
[13]. MMG signal has a high signal-to-noise ratio and it is immune to 
changes in skin impedance [14–16], and complex interactions of me
chanical signals within the arm can produce repeatable patterns [17]. 
MMG is also widely used in disease diagnosis [18], muscle strength 
estimation [19], and motion pattern recognition [3]. At present, the 
studies on motion recognition based on MMG signals focus on the upper 
limbs [20], and there are few types of research on lower limbs. 

In addition to biological signals, some kinematic signals collected by 
inertial measurement units (IMUs) [4,5], micro-triaxial flow sensors [5], 
gyroscopes [6], and force sensors [6] are also used to identify different 
movements of human. Using kinematic signals can obtain more stable 
recognition results for different movements of lower limbs, but motion 
segment detection and start prediction are difficult to achieve. In addi
tion, the recognition accuracy using only kinematic signals is not ideal 
for motions with similar movements [20]. 

The research validated that the fusion of multiple modal signals is 
conducive to the improvement of motion recognition accuracy. Kho
mami et al [21] extracted features from sEMG and IMU respectively, and 
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then used K nearest neighbors (KNN) to classify 20 sign language actions 
with an average accuracy of 96.13%. Zhou et al [22] performed 
dimensionality reduction on the extracted features of sEMG and IMU 
through principal component analysis (PCA) to form the fused feature 
set, and then achieves the classification of five lower limb movements by 
a support vector machine (SVM) classifier. Ai et al [23] extracted the 
time domain features and wavelet coefficients of sEMG and used dy
namic time programming (DTW) distance for feature extraction of ac
celeration signals. Linear discriminant analysis (LDA) and SVM were 
used to classify five lower limb movements respectively. These results 
showed that using fused features in motion recognition may achieve 
better results than using sEMG signals or accelerometer signals only. 

The current process of recognizing motion based on the fusion of 
different modal signals includes: noise filtering, signal segmentation, 
feature extraction and selection from different modal signals respec
tively, and motion classification by machine learning (ML) algorithms. 
ML algorithms commonly used for lower limb motion pattern recogni
tion include LDA [23], SVM [23], KNN [24], and decision tree (DT) [25]. 
ML classifiers have some limitations: finding the optimal set of features 
is a very time-consuming task that requires expertise [26], and their 
performance degrades when applied to large-scale datasets. 

In recent years, deep learning (DL) methods have become useful tools 
for motion pattern recognition, unlike ML algorithms that need to 
manually extract expert-defined features from the input data for clas
sification, DL can automatically extract high-level abstract features from 
the input data while using multiple hidden layers. And DL has shown 
good performance on large datasets [27]. Convolutional neural network 
(CNN) is the most widely used DL structures for motion recognition 
based on biomedical signals. CNN performs much better than traditional 
methods (KNN, SVM, and LDA) in EMG, MMG, or IMU-based classifi
cation [28–31]. Modified CNN models are also applied to action 
recognition based on fused signals. Xu et al [32] used matrix counting 
method and time window amplitude method to convert sEMG and IMU 
into images then used dual-stream CNN for feature extraction, fusion, 
and classification of surface EMG signals and IMU images, respectively. 
The experimental results showed that the average recognition accuracy 
of the method was 95.78% for the six gestures of five subjects. Kwon et al 
[33] input the sEMG and IMU signal of forearm to two independent CNN 
networks respectively, and then determined the motion type based on 
the output results. However, CNN only covers the spatial domain of the 
signal and ignores the sequential nature [34], therefore, signals need to 
be transformed into images when they are input to CNN and the 

accuracy of the classification is highly dependent on the quality of the 
images, while the best procedure for generating images from 1D bio
signals such as MMG/EMG is unknown [35]. To solve this problem, 
recurrent neural network (RNN) is proposed as a neural network for 
processing sequential data. RNN remembers the previous information. 
In the field of motion recognition, the deformed structure of RNN, Long 
Short-Term Memory (LSTM) neural network, has been widely used for 
EMG and IMU based motion recognition [36,37]. However, due to the 
sequential nature of LSTMs, parallelization is not supported in the 
training phase, causing a long training process. 

