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Abstract

Background: Musculoskeletal injuries are observed in Thoroughbred racehorses and

may become catastrophic. Currently, there are limited methods for early detection of

such injuries. Most injuries develop gradually due to accumulated damage, providing

the opportunity for early detection. Horses experiencing pain or lameness may

exhibit changes in behaviour so the development of an objective, real-time system

monitoring horse behaviour may enable detection of bone injuries before

catastrophic failure.

Objectives: To determine whether intensive observational methods of assessing

horse behaviour can be replaced by use of inertial measurement units (IMUs).

Study design: Validation study assessing IMU use against video observation.

Methods: Six hospitalised Thoroughbreds (algorithm training data) and 19 Thorough-

bred racehorses in-training (algorithm testing data) were equipped with an IMU

placed on the lateral side of both forelimbs (left fore, LF; right fore, RF) and

monitored in a stable for 4 h. An algorithm was developed to classify behaviour and

then validated against video recordings.

Results: Standing was the most prevalent behaviour (LF 88.8%, 95% confidence

interval [CI] 88.7–89.0; RF 88.5%, 95% CI 88.4–88.7). IMU classification of recumbent

and standing activities showed excellent agreement (sensitivity) with video observa-

tion (>98%). This was followed by stepping (LF 89.4%, RF 85.5%) then weight-shifting

(LF 54.3%, RF 61.5%). Predictions from the algorithm showed misclassification of 2.5%

(LF 5500/225 352, RF 5218/210 170). Excluding standing, misclassification was 6.8%

(1705/25 158) and 7.5% (1812/24 077) for the left and right forelimbs, respectively,

with pawing and weight-shifting most frequently misclassified.

Main limitations: Increasing the number of horses and types of behaviours observed

may improve predictions.

Conclusions: IMUs displayed a high sensitivity to movement on a small number of

horses, and with further validation they have the potential to effectively monitor

behaviour of racehorses in training. However, more sensitive methods may be
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needed to validate the classification of weight-shifting behaviour. Future studies

should evaluate the association between each behaviour and musculoskeletal injury.

K E YWORD S

horse, IMU, orthopaedic pain, racehorse, Thoroughbred, video monitoring

1 | INTRODUCTION

Musculoskeletal injuries are the most common cause of lost training

days and early retirement in racehorses, resulting in substantial eco-

nomic impact to owners and trainers.1,2 Most injuries in racehorses

are due to tissue fatigue, developing gradually as bone or tendon

integrity is overcome by repetitive load.3 For bone, this is evidenced

by post-mortem examinations revealing pre-existing pathology for

fracture including periosteal callus formation, focal bone resorption

and microdamage.4–6 Because most injuries develop over time, there

is an opportunity for early detection.4,6 The use of diagnostic imaging

techniques to detect early injury has been investigated, but low

specificity, high cost and logistics limit their use for screening large

numbers of horses.7–10 Additionally, a trend towards increased racing

stable size (number of horses per trainer) over the past decade makes

close monitoring of horses more challenging.11,12 Continuous

observation is not feasible nor practical for most racing stables, and

horses tend to hide their discomfort in the presence of observers.13

Therefore, an automated, objective monitoring system to aid in the

assessment of racehorse behaviour is needed.

