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Abstract—Accurate indoor pedestrian localization and track-
ing are crucial in many practical applications. One efficient
yet low-cost sensing scheme is the integration of IMU and
WiFi RSS due to the popularity of smart devices and WiFi
networks. Many approaches have been proposed to enhance
the localization performance. However, they heavily rely on
prerequisites including prior knowledge (e.g. map information)
and beacon corrections, which degrades the generalization of
the approaches and their accuracy in complex environments. To
address this issue, in this paper, we propose a novel localization
approach named VariFi, which incorporates variational inference
techniques to estimate the location of pedestrian. Variational
inference is applied in this work, whose inference network can
produce accurate estimates as its parameters are optimized in
terms of the reconstruction loss and regularization loss in real
time. A signal map is constructed to provide a conditional RSS
distribution at any given location, which is further applied to
generate the reconstruction loss based on the real measurements.
Also, a filtering mechanism is designed to reduce local optimum
cases in optimization by utilizing the prior estimate and RSS
fingerprinting estimate. In addition, VariFi can be further applied
to conduct online optimization following the existing localization
approaches. We conduct experiments including static localization
and trajectory estimation scenarios to validate the performance
of our approach. The trajectory estimation results show that
our approach outperforms the mainstream approaches in terms
of both localization accuracy and robustness, respectively. Fur-
thermore, the combination of existing approaches and VariFi
has also been validated effectively in the experiments of two
environments, where VariFi has the ability to bring enhanced
localization accuracy.

Index Terms—Received Signal Strength (RSS), indoor local-
ization, variational inference, signal map construction.

I. INTRODUCTION

INDOOR pedestrian location services have gained much
attention due to the increasing demand of relevant appli-

cations, e.g., indoor navigation, assistive living for visually
impaired people, accurate odometry in virtual/augmented re-
ality and contact tracing under the COVID-19 pandemic [1].
Since GPS has limited access in many indoor environments,
alternative solutions have been studied by deploying other
sensors [2], [3], [4], [5], [6]. However, some sensors still face
challenges including high cost, portability, and low accuracy.
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Due to the popularity of smart devices and the development
of wireless infrastructure, a smartphone equipped with inertial
and WiFi sensors will be an ideal platform for a pedestrian
localization system.

Pedestrian Dead Reckoning (PDR) method leverages data
obtained by Inertial Measurement Unit (IMU) to detect walk-
ing steps, calculate the heading direction, and estimate the
step length. Subsequently, the current position can be pre-
dicted based on the previous position and the movement
information [7]. However, IMU sensors have drifting and
biased errors, and are vulnerable to user’s motions during
walking. Apart from IMU, WiFi is another commonly used
method for non-intrusive indoor localization [8], [9] and
human perception [10], [11], [12]. Received Signal Strength
(RSS) fingerprinting is the most popular method in WiFi based
localization, which is usually comprised of an offline phase
and an online phase. In the offline phase, RSS fingerprints
(readings) are collected at known locations via site survey to
build a database, which is used to train a designed model.
While in the online phase, the real time captured RSS finger-
prints will be fed to the trained model to estimate the user’s
position [8]. Nonetheless, RSS fingerprinting methods suffer
from noise, co-channel interference, multipath propagation and
other factors, which cause the variation of RSS and decreases
the localization accuracy [13].

Many approaches integrating IMU and WiFi RSS have also
been proposed to improve localization performance, among
which Kalman Filter (KF) and Particle Filter (PF) are the
popular choices. Analytical and optimization methods are
commonly seen in Kalman filter based approaches, lead-
ing to less computation load. However, Kalman filter based
methods cannot deal with high nonlinearity well, leading
to instability during estimation. Particle filter based methods
utilize weighted particles to fuse the results of the PDR and
RSS fingerprinting to estimate the position by calculating the
weighted sum of all particles. The weights of particles are usu-
ally determined by their consistency with the prior estimate,
but seldom optimization schemes are used to estimate the
results. Also, the weight degradation problem may weaken the
localization performance [14]. Despite many existing methods
fusing IMU and WiFi RSS, accurate and robust localization
still remains an unsolved challenge.

To address this issue, in this paper, we propose VariFi,
a novel indoor localization algorithm integrating IMU data
from a smartphone and RSS fingerprints from WiFi Access
Points (APs) to estimate the position of pedestrian. Different

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3232740

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 06,2023 at 09:25:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 2

from previous filtering based methods, we incorporate the
variational inference method into our algorithm to optimize
the estimation process, which is inspired by the successful
applications of Variational Auto-Encoder (VAE) in other Deep
Learning fields [15]. Our motivation behind applying vari-
ational inference is that the localization problem should be
better modelled in a probabilistic manner, because the RSS
fingerprints obey some distribution at a given location and
furthermore, an RSS fingerprint is always mapped to a po-
tential region in the whole position space under a conditional
distribution [16].

During position estimation, we still adopt PDR to obtain
a prior estimate given the estimate of the last step, and then
apply variational inference to optimize the position based on
the prior estimate and real time RSS fingerprints. An inference
network is designed to compute the posterior estimate given
the RSS fingerprints, whose parameters are updated by the
gradient descent learning algorithm in real time. Besides, we
construct a signal radio map based on a modified Gaussian
Process Regressor (GPR) method that provides predicted RSS
fingerprints at the given position. The loss of optimization is
evaluated as the log likelihood of the measured RSS under
the reconstructed distribution generated by the signal map,
together with the Kullback-Leibler (KL) divergence between
the prior and posterior estimates. By minimizing the total
loss, the optimization process can reach to convergence, with
the parameters of the inference network being optimized
by Adam [17] in this work. Following the optimization, a
filter mechanism is introduced to reduce the local minimum
cases. Furthermore, from a broader perspective, the proposed
VariFi can also be deployed for localization applications purely
using WiFi RSS data, i.e., to conduct online optimization
toward existing localization approaches, and thus improve the
localization accuracy.