Transformer was proposed in 2017 [38], it has excellent perfor
mance in natural language processing (NLP) [39], computer vision (CV) 
[40], speech processing [41], and anomaly detection [42]. In the field of 
biosignals, Song et al [43] first proposed a transformer-based electro
encephalography (EEG) decoding architecture, which mainly relies on 
attentional mechanisms to learn the spatial and temporal characteristics 
of EEG signals. Rahimian et al [44] proposed a Transformer-based ar
chitecture to recognize upper-limb hand gestures from sEMG. In the last 
few years, many variants of the Transformer have been proposed to 
significantly improve the state-of-the-art performance for various tasks. 
In this paper, we designed a Vision Transformer-based architecture [40] 
to perform lower limb motion recognition from the fusion signals of 
MMG and IMU. 

The main contributions of this paper can be summarized as follows: 
A Vision Transformer-based architecture, called the ViT -LLMR ar

chitecture, was first designed to fuse multichannel MMG signals and 
IMU data for the recognition of lower limb motions. 

Based on the self-attentive mechanism, the channel importance of 
different channel signals in different modes is weighted, which improves 
the defects of previous methods that ignore the importance of different 
channels. This method can be used for pre-processing before the fusion 
of different modal signals. 

The effects of signal sampling frequency and signal length on the 
classification accuracy in the ViT-LLMR architecture were analyzed to 
provide a research basis for the practical application of the model. 

The rest of this paper is organized as follows. Section 2 describes the 
overall architecture, including the data acquisition equipment, experi
mental procedure, data preprocessing, and the details of ViT-LLMR. We 
present the dataset, experiment details, and compare the results in 
Section 3. A detailed discussion is presented in Section 4, and finally, 
conclusions are drawn in Section 5. 

Fig. 1. The proposed ViT-LLMR architecture.  
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2. Method 

In this paper, we proposed Vision Transformer (ViT) to fuse MMG 
signals and IMU data for lower limb motion recognition. The overall 
architecture is shown in Fig. 1 and consists of four parts. First, MMG and 
IMU data of the lower limb were collected synchronously using self- 
developed wireless devices, and then the MMG and IMU data were 
preprocessed, including noise filtering and signal segmentation; then 
different channels were weighted using channel attention so that the 
model can focus on the more relevant channels and ignore the irrelevant 
ones. Finally, a ViT-based architecture was designed to achieve lower 
limb motion recognition of the fused signals. 

2.1. Data acquisition 

2.1.1. Hardware description 
The wireless data acquisition system consists of MMG modules and 

IMU modules with an independent power supply. As shown in Fig. 2, the 
proposed system can achieve wireless data acquisition and transmission 
when a person performs any action. The number and type of acquisition 
modules can be adjusted according to the usage scenario. Each module is 
independent to avoid interference with each other. Depending on the 
muscle positions of different subjects, the modules can be placed in 
different positions of the elastic band, and then the elastic band can be 
wrapped around the corresponding positions of the subject’s thighs and 
calves, or directly pasted on the muscles. 

ADXL355 sensor (Analog Devices, MASS, USA) was selected to 
collect the MMG signal because of the advantages of high precision, low 
offset drift, and low power consumption. The size of microcontroller unit 
(Seeed Studio, Shenzhen, CHN) is 20 × 17.5 × 3.5 mm, which can be 
flexibly used in various scenarios, especially in wearable devices. The 
lithium battery was used to power the system with a dimension of 35 ×
20 × 6 mm. PS3120A (PULAN Technology, Hong Kong, CHN) was used 
for amplifying voltage, and nRF24L01(Nordic, Stockholm, Sweden) was 
selected for the wireless data transmission. 