Orthopaedic pain, commonly expressed as lameness in horses, is

also associated with changes in behaviour including weight-shifting,14

pawing15 and restlessness.16 The development of an objective, prefer-

ably real-time, system to monitor horse behaviour may enable the

early detection of bone injuries before more overt clinical signs devel-

oping. Numerous measures to evaluate pain have been developed to

score severity based on ordinal or simple descriptive scales, including

composite multifactorial scales and facial expressions.15-24 Horses in

pain are shown to spend more time inactive and those with known

orthopaedic pain have been observed unloading one limb, pawing and

weight-shifting, although behaviours such as pawing are not specific

to orthopaedic discomfort.14-17 Further, rather than singular expres-

sions of behaviour in horses, composite and facial expression-based

pain scales show promise, at least for acute pain.25 A combination of

behaviours (posture, weight-bearing) and physiological signs (tempera-

ture, heart rate) were found to be associated with movement asym-

metry from the Equine Pain Scale and Composite Pain Scale.26 Subtle

signs of orthopaedic pain have also been recognised in a first attempt

using pose estimation of raw video data, trained on a data set of facial

and upper body poses in horses with acute experimental pain.27 How-

ever, current methods of intermittent monitoring may not accurately

detect the frequency of pain-related behaviours.17

Wearable inertial measurement units (IMUs) use orientation and

acceleration to interpret activity.28–31 IMUs have been used to detect

Parkinson's disease in humans,32 and to study movement of marine,

terrestrial and airborne animals.33–36 Movement is recorded as

acceleration signals and analysed by machine learning tools to identify

patterns that can be used to discriminate behaviours. Algorithms

have been developed and validated to classify dog behaviour with

excellent agreement (>0.90),37 detect lameness in sheep with an 82%

accuracy,38 monitor lying behaviour in cattle39 and predict foaling in

broodmares.40 More recently, IMUs have been used to predict step

count in horses under stall confinement with excellent agreement

(>0.99),41 and assess changes in postural sway for horses with

induced lameness.42

Effective remote monitoring of horses could be used in racing

stables to detect subtle changes in behaviour. The objective of this

study was to determine whether IMUs are sensitive enough to detect

horse behaviours when compared with intensive methods, such as

constant observation, in what would be considered a healthy popula-

tion, as orthopaedic pain can be sub-clinical. We aimed to develop an

algorithm to classify horse behaviour and (1) determine the accuracy

and precision of the behavioural events predicted by IMUs; and

(2) validate their use to quantify posture and behaviour, specifically, in

detecting static orientations of standing and recumbency as well as

dynamic movements of stepping, pawing and weight-shifting.

2 | MATERIALS AND METHODS

2.1 | Study population and environment

Twenty-five Thoroughbred horses were recruited from the University

of Melbourne Equine Centre (UVet) (n = 6) and 1 Victorian registered

racehorse trainer (n = 19). Six horses recruited from UVet were utilised

for algorithm development (mean age 3.7 years, standard deviation

(sd) 2.2 years). We reasoned that this population would allow for obser-

vation of horses likely to be exhibiting signs of pain and/or discomfort

in a closely controlled environment. For validation, the developed algo-

rithm was then tested using video recordings of 19 horses in a typical

racehorse training stable environment that met the inclusion criteria;

(1) Thoroughbred racehorse; (2) ≥3 years and (3) deemed fit for race

training. This test population consisted of n = 3 females, n = 13 geldings

and n = 3 colts and stallions, with a mean age of 3.8 years (sd 1.07).

Horses were confined to individual 360 � 370 mm2 stables for

the recording periods. Stables had visual access to neighbouring

horses by means of open metal bars dividing the sides of stalls (above

�1.3 m of solid wall) and on the front wall inwards to a breezeway.

Rear walls were solid with no visible distractors. Ad-lib hay and water

were available and positioned either on the ground or at chest height.

2 ANDERSON ET AL.
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Horses were provided with hard feed twice daily, morning and late

afternoon.

2.2 | Sample size analysis

Estimation of sample size was based on a previously published

validation of motion sensors in dairy cattle that identified lying, stand-

ing and moving (four calves in training data set; five calves in valida-

tion data set). As that study found that the motion sensor accurately

measured high-prevalence behaviours, but less accurately measured

low-prevalence behaviours, we increased the number of horses used

(6 training; 19 validation) for this current study.43

2.3 | Accelerometer data

Horses were equipped with two 500 Hz nine axis IMUs (length:

40 mm; width: 28 mm; depth: 15 mm; mass: 12 g; accelerometer

range: ±16 g; gyroscope range: ±2000 degree per second (�s�1);

Vicon). Sensors were positioned on the lateral side of both metacarpi

(left fore, LF; right fore, RF), secured in a horse boot with a purpose-

built Velcro pouch (Figure 1).