The contributions of our work can be summarized as
follows:

• We propose a novel approach for indoor localization
based on IMU and RSS by modelling the location esti-
mation as an optimization problem from the probabilistic
perspective and dynamically optimizing the solution in
real time.

• To the best of our knowledge, this work is also the first
attempt to apply the variational Bayesian inference and
gradient descent algorithm into the IMU and RSS based
localization field.

• We implement several real experiments, which illustrate
that our method outperforms the mainstream methods in
terms of localization accuracy by up to 39.82%.

• We further expand the application of VariFi to optimize
the results of existing approaches, which forms an offline-
online dual optimization framework for WiFi RSS based
localization. Experimental results show that the utilization
of VariFi can help improve the localization accuracy.

The remainder of this paper is organized as follows. Section
II introduces the related work. Section III provides the details
of the proposed approach. Section IV shows the experimental
results and comparison with different approaches. Section V

explains the combination of the proposed method and existing
localization approaches and the related improvements. Section
VI concludes this paper.

II. RELATED WORK

The proposed VariFi basically applies a prior-posterior
estimate framework, which has been used in many previous
works. As instances of such framework, Kalman filter, particle
filter and their advanced variants are commonly seen in many
researches. Different types of variational inference have also
been applied into indoor localization field. In this section, we
review recent techniques in these fields and introduce some
background information of variational inference.

A. Kalman Filter and Particle Filter Based Schemes

Most approaches based on KF and PF apply PDR as
the state update equation, whereas the state is updated later
according to Kalman gain or filtering [1], [18], [14], [19],
[20].

In Kalman filter based approaches, the position calculated
by the PDR method serves as a prior estimate, at which the
predicted RSS fingerprint is generated according to an obser-
vation model. Then the predicted RSS fingerprint is compared
with the real time RSS measurements to compute the posterior
estimate by making compensation (Kalman gain) to the prior
estimate [21]. The observation function is usually set to be
the Log Distance Path Loss (LDPL) model, so KF based
approaches will obtain accurate results for linear or slightly
nonlinear cases. However, there are many unpredictable factors
(e.g. signal congestion, shadowing, interference, etc) in most
real scenarios, resulting in the distortion of the observation
function and the degraded performance. Kalman filter based
methods perform well in linear or slightly nonlinear scenar-
ios, but their performance will be largely degrade in highly
nonlinear scenarios. There have been many research works
proposed to enhance the performance. For example, landmarks
(RSS readings at specific locations) are leveraged to restart the
KF algorithm to avoid divergence [1]. Weighting mechanism
and sampling method can be used to improve localization
accuracy, but such method needs additional information (e.g.
deployment of some iBeacons) to determine the weight of
each candidate [22]. Nevetheless, the poor stability and low
accuracy still hinder the application of KF based methods.

Different from using analytical methods for position esti-
mation, particle filter applies a population based method to
estimate the position, where the fitness value of each particle
is computed and thus the weight is updated [14]. The final
estimate of particle filter is calculated as the weighted sum
of all particles. As a result, the performance of particle filter
highly relies on the weight determination method. In [23],
additional features (recognized turns, rooms and entrances)
are used to constrain the weights, and thus improve the
accuracy. Similarly, map information can also be utilized to
constrain invalid particles by adjusting weights [24]. A new
way for weight computation is to apply the reinforcement
learning method, the sequence of an action can be evaluated
and the weight of a particle can be updated [25]. Despite
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Fig. 1. The architecture of VariFi algorithm. The sensing network captures WiFi RSS data from several sensors, and the IMU data is collected on the
smartphone. The offline phase is firstly conducted, where the collected position and RSS data are used to train a signal radio map. While in the online phase,
the captured RSS data is fed into an inference network, whose result will be evaluated by the signal reconstruction and KL divergence between the prior
estimate. The parameters of inference network will be optimized in real-time. When a new step is detected, the prior estimate is produced based on the
optimized estimate and IMU data.

many previous works, how to determine weights still lacks
theoretical support and is usually not optimized.

B. Variational Inference in Indoor Localization

Various methods applying variational inference have
been proposed for different localization tasks in previous
works [26], [27], [28]. Generally, for a system or process, the
fundamental idea of variational inference is to approximate
an intractable posterior distribution over a set of unobserved
variables (also called state or latent variable) given some ob-
served data by using the proposed variational distribution [29].
KL divergence is usually the default metric to evaluate the
discrepancy between the two distributions, and the goal of
variational inference is to minimize the KL divergence or
optimizing the variational bound [30].

For problems solving a mapping relationship from input
to output (e.g., classification, localization, etc), variational
inference can provide another solution, in addition to the direct
modelling and training method. For example, in [28], the
authors introduce a set of latent feature vectors that behave as
the driving factors for the whole localization process, wherein
the sensory data and position at a location are regarded as
some mapping outputs from the latent feature vector associated
with the specific location. Moreover, in state-space models,
the unobserved variable can be seen as the state to estimate.
In [26], the sensor node location is estimated by the application
of a mean-field variational inference algorithm, where the KL
divergence is modeled and minimized iteratively.

Despite many related localization works, the applications
of variational inference are either too complicated in offline
training phase or not accurate enough in online localization.

Hence, more accurate performance of variational inference is
desired for online localization.