Mpu6050 inertial sensor (InvenSense, Sunnyvale, USA) was selected 
as the kinematic information acquisition sensor. Other parts of the 
module were consistent with the MMG module. MPU6050 consists of a 
gyroscope and a 3-axis accelerometer, a temperature sensor, and a 
Digital Motion Processor (DMP) module. The original data is converted 
into quad data by DMP, and the Euler angle is calculated according to 
the quaternion array. The definitions of quaternion and Euler angles are 
as follows: 

q = [w, x, y, x]T (1) 

The quaternion needs to be normalized, and was normalized by the 
constraints of (2): 

|q|2 = w2 + x2 + y2 + z2 = 1 (2) 

The posture of any object in three-dimensional space can be repre
sented by Euler angles: 
⎛

⎝
ϕ
θ
φ

⎞

⎠ =

⎛

⎝
atan2(2(ωx + yz), 1 − 2(x2 + y2))

arcsin2(wy − zx)
atan2(2(ωx + yz), 1 − 2(y2 + z2))

⎞

⎠ (3)  

where ϕ is the roll angle, θ is the pitch angle and φ is the yaw angle. The 
yaw angle was not considered in this paper, because it will be affected by 
the rotation of the human body. The estimated value will have a large 
variation due to the restriction of measurement accuracy and become 
meaningless after a period of time. 

2.1.2. Data collection 
Six healthy males (age: 24 ± 3 years) with no history of neuromus

cular disease volunteered to participate in the experiment. They were 
fully informed of the experimental content and they signed the informed 
consent. They were requested not to exercise vigorously in the 24 h 
before the experiment. Four MMG modules were placed on the abdomen 
of the four muscles of the lower limbs to detect MMG signals: vastus 
lateralis (channel 1), vastus medialis (channel 2), the lateral gastroc
nemius (channel 3), medial gastrocnemius (channel 4), where the three 
IMU modules were placed on the thigh, shank, and instep. Subjects were 
asked to perform eight lower limb motions of the right lower limb: Knee 
Extension, Knee Flexion, Ankle Dorsiflexion, and Ankle Planter Flexion 
in sitting and standing positions, as shown in Fig. 1(a). Each motion was 
performed 100 times repeatedly for 4 s individually. On the premise of 
ensuring the integrity of signal acquisition, to reduce the amount of 
data, the sampling frequency was initially set to 250 Hz. 

2.2. Signal preprocessing 

MMG signals are bandwidth signals with frequencies between 2 and 
120 Hz [13]. Since different muscles in different parts of the body and 
different movements of the same muscle generate MMG signals of 
different frequencies. The frequency of the MMG signal from lower limb 
movements is mainly the low frequency part below 50 Hz [45]. There
fore, the signal is filtered with a 2–50 Hz Finite Impulse Response (FIR) 
bandpass filter. Since most human lower extremity activities are in low 
frequencies, we applied a 5 Hz low-pass filter to the IMU signal [21]. 

In this paper, the Z-score method is used for the normalization of 
MMG and IMU data. The expression is as follows: 

yi =
xi − x

s
(i = 1, 2,…n) (4) 

Fig. 2. The block diagram and prototypes of the wireless data acquisition system for MMG and IMU.  
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where x is the average value ofxi . s is the variance ofxi . The expression 
is as follows: 

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − x)2

√

(i = 1, 2,…n) (5) 

The acquired MMG data were divided into data sets by a sliding 
window of 200 ms using an average energy-based segmentation method 
as shown in Fig. 3(a). The average energy E for each set of data (all four 
channels) is compared to a predefined threshold TR. When E(t1) and 
E(t1 + 1) are larger than TR, but E(t1 − 1) and E(t1 − 2) are smaller than 
TR, the starting point t1 is determined. When E(t2) and E(t2 + 1) are 
smaller than TR, but E(t2 − 1) and E(t2 − 2) are larger than TR, the end 
point t2 is determined [46]. 