The duration of data collection was limited to the battery life of

the sensors (<5 h). Therefore, data were collected in varied 4 h time

windows, ranging from start times of approximately 10:00–22:00, as

dictated by stable activities and horse availability, avoiding active

periods such as trackwork, with 8/19 horses being fed within the time

window that they were monitored. A mobile application (IMeasureU,

Vicon) was used to start and stop data capture.

2.4 | Video analysis

Video footage was recorded using a video camera (TECHview 1080p)

mounted to a bracket that was securely fastened to the stable wall in

one corner at a height of 2.4 m, which allowed for a view of the entire

stable (101�). The mean footage for each horse was 224 min (sd 37.6).

The sensors were tapped by hand multiple times in view of the cam-

era to provide a time stamp that was used to synchronise the video

footage with the IMU data.30

2.5 | Data processing and algorithm development

Data processing and algorithm development was conducted using

MATLAB version R2018a (MathWorks). MathWorks, Natick, Massa-

chusetts, United States.

Sensor data were extracted from the IMUs and imported into

MATLAB. A custom-designed MATLAB script was used to process

the data. The z- and x-axes from the sensor of the left forelimb were

multiplied by �1 to convert data equivalent to that of the right

forelimb.

Data were collected from hospital-admitted horses (n = 6) and

used to train the algorithm (training data). The video recording was

used to manually label time frames from sensor data to a behaviour

class. The time stamp allowed one observer (KA), with experience

working in Thoroughbred racing stables and as a post-graduate

trained in equine behavioural annotation, to coordinate IMU time with

video footage. For each movement on IMU, the start time was

recorded and labelled according to the behaviour observed on video

in 1-s intervals.29 This time interval was chosen because it has previ-

ously been reported to be sensitive to detection of movement for

most behaviour classes.34

We defined six basic behavioural classes. Each behaviour was

encoded from 1 to 6: (1) left recumbency; (2) stepping; (3) pawing;

(4) standing; (5) weight-shifting; and (6) right recumbency (Table 1).

Behaviours were recorded based on the 1-s time-sampling interval.

For recumbency, stepping, and standing they were based on previous

studies comparing IMU recordings to video observations in cattle.

Recumbency was defined as the animal either in lateral or sternal

recumbency for the entire 1 s; and stepping as a minimum of one

F IGURE 1 Depiction of boots with inertial measurement unit
(IMU) placement. Sensors were positioned on the lateral side of both
metacarpi (left and right fore), secured in a horse boot and stitched
into a purpose-built Velcro pouch (inset).

ANDERSON ET AL. 3
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complete forward or backward progressive step.44,45 Pawing was

defined as pawing the ground or air or pointing or hanging the limb,

and weight-shifting as changes in weight distribution or shifts, muscle

tremors or non-weight bearing of either limb per Bussières et al.15

Each classified behavioural observation was allocated to a row

number which was found by multiplying the time in seconds by

500 (because the data was recorded at 500 Hz; each second con-

tained 500 points). Five features were calculated using a moving

window calculation for the time interval across the entire array;

including mean, median, minimum, maximum and sd. The five features

were calculated for each of the eight columns, consisting of six accel-

eration signals (acceleration x, y, z; gyroscope x, y, z) and an additional

two resultant vectors calculated using the Pythagorean method.

These calculations were allocated to a behaviour and used to train

machine learning classifiers. Each classifier was evaluated using

10-fold cross-validation and the accuracy of each was determined.46

2.6 | Validation

The developed algorithm was used to predict behaviour in n = 19

horses in race training (unlabelled test data set) using patterns recog-

nised from the previously labelled training data set.36,46 The predicted

behaviours from the algorithm were blinded to the observer (KA),

who manually classified behaviour per second from the video to one

of the six defined behaviours. If behaviour could not be recorded

because the limb of interest was obscured, the data was recorded as

missing. Abnormal behaviour, that is, if activity could not be classified

(e.g., sudden movement to the right), was recorded and excluded from

analysis. Observations where the sensor slipped, malfunctioned, or

did not record data (all observations for the right forelimb of one

horse [HorseID 18] and n = 313 observations across various horses)

were also excluded from analysis.