III. SYSTEM DESIGN

This section presents the technical details of each com-
ponent in our proposed approach VariFi, whose architecture
is given in Fig. 1. As usual, the whole procedure generally
consists of two phases: an offline training phase and an
online localization phase. In the offline training phase, an RSS
database is built by collecting RSS fingerprints at reference
points, followed by the construction of signal radio maps.
The signal map is constructed by a modified GPR method,
which can provide a conditional RSS distribution at the given
position. In the online localization phase, three processes are
designed for localization. The step prediction process receives
the IMU data sent from a smartphone for new step detection,
step length estimation and walking direction estimation, which
are further used by the PDR method to provide a prior estimate
based on the final estimate of the last step. The optimiza-
tion process implements the variational inference method to
optimize the posterior estimate, which is also the output of
an inference network. The reconstruction loss is produced
from the signal map and regularization loss is generated by
the comparison of the prior estimate and posterior estimate.
The filtering process handles the result of optimization by
reducing local optimum cases where the prior estimate and
RSS fingerprinting estimate are utilized to generate the final
estimate.

A. Problem Formulation
IMU-RSS based localization problem can be modeled as

a state estimation problem. In the localization problem, the
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unobservable state z = (x, y) will be updated along pedestrian
steps, which is also denoted by zk at time step k. Also, let
us consider the measured RSS dataset Rk = {r(i)k }

Nk
i=1 which

consists of Nk RSS fingerprints during the time step k, and
rk ∈ RM represents the RSS measurement from M WiFi
APs. For the sake of simplicity, we just use rk as the general
RSS fingerprint in the following algorithm description. Thus,
the problem can be modelled by

zk ∼ fk(z|zk−1),

rk ∼ hk(r|zk),

where fk is the state transition that can be measured by
displacement sensors, such as IMU. hk means the real RSS
distribution which can be modelled through machine learning
techniques given the dataset. In addition, for a given mea-
sured RSS rk, the corresponding real position always has the
following relationship.

zk ∼ pθk(z|rk),

where θk represents the potential parameters for the real
mapping relationship.

Our goal is to estimate the position zk with high accuracy.
For such a problem, we always assume the state transition
fk is accessible given the movement information. A modelled
gk is applied to simulate the real RSS measurement hk. While
for the intractable real relationship pθk , we design an estimator
called qϕk

to compute the estimate ẑk. So the estimator can
be formulated as

z̃k ∼ fk(z|ẑ∗k−1),

r̂k ∼ gk(r|ẑk),
ẑk ∼ qϕk

(z|z̃k, rk, r̂k),

where z̃k denotes the prior estimate obtained by PDR and ẑ∗k−1

means the optimal posterior estimate in step k − 1. r̂k is the
predicted RSS fingerprint, which will be used to compare with
the real RSS fingerprint rk to calculate the posterior estimate
ẑk in the estimation model qθk .

B. Pedestrian Dead Reckoning

The movement of a pedestrian can be detected by IMU
sensors (accelerometer, gyroscope and magnetometer) on the
smartphone, whose signals can be double-integrated into the
displacement information. PDR uses the previous position
and the displacement (step length and walking direction) to
estimate the current position, thus the state transition z̃k ∼
fk(z|ẑ∗k−1) can be further expanded as

z̃k ∼ N (µ̃k, σ̃
2
k),

µ̃k = ẑ∗k−1 + lk

[
sin(θk)
cos(θk)

]
,

(1)

where lk and θk represent the step length and walking direction
at time step k, and σ̃2

k is the covariance of prior estimate.
Some prior works on PDR have shown that there will

be periodic changes on the vertical acceleration signal when
feet hit the ground during walking, so we apply a threshold
method to identify new steps. To estimate the walking length

lk, we adopt the method proposed in [31] which makes use
of the vertical acceleration signal change and a calibration
method. The walking direction can be provided by either
the magnetometer or the gyroscope. However, magnetometer
measurement suffers from magnetic field interference caused
by the existence of other metals and electronic devices, and the
gyroscope measurement has much noise that may be integrated
into drifting errors. Therefore, we apply the commonly used
EKF to fuse these two sensors for a better estimation of the
walking direction.

C. Signal Map Construction

In this work, the signal map generates predicted RSS
fingerprints at an arbitrary position, which is also called
the reconstruction of measurement. Due to the presence of
noise, interference and multipath effects, the ideal log-distance
path loss model is no longer suitable to predict the RSS
distribution precisely [32]. Instead, the nonparametric GPR
method is applied to capture the statistical features of the
RSS distribution and predict RSS fingerprints [9]. Nonetheless,
original Gaussian process assumes zero mean function, which
is obviously impractical for RSS prediction. Thus, a mean
function should be pre-defined in advance to estimate the
mean RSS value. Among the enormous choices, we adopt a
polynomial surface function to predict the mean, which can be
expressed by (For the sake of simplicity, we omit the subscript
k in this subsection.)

λ(z) = α0 + α1x+ α2y + α3x
2 + α4y

2 + α5xy,

where z = (x, y) is the coordinate of the position. It is worth
noting that there are two reasons for choosing such function.
First, the polynomial function can well fit the trend of RSS
distribution (results can be referred in Section IV-E). Second,
since the reconstruction evaluation follows the inference net-
work whose parameters need to be optimized by gradient de-
scent algorithm, the selected mean function should be friendly
for gradient computation. The parameters {αi, 1 ≤ i ≤ 5}
can be approximated by fitting the collected data with the
commonly used Least Squared Error (LSE) method. With the
mean value of RSS, the residual RSS error can be computed
by GPR.

Suppose we have collected a database Dτ = (Zτ , Rτ ) in
which Zτ and Rτ denote the location coordinates and the
related RSS fingerprints at selected reference points. Then for
an arbitrary position z∗, the GPR can be written by[

Rτ

r∗

]
∼ N

([
λ(Zτ )
λ(z∗)

]
,[

K(Zτ , Zτ ) + σ2
gI K(Zτ , z∗)

K(z∗, Z
τ ) K(z∗, z∗)

])
,

where σ2
g is the variance of RSS prediction noise and K(·, ·)

denotes the covariance matrix of the predicted RSS finger-
prints, whose elements are all of the squared exponential
kernel form, given by

κ(z, z′) = σ2
f exp(−

1

2γ2
(z − z′)2),
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where σ2
f and γ control the vertical variation and horizontal

length scale, respectively. Finally, the predicted RSS at z∗ is
calculated by

r∗ ∼ N (m(z∗), v(z∗)), (2)

where

m(z∗) = λ(z∗) + Σ(z∗, Z
τ )(Rτ − λ(Zτ )),

v(z∗) = K(z∗, z∗)− Σ(z∗, Z
τ )K(Zτ , z∗),

Σ(z∗, Z
τ ) = K(z∗, Z

τ )[K(Zτ , Zτ ) + σ2
gI]

−1.