A differential threshold-based segmentation method was adopted on 
IMU signal, and the six-channel IMUs were divided into data groups by a 
sliding window of 200 ms as shown in Fig. 3(b). The difference value S 
for the six channels was calculated and compared with an empirically 
predefined threshold SR. When S(t1) and S(t1 + 1) are larger than SR, 
but S(t1 − 1) and S(t1 − 2) are smaller than SR, the starting point t1 is 

determined. The end point is determined when S(t2) and S(t2 + 1) are 
smaller than SR, but S(t2 − 1) and S(t2 − 2) are larger than SR [22]. 

The length of the segmented signal is between 1400 and 1800 ms. In 
order to facilitate subsequent research, the length of each motion frame 
was taken as 1600 ms. 

The segmentation step transforms the MMG-MPU dataset intoD =
{{

Xi, yi
}} M

i=1, consisting of M segments, where the ith segment is 
denoted byXi ∈ RS×W, for (1 ≤ i ≤ M), with its associated label denoted 
byyi. Here, S denotes the number of channels, and W shows the number 
of samples of each segment. In this paper, the value of S is 10, which 
contains 4 channels of MMG signals and 6 channels of IMU signals, and 
the value of W is 400, which is the number of samples per motion frame. 

2.3. Channel attention 

In previous biosignal-based studies, little attention has been paid to 
the importance of different input channels, this leads to mutual inter
ference of information between channels, affecting recognition effi
ciency and accuracy. In this paper, the MMG and IMU signals of different 

Fig. 3. The preprocessing and segmented of the signal of Knee Extension (a) MMG (b) IMU.  
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channels were weighted according to the channel attention method 
based on the scale dot product concern [38] proposed in [43] as shown 
in Fig. 4. We used the dot product to evaluate the correlation between 
channels. The input data X are first linearly transformed into vectors, 
queries (Q) and keys (K) and values (V), dh denotes the size of each 
vector inQ,K, andV. Q represents each channel that will be used to match 
with K represents all the other channels using the dot product. Then the 
result is scaled by 

̅̅̅̅̅̅
dh

√
and translated into the probabilities. The output 

weight score is assigned to V for the final representation using dot 
product. The whole process can be expressed as: 

Attention(Q,K,V) = Softmax
(

QKT
̅̅̅̅̅
dh

√

)

V (6)  

2.4. Vision transformer 

2.4.1. Patch embeddings and position embeddings 
We split the segmented input X into N non-overlapping patches. 

Since the number of channels is S, we set the size of each patch to (S× S); 
thus, the number of patches will be equal toN = W/S. Each patch is then 
flattened into a vectorxp

j ∈ RS2 , (1 ≤ j ≤ N). A linear projection is then 
applied to embed each vector into the model dimension d. For the linear 
projection, we used a matrixE ∈ RS2×d, which is shared among different 
patches. The output of this projection is called patch embeddings (Eq. 
(7) below). Similar to BERT’s architecture [47], the beginning of the 
sequence of embedded patches is appended with a trainable [cls] 
tokenxcls, to capture the meaning of the entire segmented input. 

Both MMG and IMU signals are time series signals. If we change the 
time sequence, the meaning of the input signals may also change with it. 
And instead of processing the input in order, the transformer combines 
the information from the other elements by self-attention, so it is of great 
importance to encode the positions of the input time series into Trans
formers. A common design is to first encode positional information as 
vectors and then inject them into the model as an additional input 
together with the input time series. we add position embeddings deno
ted by Epos ∈ R(N+1)×d to the patch embeddings that will allow the 
transformer to capture the positional information. The formulation 
governing patch and position embeddings is given by: 

Z0 =
[
xcls; xp

1E; xp
2E; ...; xp

NE
]
+Epos (7)  