An internal-clock drift in the IMU was corrected using a time

stamp to detect the difference between true and IMU time. Each

sensor was manually calibrated at consistent intervals based on the

correction factor determined. Since the time resolution of the

device was 1-s, the correction was implemented in the data as

TABLE 1 Description of broadly classified behaviours observed
on video recordings in n = 25 Thoroughbred racehorses stabled
at rest

Behaviour Description

Left recumbency The horse is in sternal or lateral recumbency

with its left side down for >3 s, including

behaviour such as rolling.

Stepping Progressive movement of hoof from one

location to another one.

Pawing Non progressive movement. Continuous

action of digging with one limb with the

horse otherwise stationary.

Standing Standing on both forelimbs without unloading

or moving (≥1 s)

Weight-shifting Non progressive movement. Action of

unloading weight from one limb to another

(not necessarily taking a limb off the

ground), often continuous between left

forelimb and right forelimb.

Right recumbency The horse is in sternal or lateral recumbency

with its right side down for >3 s, including

behaviour such as rolling.

TABLE 2 Summary information about the observed behaviour sequences of both left and right forelimb of n = 19 individual Thoroughbred
horses in race training monitored in a stable

Left limb observed Right limb observed

Mean (sd) Min, max Mean (sd) Min, max

Total length of observation (s) 12 093 (2149) 8512, 16 214 11 886 (2095) 8415, 14 763

No. of transitions 448 (165) 231, 982 431 (140) 230, 725

States observed (max = 6) 4 (1) 3, 6 4 (1) 3,6

Duration of each behaviour (%)a

Left recumbency (8/19) 4.4 (8.2) 0, 29.8 4.7 (8.5) 0, 29.9

Stepping 3.5 (2.0) 1.5, 9.8 3.5 (2.0) 1.8, 9.4

Pawing 0.1 (0.1) 0, 0.2 0.2 (0.2) 0, 0.7

Standing 89.0 (7.7) 66.6, 97.9 88.7 (7.6) 66.7, 97.3

Weight-shifting 1.2 (0.7) 0.1, 2.6 1.3 (0.8) 0.1, 3.5

Right recumbency (4/19) 1.9 (3.9) 0, 11.2 1.8 (4.0) 0, 12.4

Entropyb 0.22 (0.1) 0.06, 0.42 0.23 (0.1) 0.08, 0.42

Complexityc 0.09 (0.1) 0.04, 0.16 0.009 (0.02) 0.05, 0.13

aThe percentage of time spent in each state of behaviour during the observational hours, which include weight shifts before and after stepping which were

excluded from analysis.
bA measure of diversity of states that compose the sequence, based on time spent at different states (where 0 = one behaviour observed and 1 = equal

time spent at each state).
cCombines entropy and number of transitions.

4 ANDERSON ET AL.
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occasional repeats of the same time, or occasional 1-s skips, as

previously reported.47

The transitional period between standing and stepping was fre-

quently classified as weight shifts (LF 55.8%, 4087/7316; RF 50.7%,

3623/7143 of total weight shifts). To account for this misclassifica-

tion, a variable to exclude weight shift movements predicted before

and after stepping behaviour was generated. A period of 5 s following

the transition of recumbent to standing was not used in validation

analysis because behaviour displayed could not be defined.