Note that the aforementioned prediction is for single di-
mensional RSS of one AP. Since the WiFi APs are deployed
separately, the elements inside the RSS vector are i.i.d. (in-
dependent and identically distributed) with each others. As a
result, for an RSS vector rk = (rk,1, rk,2, ..., rk,M ), we have
p(rk) =

∏M
i=1 p(rk,i), which indicates the prediction of the

RSS vector can be decomposed into separate predictions of
single RSS value. Thus, the RSS prediction can be written by

r̂k ∼ gk(r|ẑk) =
M∏
i=1

p(rk,i|ẑk), (3)

where

p(rk,i|ẑk) = N (mi(ẑk), vi(ẑk)), for 1 ≤ i ≤M.

Through the GPR, we can obtain a conditional distribution
over the possible region of RSS. When the signal map is
applied for position inference, it is not necessary to take the
above computation everywhere, but just for those positions of
interest. For zk with known rk, a smaller ∥rk − r̂k∥ implies
that the estimate ẑk is more similar to the ground truth zk given
the assumption that the signal map is constructed precisely.
Hence, the similarity between ẑk and zk can be evaluated by
gk(rk|ẑk) or its logarithmic form log gk(rk|ẑk).

D. Inference and Optimization

Since the real position zk is unknown, we adopt the
estimated position ẑk to approximate it, which in fact is
equivalent to making estimator qϕk

approach pθk . The com-
mon way to evaluate the discrepancy between two distri-
butions is the KL divergence. According to the definition
of KL divergence, qϕk

is equivalent to pθk if and only
if DKL(qϕk

(z|rk)∥pθk(z|rk)) = 0, which is also the goal
of inference. However, DKL(qϕk

(z|rk)∥pθk(z|rk)) cannot be
computed directly because the pθk is intractable. What’s more,
the only variable we can access is the real RSS fingerprint
rk. Thus, we apply the way introduced in [15] to establish
another relationship containing the KL divergence, which can
be expressed by

log pθk(rk) = Eqϕk
(z|rk)

[
log

pθk(z, rk)

pθk(z|rk)

]
= DKL(qϕk

(z|rk)∥pθk(z|rk)) + L(θk, ϕk; rk),
(4)

where L(θk, ϕk; rk) is called the variational lower bound of
the marginal likelihood of the RSS measurement, which can
be further expanded as

L(θk, ϕk; rk) =

∫
qϕk

(z|rk) log
pθk(z, rk)

qϕk
(z|rk)

dz

= −DKL(qϕk
(z|rk)∥pθk(z))

+ Eqϕk
(z|rk) [log pθk(rk|z)] .

(5)

In (4), we can first apply the Bayesian law on the real
mapping relationship pθk , then take expectation of the ex-
panded logarithmic marginal likelihood under the distribu-
tion of the proposed estimator qϕk

(z|rk). After simplifi-
cation, we get the required KL divergence and another
lower bound. From (4), it is obvious that when the KL
divergence DKL(qϕk

(z|rk)∥pθk(z|rk)) equals zero, the lower
bound L(θk, ϕk; rk) achieves its maximum. In this sense, the
optimization goal becomes maximizing L(θk, ϕk; rk).

The first Right-Hand-Side (RHS) term in (5) is a negative
KL divergence of the posterior estimate from the prior, which
behaves as a regularizer, while the second RHS term is
the evaluation of posterior estimate, which is also called
reconstruction. By maximizing the L(θk, ϕk; rk), our estimator
qϕk

(z|rk) will gradually approximate the pθk(z|rk) and we can
obtain an accurate estimate of real position zk.

In our approach, the estimator qϕk
(z|rk) is assumed to

follow a Gaussian-like conditional distribution, so it can be
decomposed into two parametric functions: a mean function
and a variance function described by

ẑk ∼ qϕk
(z|rk) = N (µϕk

(rk), σ
2
ϕk
(rk)),

where µϕk
(rk) and σϕk

(rk) represent the expectation and
standard deviation of the posterior estimate, respectively. Since
the real mapping relationship between position and RSS
fingerprint is always highly nonlinear, neural network will be
an ideal choice for posterior inference. For better real-time
performance, we use a MultiLayer Perceptron (MLP) network
as the structure for both the µϕk

(rk) and σϕk
(rk). It is worth

noting that, in the offline phase, the parameters of MLPs will
not be trained, which are actually optimized in online inference
phase.

Since the reconstruction term Eqϕk
(z|rk) [log pθk(rk|z)]

cannot be computed analytically, the Monte Carlo Sam-
pling method is applied to approximate the posterior
qϕk

(z|rk), and S samples are randomly generated ẑ
(i)
k ∼

N (µϕk
(rk), σϕk

(rk)), 1 ≤ i ≤ S. For the reconstruction
likelihood pθk(rk|z), we can use its alternative gk(rk|z)
which is detailed above, because it can be well fitted with
the collected database (Zτ , Rτ ). Thus, the computation of
Eqϕk

(z|rk) [log pθk(rk|z)] with S generated samples can be
written by

Eqϕk
(z|rk) [log pθk(rk|z)] ≃

1

S

S∑
i=1

log gk(rk|ẑ(i)k ).