2.4.2. Transformer encoder 
As shown in Fig. 1(b), the transformer encoder consists of L identical 

layers. L is the depth of the transformer. Each layer consists of two 
modules: a Multi-head Self-Attention (MSA) mechanism and a Multi- 
layer Perceptron (MLP) module. MSA is built based on the Self- 
Attention (SA) mechanism as shown in section 2.3. MSA enables the 
model to pay attention to information from different subspaces at 
different locations. The summation of weights is calculated as equation 
(8): 

MSA(Q,K,V) = Concat(Head1,⋯Headh)WO (8)  

Headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
, i = 1, 2⋯, h (9) 

In equation (8), h is defined as the number of heads, we applied the 
SA mechanism as equation (6) for eachHeadi, the calculation process is 
as equation (9). QWQ

i ,KWK
i ,VWV

i indicates that the Multi-head Self- 
Attention mechanism use different weight matrices forQ, K, V.WO in
dicates that the splicing results are linearly transformed to obtain the 
final multi-headed attention results. 

The MLP module consists of two fully-connected linear layers and a 
Gaussian Error Linear Unit (GELU) activation function, to enhance the 
perception and non-linear learning capabilities of the model. LayerNorm 
(LN) is applied before every block. 

Z
′

l = MSA(LN(Zl − 1) )+ Zl − 1 (10)  

Zl = MLP(LN(Z ′ l) )+ Z ′ l (11)  

y = LN(Z0
L) l = 1...L (12) 

The final output of the transformer can be represented as follows: 

ZL = [ZL0;ZL1;ZL2; ...;ZLN] (13) 

Finally, we apply a Linear Layer (LL) toZL0,The number of output 
neurons is equal to the number of categories. 

y = LL
(
LayerNorm(Z0

L)
)

(14)  

3. Result 

3.1. Dataset 

Four channels of MMG signals and six channels of IMU signals were 
collected by the self-developed wireless acquisition system when six 
subjects performing eight lower limb motions. 100 sets per subject were 
acquired for each action. In total, 4800 sets of data were collected, 600 

Fig. 4. The calculation process of channel attention(a) calculation principle(b) schematic diagram.  
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sets for each motion, and 800 sets for each subject. In this paper, in order 
to investigate the generalization ability of the model, we focus on the 
analysis of 4800 sets of 6 subjects if not otherwise specified. 

3.2. Experiment details 

Our method was implemented with Python 3.8 and PyTorch library 
on a Geforce 3080Ti GPU. We evaluated different variants of the ViT- 
LLMR architecture. The details are summarized in Table 1. For all 
model variants, we set the size of the input patch to 10 × 10. All models 
were trained using Adam optimizer with betas = (0.9, 0.999), and the 
weight decay was set to 0.001. These models were trained with a batch 

size of 50. Cross-entropy loss was used for measuring classification 
performance. Ten-fold cross-validation was used to evaluate the final 
results. 

3.3. Classification results 

Table 1 shows the different ViT-LLMR architecture variants, we used 
the mean and standard deviation(std) of ten times ten-fold cross vali
dation to evaluate the models’ performance. It can be seen that at the 
same embedding size of 16, the accuracy of the models increases grad
ually as depth increases from 1 to 3, in the meantime the number of 
model trainable parameters has increased from 6362 to 12922. By 
increasing the embedding size from 16 to 32(Model 1 to Model 4), the 
accuracy of the models improved around 4% accompanied by a decrease 
in std, while the number of model parameters increased to 17562, which 
is more than it of model 3. Increasing the embedding size to 64 (model 
7), the accuracy of the models improved only 0.18% with the increase of 
std, and the number of model parameters increased to 158752, which is 
around 10 times as many as model 4. In addition, we analyzed the model 
accuracy for different depths when embedding size is 32(Model 4 to 
Model 6). The accuracies of these three models fluctuate around 94.5%, 
while the model parameters rise from 17,562 to 43360. 

As the increase of model parameters brings problems such as longer 

Table 1 
Descriptions of ViT-LLMR architecture variants.  