2.7 | Data analysis

Statistical analyses were conducted in Stata/IC version 15.0 (Stata-

Corp).48 The unbalanced ratio of behaviours meant the accuracy for all

classifications was excellent and not informative to the overall perfor-

mance of the algorithm. Therefore, we evaluated the performance of

the algorithm based on its ability to correctly predict individual behav-

iours, including sensitivity and precision, as previously done by Martis-

kainen et al.49 A confusion matrix describing the performance of the

algorithm at classifying behaviours was generated.46

Sensitivity (true positive/[true positive + false negative]), and

precision (true positive/[true positive + false positive]) were deter-

mined to assess the accuracy of the algorithm to predict horse behav-

iour in the test data (n = 19), by comparing the video observation to

the behaviour predicted. Continuous data were assessed using the

Shapiro–Wilk test, and as the majority were normally distributed, all

data were reported as mean and standard deviation. Sequence index

plots were generated in Stata (StataCorp). Sequence analysis was con-

ducted in R using the package TraMineR (R Foundation for Statistical

Computing).50,51 The duration of each behaviour was calculated as a

mean of observed behaviour for each behaviour. For recumbency

behaviour, the duration percentage was a mean calculated from only

those horses that were recumbent at least once.

3 | RESULTS

3.1 | Training data

The performance of the behaviour classifier algorithm on the training

data is presented as a confusion matrix in Table S1, with sensitivity

ranging from 80.3% to 96.7% and precision from 85.9% to 100% for

each behaviour. Left recumbency had the highest precision, followed

by standing, pawing, weight-shifting, stepping and right recumbency.

Stepping and pawing had the lowest sensitivity.

3.2 | Test data

Tables 2 and S2 describe the summary data recorded from

19 individual horses for observations, transitions and duration of

behaviours. T
A
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Behaviours not classified within the six classes, behaviour not

observed, and behaviour detected in the second before and second

after ‘stepping’, were excluded from calculations of agreement. Other

behaviours not analysed included: shake, roll, kick, lift leg and scratch

leg (n = 935 s).

Video observation detected standing as the most dominant

behaviour pattern in the test data set, with prevalence of 88.8% and

88.5% for the left fore and right fore, respectively (Tables 3 and 4),

followed by recumbency (left-sided recumbency prevalence of 5.1%

and 5.5% and right-sided 2.2% and 2.0%) and stepping (2.9% and

2.8%, respectively) (Table 4). Over the complete observation period,

57.9% of horses (11/19) were recumbent for a period of more than

3 s, most of which occurred during the afternoon (between 3.00 PM

and 5.00 PM) or evening (after 8.00 PM) (Figure 2). The mean total

recumbent time for all horses was 14.5 min (sd 19.4; range 0–70.9).

One horse was recumbent for 27.5% of the observational period

(70.9/257.6 min).

Greater than 60% of behaviour states observed were followed by

the same behaviour state in the next recorded second, with the

exception of weight-shifting (Table S3). Weight-shifting was most

often followed by standing (47%) or more weight-shifting (42%). Cal-

culations of transition rates when repeated events in sequence were

ignored showed a high probability that stepping (90%) and weight

shifts (81%) were followed by standing. The longitudinal

characteristics of sequences between horses are illustrated (Figure 2),

which can be used to interpret how individual horses change

behaviour state over time.

The total agreement between predicted and observed behaviours

(Table 3) was used to calculate precision (proportion of positive pre-

dictions that were correct) and sensitivity (proportion of the positive

cases that were predicted positive) of the algorithm to predict each

behaviour classification, stratified by limb (Table 4). Overall, precision

varied from 28.4% (weight-shifting) to >99.9% (recumbency), and sen-

sitivity varied from 49.6% (pawing) to 99.9% (recumbency). Standing

and recumbency were predicted with a precision and sensitivity of

>98% in both left and right limbs. Stepping behaviours were predicted

with 78.0% and 79.1% precision and 89.4% and 85.5% sensitivity for

the left and right forelimb, respectively. Compared with video obser-

vations, after exclusion of 1 s before and after stepping and abnormal

observations, the predictions from the algorithm showed mean mis-

classification by horse of 2.6% for the left and right forelimb (LF sd.