While for the KL divergence DKL(qϕk
(z|rk)∥pθk(z)), the

prior of real state pθk(z) is usually assumed to be zero
mean random signals in generative models. However, in this
approach where the state refers to the position, zero mean
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prior estimate is impractical. Instead, we incorporate the
position predicted in (1) to serve as the prior estimate for
kth walking step estimation. Moreover, under the assump-
tion of Gaussian-like posterior, we can compute the KL
divergence DKL(qϕk

(z|rk)∥pθk(z)) in the analytical manner.
Consequently, after Monte Carlo Sampling, the computation
of the lower bound can be simplified to

L(θk, ϕk; rk) ≃
1

2

J∑
j=1

(
1− log

σ̃2
j

σ2
ϕk,j

−
σ2
ϕk,j

σ̃2
j

− (µϕk,j − µ̃j)
2

σ̃2
j

)
+

1

S

S∑
i=1

log gk(rk|ẑ(i)k ),

(6)

where J is the dimension of the state z and ẑ
(i)
k is the sample

from N (µϕk
(rk), σϕk

(rk)). Therefore, the optimization can
be further summarized as the following maximization problem
during the walking step k.

max
ϕk

L(θk, ϕk; rk). (7)

Given the captured RSS dataset Rk = {r(i)k }
Nk
i=1 during

step k and the prior estimate z̃k, we usually convert the
maximization problem into a minimization problem and apply
stochastic optimization methods such as Adam [17] to solve
the optimization problem. As a result, the optimal parameter
set ϕ∗

k is obtained, and the posterior estimate will be the
mean value µϕ∗

k
(rk) with the optimal parameters, which can

be expressed as
ẑ∗k = µϕ∗

k
(rk). (8)

E. Filtering Mechanism

Previous sections have stated the main procedure of our
approach, and the variational inference can achieve accurate
results for localization. However, the result has the risk of
falling into local optimums, where the gradients become nearly
zero, but the estimated position is not near the real position.

To cope with this potential issue, we propose a filtering
mechanism to reduce the local optimum cases following the
optimization process. Since the optimized estimate may be a
local optimum, we can also incorporate the prior estimate z̃k
and RSS fingerprinting estimate zRk to improve the perfor-
mance, which is produced by the Weighted K Nearest Neigh-
bors (WKNN) method in this work. A filtering mechanism
is designed to help reduce local optimum cases, in which a
filtering region is selected after the optimization and some
samples are generated to find the optimal estimate. The region
is defined as a rectangle Uk whose boundaries are determined
by zRk , z̃k and ẑ∗k . The lower left point zlk = (xl

k, y
l
k) and top

right point ztk = (xt
k, y

t
k) are calculated by

xl
k = min(xF

k − τ, x̂∗
k − τ),

ylk = min(yFk − τ, ŷ∗k − τ),

xt
k = max(xF

k + τ, x̂∗
k + τ),

ytk = max(yFk + τ, ŷ∗k + τ),

where

xF
k =

x̃k + xR
k

2
,

yFk =
ỹk + yRk

2
.

τ is the tolerance value. Subsequently, this filtering region
is divided into C disjoint sub areas with the same size, i.e.,
Uk = ∪Ci=1u

(i)
k . We denote the center of u

(i)
k as v

(i)
k , and the

weight of u(i)
k can be calculated by

w
(i)
k =

1

l(v
(i)
k )∑C

i=1
1

l(v
(i)
k )

,

where l(v
(i)
k ) = ||v(i)k − z̃k||− log gk(xk|v(i)k ) is the loss of the

center v(i)k , and thus the weight w(i)
k can reflect the likelihood

of the occurrence of the global posterior in sub area u
(i)
k .

Finally, the optimal posterior estimate is updated through the
filter, which can be expressed by

ẑ∗k =

C∑
i=1

w
(i)
k v

(i)
k . (9)

The whole procedure can be summarized in Algorithm 1.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup
1) Environment: To evaluate the performance of our pro-

posed approach, we conduct experiments in a real world lab-
oratory environment with different functional areas, as shown
in Fig. 2. In this 20m × 17m site, many desks and cabinets

Fig. 2. The map and layout of the laboratory.

are deployed, which heavily obstruct the signal transmission,
resulting in a Non-Line-of-Sight (NLOS) case. The green tags
represent the 6 deployed WiFi APs that behave as sniffers
and the red dots are the reference points where we record
ground truth positions and their associated RSS fingerprints to
construct the database Dτ = (Zτ , Rτ ). The database consists
of 32 locations with 8 smoothed RSS fingerprints collected
per location.
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Algorithm 1: The Procedure for the Proposed Ap-
proach

Input:
Dτ - The collected database
K - The number of neighbors in WKNN
τ - The filtering tolerance
C - The number of disjoint subareas
Γ - The maximal iterations for optimization at each
step
Output:
ẑ∗k - The estimated position
Initialization: k = 0
Construct the signal radio map g(r|z)
Compute the estimate of WKNN zR0
if Initial estimate zinit is given then

z̃0 ← zinit
else

z̃0 ← zR0
end
Running: k ≥ 1
if new step then

lk, θk ← EKF(Acceleration)
z̃k ← fk(z|ẑ∗k−1)
while i ≤ Γ and Not Converged do

L1(θk, ϕk; rk)← 1
S

∑S
i=1 log gk(rk|ẑ

(i)
k )

L2(θk, ϕk; rk)← KLDiv(z̃k, ẑk)
L(θk, ϕk; rk)← L1(θk, ϕk; rk) +L2(θk, ϕk; rk)
Optimize ϕk by maximizing L(θk, ϕk; rk)

end
ẑ∗k ← µϕ∗

k
(rk)

zRk ← WKNN(rk)
ẑ∗k ← Filter(zRk , z̃k, ẑ

∗
k; τ )

end

2) Baselines: We select the following four methods as
baselines: 1) IMU based method: PDR; 2) RSS fingerprinting
method: WKNN; 3) KF based method: UKF; 4) PF based
method: PF [33].