Model 
ID 

Depth Heads Embedding 
size 

Params Accuracy 
(%) 

STD 
(%) 

1 1 8 16 6,362  90.89  1.31 
2 2 8 16 9,642  92.70  0.49 
3 3 8 16 12,922  92.90  0.59 
4 1 8 32 17,562  94.62  0.49 
5 2 8 32 30,656  94.87  0.81 
6 3 8 32 43,360  94.28  0.63 
7 1 8 64 158,752  94.80  1.03  

Table 2 
The result of Wilcoxon signed-rank test.  

Model 2 3 4 5 6 7 

1  0.00335*  0.00444*  0.00335*  0.00335*  0.00335*  0.00442* 
2   0.65664  0.00328*  0.00444*  0.00444*  0.01637 
3    0.00333*  0.00335*  0.00762  0.01637 
4     0.42337  0.09116  0.32806 
5      0.10951  0.04671* 
6       0.78968 

* Significant. 

Fig. 5. Classification accuracies of different subjects of ViT-LLMR architecture variants.  
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training time, more memory required, and higher equipment re
quirements, we used Wilcoxon signed rank test [48] to show the sig
nificance level of different architecture variants as shown in Table 2. 
According to the results, the differences in accuracy between model 1 
and other six models were considered to be statistically significant (p <
0.005), the difference in accuracy between model 2 and model 3 was 
considered not statistically significant (p = 0.65664, p > 0.005). The 
difference in accuracy between model 4 and models 5, 6, and 7 were 
considered not statistically significant (p > 0.005). When the depth 
reaches 3 and the embedding size reaches 32, the increase in depth and 
embedding size of architecture does not significantly improve the ac
curacy, while introduces more parameters, so in the following we only 
analyze model 1, 2, 3, and 4. 

In addition, we analyzed the dataset of each subject separately, and 
the classification accuracy is shown in Fig. 5. It can be seen that the 
classification accuracy of model 4 is above 96% for all six subjects, and 
model 2 performs better than model 4 for subjects 1, 3, and 5, but 
performs poorly on subject 2, which is around 4% less accurate than 
model 4. 

To analyze whether the fusion of MMG and IMU signals has a sig
nificant improvement on the classification accuracy, we compared the 
classification accuracy of the input as 4-channel MMG signals, 6-channel 
IMU data and fused 10-channel signals with the confusion matrix shown 
in Fig. 6. The labels and corresponding motions are shown in Table 3. It 
can be seen that if only based on the MMG signal, the classification 
accuracy for each motion is relatively average but not high, at around 
70%, while based on the IMU data only, the classification accuracy is 
low for a few specific actions (Knee Flexion and Ankle Dorsiflexion in the 
standing state) and high for the rest motions. This may be because the 
changes of the thigh and shank positions of these two motions are 
similar, so it is difficult to judge only by the IMU data, while the MMG 
signal performs better because the muscle strength is clearly differen
tiated during the execution of these two motions. As can be seen in 
Fig. 6c, the fusion of the two signals resulted in a high recognition rate 
for all eight actions. 

The classification accuracy of the input as 10-channel fusion signals, 
4-channel MMG signals, 6-channel IMU data and 10-channel signals 
without channel attention were be compared. Then we compared ViT- 
LLMR on our dataset with the algorithms commonly used for lower 
limb motion recognition for comparison: the SVM [23], LDA [23], KNN 
[20,24], and CNN, and the CNN model refers to the structure proposed 
by [49]. As can be seen from Table 4, the classification accuracy of ViT- 
LLMR based on fusion signal is much higher than that of several other 
methods. 