1.6%, range 1.0, 7.8%; RF sd. 1.4%, range 1.2, 6.7%). Overall misclassi-

fication was 2.4% (5500/225 352) and 2.5% (5218/210 170) for the

left and right forelimbs, respectively (total 2.5%). However, excluding

standing (the most prevalent behaviour), overall misclassification was

6.8% (1705/25 158) and 7.5% (1812/24 077), respectively. Pawing

TABLE 4 Sensitivity, precision and
prevalence as percentages and their
respective 95% confidence intervals
(95% CIs) of behaviours between video
observation and algorithm prediction of
behaviour in n = 19 stabled
Thoroughbreds, stratified by limb

Sensitivity (95% CI)

Behaviour Left forelimb 95% CI Right forelimb 95% CI

Left recumbency 99.9 99.8–99.9 99.8 99.7–99.9

Stepping 89.4 88.6–90.2 85.5 84.6–86.4

Pawing 69.3 60.0–77.6 49.6 40.0–59.1

Standing 98.1 98.0–98.2 98.2 98.1–98.2

Weight-shifting 54.3 52.1–56.4 61.5 59.5–63.6

Right recumbency 99.9 99.8–100.0 99.9 99.8–100.0

Precision (95% CI)

Behaviour Left forelimb 95% CI Right forelimb 95% CI

Left recumbency >99.9 99.9–100.0 99.9 99.9–100.0

Stepping 78.0 77.1–79.0 79.1 78.1–80.1

Pawing 61.7 52.7–70.2 74.7 63.3–84.0

Standing 99.5 99.5–99.6 99.4 99.4–99.5

Weight-shifting 28.4 27.0–29.8 32.9 31.5–34.3

Right recumbency >99.9 99.9–100.0 >99.9 99.9–100.0

Prevalence (95% CI)

Behaviour Left forelimb 95% CI Right forelimb 95% CI

Left recumbency 5.1 5.0–5.2 5.5 5.4–5.6

Stepping 2.9 2.8–3.0 2.8 2.8–2.9

Pawing 0.1 0.0–0.1 0.1 0.0–0.1

Standing 88.8 88.7–89.0 88.5 88.4–88.7

Weight-shifting 0.9 0.9–1.0 1.1 1.0–1.1

Right recumbency 2.2 2.1–2.3 2.0 2.0–2.1
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was most often misclassified as stepping (LF 27.2% and RF 49.6% of

true positives). Weight-shifting was most often misclassified as either

standing or stepping (LF 45.4%; RF 38.1% of true positives).

4 | DISCUSSION

Using IMUs, an algorithm was developed and validated to accurately

identify horse behaviour, and therefore has the potential to replace

current methods of observation and enable continuous monitoring.

Using a supervised learning algorithm, we achieved >85% sensitivity

for four behaviours: left recumbency, right recumbency, stepping and

standing; and 50% to 69% sensitivity for pawing and weight-shifting.

The overall performance of the device suggests it could be developed

into a system able to monitor Thoroughbred racehorses in their sta-

bles, and over time may allow detection of subtle changes in behav-

iour patterns.

The horses in our study spent the greatest time standing (89%)

and the least time pawing (<1%). A previous study observing stabled

horses for 72 h (divided into 12-h segments over 6 days, with up to

4 h paddock time per day) found the majority of time was spent

standing (55%) and grazing (24%). Assuming horses were standing

while grazing, this totals 79%.52 Our findings may be similar, though

we did not independently categorise eating behaviours. Horses have

been observed to spend most of their recumbent time in sternal

recumbency rather than on their side.52 We were able to differentiate

between left and right lateral recumbency but we did not classify ster-

nal recumbency separately.