3) Parameters: For the prior estimate, we set the covariance
of prior σ̃2

k as a 2-D constant identity matrix. For the posterior
estimator, a 5-layer neural network (three fully connected lay-
ers and two activation layers) is selected to be the structure for
both the mean and covariance functions, whose hidden layer
sizes are 16, 8, and 2, respectively. The adopted activation
functions are the Parametric Rectified Linear Unit (PReLU).
We initialize the parameters of inference neural networks ϕ0

randomly before the beginning of walking, and set the initial
learning rate as 10−2 and optimizer as Adam. The maximal
number of iterations Γ for each step’s optimization is 100.
For the filtering mechanism, 25 disjoint areas are applied
and the tolerance τ is set to be 1m. The walking speed of
the pedestrian ranges from 1.0m/s to 1.2m/s, and all the
computation is taken on a laptop platform with only an AMD
R5 3550H CPU in real time.

TABLE I
OVERALL LOCALIZATION ERRORS OF DIFFERENT METHODS IN THE

TRAJECTORY ESTIMATION.

Methods MAE (m) Standard
Deviation (m)

Worst-case
Error (m)

PDR 3.185 0.883 5.255
WKNN 2.725 0.596 3.533
UKF 2.387 0.408 4.875
PF 1.921 0.979 4.374
VariFi 1.156 0.318 2.549

B. Comparison with Baselines

For comparison of the localization accuracy in complex sce-
narios, a pedestrian walks along a closed trajectory surrounded
with cubicles and desks. Since there is uncertainty in each trial,
24 trials are taken for each method along the same trajectory
so that the robustness of different methods can be studied. The
walking process takes an average of 102 steps, but 94 steps
are detected by the IMU data indicating that there will be
missing estimations in the methods that apply PDR. We use
the Mean Absolute Error (MAE) to evaluate the localization
accuracy. The overall mean error and the standard deviation
of each method are reported in Table I.

From Table I, we can observe that our proposed method out-
performs other compared methods in terms of both localization
accuracy and robustness, achieving the least mean localization
error and standard deviation. The mean localization error of
the proposed method is 1.156m, which gains improvements of
39.82% and 51.57% compared to PF and UKF, respectively.
Also, the proposed method gets the least worst-case error
in all the compared methods, which means our method can
maintain strong robustness while achieving high accuracy.
Moreover, Fig. 3 shows the details of the estimated trajectories
of our proposed method and the baselines on the same closed
trajectory. The errors with respect to steps for all the compared
methods are displayed in Fig. 4. In Fig. 3(a), it is obvious that
the PDR method suffers from large biased and drifting errors
as the average PDR estimated trajectory deviates from the real
path. Also, the RSS fingerprinting estimates cannot reflect the
movement of the pedestrian since some estimates locate close
to each other while the pedestrian keeps walking.

From Fig. 3(b) to Fig. 3(d), we can see that the estimated
trajectory of the proposed method best matches the real path
compared to UKF and PF methods. It is noticeable that all the
estimates for the first part (trajectory from the starting point
to the first corner) deviate from the real path to some extent,
which is caused by the drifting of IMU and high similarity of
RSS fingerprints for the points in the region. But from the first
corner, all the estimated trajectories gradually approximate the
real path, in which our proposed method gets the smoothest
and most stable results. This can be also observed from Fig. 4
where the proposed method obtains the least errors for most
steps.

In addition, the proposed method can still estimate the
positions with high accuracy in areas nearing the boundaries of
the environment (e.g., from the upper left corner near the door
to the ending point), whereas the other compared methods get
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(a) PDR and RSS methods vs ground truth (b) UKF method vs ground truth

(c) PF method vs ground truth (d) The proposed VariFi vs ground truth

Fig. 3. Comparisons of estimated trajectories from different approaches.

distorted estimation. This indicates that the proposed method
has the capability of handling the localization difficulties
caused by the complexity of environment, biased error in IMU
and uncertainty in RSS. We believe that, the improvement of
accuracy in WiFi localization can be attributed to the precise
construction of signal maps and nonlinear optimization that is
better solved by variational inference through the utilization
of neural networks, whereas conventional approaches are not
able to tackle these issues well.

For more details of the robustness comparison, the Cumula-
tive Density Function (CDF) of localization error for the five
methods are displayed in Fig. 5.

Fig. 4. Localization errors with respect to each step.

Fig. 5. Cumulative error distribution of different methods.

C. Optimization Performance

To study the performance of optimization, we conduct some
experiments at several fixed points and record the information
including the current estimate and loss during the optimization
process. The testing points (ground truth) are selected to be
(12.4, 2.4), (15.4, 8.4) and (2.2, 12.0), respectively. At each
testing point, we assume the prior estimate z̃ to be away from
the real position z with a distance of 1.0m. The parameters of
the inference network are kept the same as those in the trajec-
tory estimation and the learning rate is set as 10−2 initially that
gradually decays to 10−3. Fig. 6 illustrates the optimization
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(a) Convergence trajectory and optimization loss
at (12.4,2.4)

(b) Convergence trajectory and optimization loss
at (15.4,8.4)

(c) Convergence trajectory and optimization loss
at (2.2,12.0)

Fig. 6. Optimization process at several fixed points. The red arrowed lines in the upper figures represent the posterior estimates during the optimization
process. Note that the initial posterior estimates of all the above processes start from the right door. This is because the parameters of inference networks are
very small at the beginning, and the right door is the origin of coordinates in the code implementation.

process at these points. The converged optimization results are
always within 0.5m of the real locations and the optimization
loss will achieve minimum after several iterations, which
indicates the effectiveness of the optimization process.