4. Discussion 

In this study, we propose a transformer-based ViT-LLMR architecture 
that enables the recognition of lower limb movements by weighting the 
input channels using an attention mechanism and then feeding them 
into a ViT model. The model can directly use the original MMG and IMU 
signals without relying on manual feature extraction, which not only 
simplifies many complicated steps of signal preprocessing but also solves 
the problem of feature selection limitations. CNN is the most commonly 
used model in motion recognition based on biosignals, however, tradi
tional CNN models aim to learn spatial features and cannot extract 
temporal features from time-series signals. To address this drawback, 
recent studies have proposed RNN, such as LSTM, to capture temporal 
information from MMG signals [50]. However, due to the sequential 
nature of RNN, it does not allow parallelization in the training phase, so 
the training speed is slow [44]. The transformer neural network archi
tecture eliminates recurrence or convolution by using a self-attentive 
mechanism, it shows superior ability to deal with long-range de
pendencies [38].To verify the generalization ability of the model in 
practical applications, we also analyzed the classification accuracy in 
the case of signal undersampling. To follow the Nyquist’s rate, the 
sampling rate should be at least twice the highest frequency of the signal 
to avoid aliasing [51]. However, most of the current studies on MMG 

Fig. 6. Confusion Matrix for ViT-LLMR architecture (model 4) (a)MMG (b)IMU (c)Fusion signal.  

Table 3 
The Label of 8 Lower Limb Motions.  

label motion 

0 sitting Knee Extension 
1 Knee Flexion 
2 Ankle Dorsiflexion 
3 Ankle Plantar Flexion 
4 standing Knee Extension 
5 Knee Flexion 
6 Ankle Dorsiflexion 
7 Ankle Plantar Flexion  

Table 4 
Comparison with representative methods.  

Classifier Accuracy (%) STD (%) 

ViT-LLMR Fusion signal 94.62 0.49 
MMG signal 73.88 1.12 
MPU signal 71.63 4.25 
without channel 
attention 

89.17 3.12  

Traditional fusion 
method 

LDA 70.70 2.12 
SVM 72.90 1.96 
KNN 69.87 3.19 
CNN [49] 88.01 0.78  
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signals set the sampling frequency at 1 kHz [52,53], which is much 
higher than twice the frequency of MMG signals. A higher sampling rate 
means more data is collected per unit of time, and the requirements on 
the hardware equipment become more stringent. For example, the 
conversion (A/D) module, requires higher resolution, better dynamic 
characteristics, and stronger conversion performance. Correspondingly, 
the cost can be increased significantly [54], and the larger the amount of 
data, the lower the recognition speed of the model. To obtain the effect 
of signal sampling frequency on the classification accuracy of Vit-LLMR, 
we analyzed the classification accuracy of four models at 50 Hz, 100 Hz, 
150 Hz, 200 Hz, and 250 Hz. The results are shown in Table 5 and Fig. 7. 

It can be seen that in models 1–3, the accuracy is much lower than 
the accuracy of the remaining four at a sampling frequency of 50 Hz, 
while in model 4, they are less different. The lowest is also above 92%. In 

model 1,3,4, the average accuracy of classification at 250 Hz is the 
highest in all models, but in model 2, the average accuracy at 200 Hz is 
slightly higher than that at 250 Hz. This result shows that after choosing 
the appropriate model parameters, an appropriate reduction of the 
sampling frequency does not have a significant impact on the recogni
tion efficiency of the model. 

If the recognition of the action can be realized based on the part of 
the signal during the execution of the action, then the problem of 
delayed output results caused by obtaining the signal segment of the 
entire action can be solved. To obtain the effect of signal sampling length 
on classification accuracy, we analyzed the classification accuracy of 
four models at 100(0.4 s), 200(0.8 s), 300(1.2 s), 400(1.6 s). The sche
matic diagram of the signal fragment is shown in Fig. 8. Fig. 9 compares 
the classification accuracies for different sampling lengths. When only 
the data of the first 100 samples are input (0.4 s), the classification ac
curacy is low and is below 80%. When the number of input samples is 
200 and 300, the classification accuracy increases and is above 80%. In 
particular, in models 2 and 4, the classification accuracy reaches more 
than 90% for the first 300 points of the input. The difference with the 
classification accuracy of the input complete signal is small (<2%). The 
results show that the recognition can be done successfully before the 
action is completed. 