The sensitivity for detecting recumbent and standing in this study

was excellent (>98%), comparable to previous validation studies in

cattle and horses (≥98%).44,53,54 However, sensitivity for predicting

pawing was much lower, with the right forelimb sensor correctly pre-

dicting only half of observed pawing episodes. Pawing movements

can be brief, so mismatches between the sensor and human observa-

tion time recordings are more likely than for behaviours of a longer

duration. Similar validation studies found that after slowing the

recordings down to review disagreements, the device predicted cor-

rectly, and the observer was incorrect.37 In our study, the video foot-

age regularly replayed at 50% of real time, along with the recording of

behaviour every second, was intended to help identify these rapid

movements. Recently, a small study using observation and convolu-

tional neural networks, found the largest contributors to a lower

accuracy were the misclassifications of pawing, rolling and flank

watching.55 These behaviours were only performed by one horse dur-

ing the collection of training data and therefore made up only 2.4% of

the data set. The infrequent display of pawing limits training opportu-

nities for classifiers. Additionally, individual pawing patterns were

diverse, producing distinctive acceleration patterns for each horse,

unlike the repetitive movement pattern observed during walking or

recumbency. Therefore, larger input data sets are required for training

algorithms to recognise pawing behaviour.

We placed the motion sensors on the forelimbs. This position was

previously shown to achieve the highest accuracy for discriminating

between equine gaits, including walk, trot and canter.56 Placement on

the right forelimb vertical axis has been demonstrated to have excel-

lent agreement (ICC 1.0) between sensor-based step count and video-

based step count for horses confined to stalls.41 Placement of a

motion sensor around a cow's neck has been successful for recognis-

ing rumination and eating behaviours,49,57–59 but sudden head move-

ments can disrupt recognition of other behaviour patterns and collars
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F IGURE 2 Sequence index plot demonstrating changes in behaviour states over time of Thoroughbred racehorses in training (n = 19).
Changes in behaviour state are shown by changes in colour.
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may move freely, independent of animal movement.58 Additionally,

sensors placed on the neck have difficulty differentiating standing and

sternal recumbency because the orientation of the axis does not

change.49 Forelimb placement, as in the present study, can differenti-

ate these postures using the perpendicular difference between x- and

y-axes.45 Robert et al. placed the motion sensor on the hindlimb of

cattle and reported excellent agreement with video for lying and

standing (99.2% and 98%, respectively).44 However, walking classifi-

cation accuracy was significantly lower (67.8%). Sensors placed on the

ear, collar and leg yielded different prediction accuracy for lameness

in sheep. Leg-mounted sensors cannot differentiate standing from

grazing, unlike ear-mounted sensors which can distinguish non-

grazing standing with a 96% prediction accuracy.38 As eating and

drinking were not classified in this current study, concurrent behav-

iours, particularly those like eating hay could confound the detection

of weight-shifting. Additional sensors strategically placed could be uti-

lised to detect a movement pattern unique to one behaviour that dis-

criminates it from others. Although multiple sensors would not be

practical in a racing stable, further investigations would be required to

determine if different sensor placement could improve prediction

accuracy. Future work could include classifying more behaviours that

are performed by horses and associated with stress or discomfort

such as eating behaviour or time spent in sternal or lateral recum-

bency, physiological signs, additional placement of IMUs on hindlimbs

to potentially improve detection of weight-shifting behaviour, body

behaviours (including posture, head position, location in the stable,

focus, and interactive behaviour), or integration of other algorithm-

based pain assessment scales such as those used for facial assessment

of pain.