D. Computational Load Analysis

Although the proposed approach provides accurate local-
ization results, the computational load should also be taken
into consideration in implementation. Since we apply the
variational inference method for localization that contains
gradient descent based learning for parameter optimization,
the process requires iterative computation whereas the conven-
tional approaches take one-step computation for one estimate.
However, more computation does not mean the approach is
impractical, as the devices are usually equipped with computa-
tion resources nowadays, even for the edge devices. Hence, the
computational load should be investigated for better reference
in the future implementation. In this work, the iterations and
time used for convergence at each step in the above trajectory
are recorded and displayed in Fig. 7.

From Fig. 7, we can observe that for each step’s estimation,
the time used for convergence does not exceed 0.15s and
the maximal number of iterations is 49. Considering that the
time interval during two steps is much larger than 0.15s for
most people, we can claim that the proposed algorithm can
provide accurate localization services in real time. Moreover,
it is worth noting that the computation is conducted on an
AMD R5 3550H CPU (4 cores with frequency ranging from
2.1GHz to 3.0GHz) laptop without any GPU resources, which
means the time used for convergence can be largely shorter

Fig. 7. The iterations and time required for convergence at each step.

on devices equipped with GPUs as the computational speed
will be accelerated exponentially.

E. Signal Map Comparison

The signal map constructed based on the modified GPR
method provides metrics to evaluate whether the predicted
RSS matches the real RSS in order to adjust the parameters of
the estimator. From this point of view, a precise signal map is
important to the proposed approach. In this work, we construct
signal maps for each WiFi AP, some of which can be shown
in Fig. 8. We can observe that the constructed signal maps can
basically reflect the mean value of the RSS measurement.
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(a) The measured RSS distribu-
tion of AP 3

(b) The predicted mean RSS dis-
tribution of AP 3

(c) The measured RSS distribu-
tion of AP 6

(d) The predicted mean RSS dis-
tribution of AP 6

Fig. 8. Comparisons of the WiFi RSS radio maps.

TABLE II
COMPARISONS BETWEEN THE PREDICTED RSS FINGERPRINTS AND REAL

RSS FINGERPRINTS.

AP Index AP 1 AP 2 AP 3 AP 4 AP 5 AP 6
MAE (dB) 0.525 0.431 0.528 0.414 0.516 0.499

Besides, we compare the MAE between the real RSS values
and predicted RSS values at all the 32 reference points for each
WiFi AP, whose results can be shown in Table II.

F. Ablation Study

To study the effect of the filtering mechanism, we compare
the complete method qϕ and the method without filtering
qϕ,f−. The comparison results are shown in Table III, where
we can find the qϕ outperforms qϕ,f− in terms of both
the mean accuracy and the standard deviation. For mean
accuracy, qϕ achieves improvements of 23.42% and 11.69%
over qϕ,f− for static and dynamic localization, respectively.
For the standard deviation, it is obvious that in the dynamic
localization, the performance of qϕ is more stable compared
to qϕ,f− with a 39.08% improvement, which is higher than
that in the static localization. We think this is caused by the
utilization of RSS fingerprinting estimates. For different trials
on the same trajectory, the IMU information may vary at the
same location due to its sensitivity to human motions (e.g.
hand shakes), against which the RSS fingerprinting estimates
are stable. The prior estimate z̃k will influence the performance
of optimization, which is predicted based on the estimated
direction θk and the final estimate ẑ∗k−1 at the last step.
Although the IMU error is directly introduced into z̃k, a more
accurate ẑ∗k−1 after filtering will reduce the variation of z̃k,
which enhances the robustness of the whole approach along

steps. Therefore, the filtering mechanism is able to improve
the localization accuracy and robustness.

TABLE III
COMPARISON OF THE PROPOSED METHOD WITH AND WITHOUT

FILTERING.

Models Static Localization Dynamic Localization
Mean (m) STD (m) Mean (m) STD (m)

qϕ,f− 0.649 0.330 1.309 0.522
qϕ 0.497 0.281 1.156 0.318

V. OPTIMIZATION TOWARD EXISTING LOCALIZATION
APPROACHES

In the above section, we have discussed the evaluation re-
sults on indoor human tracking in a multi-function laboratory.
In the human tracking model, we utilize IMU data to predict
the prior estimate upon the detection of a new human step.
Then the optimization is conducted to produce the estimated
position. In fact, the application of VariFi can be further
expanded.

A. Offline-Online Dual Optimization

From a broader view, our proposed VariFi can be used
to optimize the results of most localization methods. To be
specific, since most machine learning and deep learning based
approaches apply the train-test framework, optimization in
these methods is only conducted toward the training data
samples. As a result, during the testing phase, the estimated
position is not optimized to be accurate enough. Our proposed
VariFi can handle this problem by taking optimization in real
time during the testing phase. As to technical implementation,
the only difference is the replacement of prior estimate in
VariFi. In detail, the prior estimate is produced by (1) with the
assistance of IMU information. However, if we are only given
RSS data for localization, we can just practice an existing
indoor localization approach π with associated parameter set
ρ, namely z = πρ(r). In theory, π can be any approach based
on the train-test framework. To make the optimization com-
putable, the Gaussian-like prior assumption is still necessary.
After obtaining the prior estimate provided by πρ, we can
apply the above mentioned variational inference to compute
the posterior estimate.

In summary, the offline-online dual optimization consists
of two steps. Firstly, the selected approach πρ should be
optimized using training dataset Dτ = (Zτ , Rτ ), yielding

min
ρ

loss(ρ) = MSE(Zτ , πρ(R
τ )), (10)

whose optimized parameter set is denoted by ρ∗. Secondly,
without loss of generality, suppose that we capture an RSS
sample, namely rt in the testing phase. Then the prior estimate
distribution can be produced by

z̃ ∼ N (µ̃, σ̃2),

µ̃ = πρ∗(rt),
(11)
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TABLE IV
MEAN LOCALIZATION ERRORS AND PERCENTAGE OF IMPROVEMENTS FOR ALL THE APPROACHES UNDER TWO ENVIRONMENTS.