In this paper, we analyzed the accuracies of models developed by 
using data from all subjects and subject-specific models based on ten- 
fold cross-validation. One drawback of these two evaluation methods 
is that data from the same person will be used in both the training sets 
and test sets[55]. To better evaluate the generalization performance of 
the model, we trained the model with leave-one-subject-out (LOSO) 

Table 5 
Classification accuracies for ViT-LLMR architectures variants. The STD repre
sents the standard variation in accuracy over 10 times 10-fold cross-validation.  

Sampling Frequency Model ID 1 2 3 4 

250 Hz Accuracy (%)  90.89  92.70  92.90  94.62 
STD (%)  1.31  0.49  0.59  0.49 

200 Hz Accuracy (%)  88.40  92.77  91.88  92.86 
STD (%)  1.62  0.65  1.34  0.65 

150 Hz Accuracy (%)  87.90  91.07  91.48  93.31 
STD (%)  1.40  0.92  1.47  0.89 

100 Hz Accuracy (%)  86.37  90.77  90.33  93.65 
STD (%)  1.14  0.85  0.57  0.79 

50 Hz Accuracy (%)  83.27  84.43  81.60  92.96 
STD (%)  0.82  1.48  1.41  1.07  

Fig. 7. The accuracy boxplots for all ViT-LLMR architecture variants at different sampling frequencies. (a)model1(b)model2(c)model 3(d)model 4.  
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cross-validation. Table 6 shows that the accuracies of models using 
LOSO cross-validation were significantly lower than using 10-fold cross- 
validation due to the individual variability of each subject performing 
lower limb motions, for example, when subjects 2 and 4 were selected as 
the test set, the classification accuracies were lower. The average ac
curacies of the four models are between 70% and 80%. 

In summary, the proposed ViT-LLMR model has better classification 
accuracy than traditional machine learning methods and CNN and 
maintains high recognition accuracy when undersampling and only use 
part of signals. The model has good generalization and robustness and 
can be better applied to human-computer interaction technologies: 

Fig. 8. The schematic diagram of the signal fragment(a)MMG(b)IMU.  

Fig. 9. The accuracy barplot for all ViT-LLMR architecture variants at different sampling lengths.  

Table 6 
Classification accuracies for ViT-LLMR architectures using leave-one-subject-out 
cross-validation (%).  

Leave-out- 
Subject 

1 2 3 4 5 6 Average 

Model 1  75.88  64.25  71.23  65.38  76.25  74.38  71.23 
Model 2  77.62  65.45  74.23  71.21  74.12  78.81  73.57 
Model 3  76.21  66.57  76.78  73.89  79.12  82.22  75.80 
Model 4  80.12  66.34  79.13  73.34  81.34  80.13  76.73  
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exoskeleton control, virtual reality interaction, health detection, etc. In 
future research, we will also continue to investigate improving the 
generalization performance of the model when completely separating 
the source samples of the training set from the test set. We need to collect 
data of more motions, as only eight categories of movements commonly 
used in rehabilitation training have been studied so far. In addition, we 
will try to improve the model to enhance the classification accuracy 
under undersampling conditions. 

5. Conclusion 

We proposed a transformer-based ViT-LLMR architecture that en
ables the recognition of lower limb movements, and evaluate the 
generalization ability of ViT-LLMR based on a 10-fold cross-validation. 
We conducted a large number of experiments to analyze the effects of 
model parameters, signal sampling frequency, sampling length, and 
signal fusion on classification accuracy. The results show that when 
appropriate model parameters are chosen, appropriately decreasing the 
sampling frequency or reducing the length of the input signal has less 
effect on the classification accuracy, and also compare with the 
commonly used classification algorithms in this field, showing the su
periority of ViT-LLMR. 
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