Scenarios Criterion WKNN DANN RF CNNLoc [34] LF-DLSTM [35]
WKNN +VariFi DANN +VariFi RF +VariFi CNNLoc +VariFi LF-DLSTM +VariFi

Laboratory
(20× 17m,M = 6)

Error (m) 2.441 1.947 2.889 2.015 2.884 2.166 2.412 1.982 2.857 2.023
Improvement (%) - 20.24% - 30.25% - 24.87% - 17.83% - 29.22%

Office room
(10× 5m,M = 3)

Error (m) 1.656 1.472 1.928 1.710 2.067 1.830 1.956 1.752 1.763 1.693
Improvement (%) - 11.11% - 11.31% - 11.47% - 10.43% - 3.97%

where σ̃2 represents the estimate covariance of the approach
πρ, which can be either obtained by user-tuning or computa-
tion from a cluster of estimated positions with Monte Carlo
Sampling applied to the test RSS data. Once the prior estimate
is got, the posterior estimate can be calculated according to

r̂ ∼ g(r|ẑ),
ẑ ∼ qϕ(z|z̃, rt, r̂),

(12)

where g is the RSS radio map constructed by the training
dataset Dτ using the method introduced in Section III-C.
Similarly, the variational lower bound L(θ, ϕ; rt) should be
optimized, yielding

max
ϕ

L(θ, ϕ; rt) ≃
1

2

2∑
j=1

(
1− log

σ̃2
j

σ2
ϕ,j

−
σ2
ϕ,j

σ̃2
j

− (µϕ,j − µ̃j)
2

σ̃2
j

)
+

1

S

S∑
i=1

log g(rt|ẑ(i)),

(13)

where ẑ(i) ∼ N (µϕ(rt), σϕ(rt)), 1 ≤ i ≤ S. For the sake of
simplicity, we refer to the combination of offline optimization
approach πρ and online optimization approach qϕ as Ωρ,ϕ.

B. Evaluation and Comparison

To validate the improvement of VariFi on existing WiFi RSS
based approaches, we select several localization schemes using
WiFi RSS data, which include: 1). WKNN; 2). Deep Artificial
Neural Network (DANN); 3). Random Forest Regression (RF);
4). CNNLoc [34]; 5). LF-DLSTM [35]. The configurations of
the selected methods and VariFi are listed in Table V. FC(20-
Tanh) means a fully connected layer whose output dimension
and activation function are 20 and Tanh, respectively. Conv(40-
10-ELU) means the convolutional layer has 40 output channels
with the filter size of 10, and the activation function is ELU.
Similarly, LSTM(20-Sigmoid) denotes an LSTM network with
20 dimensional output and Sigmoid as the gate function.
It is worth noting that the configurations (hyper-parameters)
of selected approaches are well tuned but not guaranteed
to be optimized since the subject of this validation is the
improvement brought by the application of VariFi toward
existing approaches.

To better study the improvement of VariFi based on existing
localization schemes, we also collect data from another office
room environment of size 10m× 5m, where 3 WiFi APs are
installed. Finally, the results and improvements are listed in
Table IV. From the results, we can observe that VariFi can

TABLE V
CONFIGURATIONS OF THE SELECTED APPROACHES.

Approach Configuration
WKNN K=5
ANN Input→FC(20-Tanh)→FC(10-PReLU)→FC(2)
RF 50 estimators (trees)

CNNLoc
Input(1,5×M )→FC(64-ELU)→FC(32-ELU)→

Conv(40-10-ELU)→Conv(20-10-ELU)→Conv(10-5-ELU)
→flatten→FC(40-ELU)→FC(2)

LF-DLSTM Input(50,M )→Feature(5,5×M )→LSTM(20-Sigmoid)
→LSTM(30-Sigmoid)→FC(60-ELU)→FC(2)

VariFi Input→FC(15-PReLU)→FC(30-PReLU)→FC(10-PReLU)
→FC(2)

enhance the localization accuracy of existing approaches since
it can optimize the inference in the online phase.

It is also worth mentioning that compared to the laboratory
environment, the performance improvement in the office room
environment is degraded to some extent. We think it can be
attributed to the reduction of information brought by radio
maps. To be detailed, the constructed radio map for each
WiFi module is used for position inference, through which the
reconstruction loss is generated. Thus, the accuracy of radio
map construction and numbers of deployed WiFi modules
are the vital factors for improving localization performance
in this framework. Only 3 WiFi modules are utilized in the
office environment which provides less evaluation metrics for
the optimization. So, it is reasonable that the performance
improvement becomes smaller. In the future, we will also
investigate how the parameters of radio maps can be updated
against environmental changes for better transfer ability from
one environment to another.

VI. CONCLUSION

In this paper, we proposed VariFi, a novel approach to
provide accurate localization services for indoor pedestrians
based on IMU and RSS measurements from smartphones
and WiFi APs. We construct signal radio maps for different
APs to model the relationship from the position to RSS
fingerprints by the utilization of a modified GPR method. The
variational inference method is incorporated into our approach
to help optimize the estimated position through optimizing the
parameters of the designed inference network with gradient
descent based learning. The reconstruction loss is the eval-
uated by the predicted RSS distribution and measured RSS
fingerprints, and the regularization loss is calculated by the
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similarity between the prior and posterior estimates. We further
expand the application of VariFi to enable the offline-online
dual optimization for WiFi RSS based localization, where
VariFi is used to optimize the estimated results from existing
localization approaches. The conducted experiments demon-
strate that VariFi outperforms other compared approaches in
terms of both the localization accuracy and robustness in the
trajectory estimation test, validating the effectiveness of VariFi.
Additional experiments from two environments also validate
the effectiveness of VariFi when combined with existing local-
ization methods, in which VariFi is shown to bring accuracy
improvements toward all the compared approaches.
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