The algorithm showed 54% and 62% sensitivity for left and

right forelimbs, respectively, in correctly predicting observed weight

shifts, however, precision was only 28 and 33%, respectively. Mis-

classified weight shifts predicted by the algorithm were most com-

monly recorded by the observer as standing. This may be due to

the high sensitivity of the IMU system to detect small accelerations

(sampling rate: 500 Hz) compared with the temporal resolution of

the human eye (15–20 Hz).60 It is difficult to determine true sensi-

tivity when the gold standard is subjective and objective tools have

shown higher sensitivity to detect clinical signs before human

diagnosis.61,62

Weight-shifting was also more difficult to classify when compared

with behaviours that occurred over longer periods of time without

change. The high probability of a transition between stepping, stand-

ing and weight-shifting (Table S3) may account for the difficulty in dif-

ferentiating between individual weight shifts as an independent

(primary) movement or as a transitional (secondary) behaviour. These

three behaviours in particular can be both a primary behaviour or sec-

ondary element of another behaviour, and thus in future studies it is

important to distinguish between progressive stepping such as walk-

ing from one locale to another or nonprogressive stepping that is

associated with, for example, weight-shifting or pawing; or pawing

prior to rolling or recumbency. In an attempt to label weight-shifting

where it was deemed a primary behaviour, we excluded weight shifts

1 s before and 1 s after stepping behaviour, although this time period

may not effectively account for all transient detections of weight

shifts (such as before and after pawing). Therefore, it may be neces-

sary to make improvements to the algorithm to increase sensitivity for

weight-shifting as a primary movement, or to label these behaviours

separately in the context of being primary or secondary. Further,

behaviours occurring concurrently to those recorded by the IMU, but

that were not accounted for in this study (e.g., eating while standing

or weight-shifting), may also require separate labelling. Other solu-

tions may include employing more sensitive means of validating

weight shifts that do not rely on visual classification (e.g., force

plates),63 accounting for the behavioural states over a longer time

period preceding and following standing, or investigating alternatives

such as using a single wither sensor to detect mediolateral postural

sway as an indicator of subtle weight shifts in limb pairs as has been

used to identify horses with constrained postural control.42 As well as

investigating associations between occurrence of specific behaviours

with orthopaedic pain in future studies, transition and variability of

behaviour may also be important predictors of pain, warranting fur-

ther investigation.

Our study showed higher sensitivity and precision than studies

using 10-s intervals, except for walking which was comparable, most

likely because walking can be a continuous behaviour and easily aver-

aged over 10 s. We chose to classify behaviour at a time-sampling

interval of 1 s attempting to obtain the highest sensitivity for subtle

movements. Intervals of 1 s were used in dogs to achieve >95% accu-

racy for six of eight behaviours.37 The combination of sampling rate

and time interval used can influence the accuracy of detecting horse

behaviour.55 Eerdekens et al. showed an increase of time interval from

0.6 to 1.2 s resulted in significant improvements to predictive perfor-

mance.55 Robert et al. compared the accuracy of 3-, 5- and 10-s inter-

vals to determine behaviour in cattle and found agreement between

sensor and observation was higher in 3- (98.1%) and 5-s intervals

(97.7%) compared with the use of a 10-s interval (85.4%).44 High vari-

ations in readings recorded over 10-s intervals were thought to

reduce accuracy.

This study had some limitations. Only one observer manually

labelled the defined behaviours from video observation. Future stud-

ies should consider additional observers when labelling data to reduce

errors associated with subjectivity and human perception. However,

previous observational studies have assessed both intra- and inter-

observer reliability with positive results; 97.4% intra-observer reliabil-

ity (agreement) for one observer recording recumbency behaviours in

cattle,53 and no significant difference was found between observa-

tions of horses recumbency recorded by two observers.54 Second, the

accelerometer and gyroscope used in this study had a battery life of

less than 5 h. Although adequate for validation purposes, this would

be a limiting factor for the clinical applicability of its purpose as a 24-h

monitoring system. Further, data were not collected from �02:00 to

10:00, and avoided during active periods in the yard, thus different

patterns of behaviours may be observed during these times. The algo-

rithm was not sensitive enough to accurately identify stepping, and

weight-shifting and pawing, as separate progressive and

8 ANDERSON ET AL.
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nonprogressive movements, respectively. Previous studies showed

accuracy was only reduced by 5% when sampling rate was reduced

from 200 to 25 Hz.55 A reduced sampling rate would improve battery

performance, but this would require further algorithm development.

Investigation of the long-term use of IMU boots may require assess-

ment for practical use. Finally, we used six horses in the development

of the algorithm, and thus increasing the number of horses and types

of behaviours, particularly those behaviours that are more varied and

less prevalent, may improve predictions.

IMUs have the potential to objectively quantify behaviour of

stabled racehorses, and with further validation, may be generalisable

to the wider equestrian industry. Although the association between

each behaviour and musculoskeletal injury is still unknown, the abil-

ity to document behaviour over time may allow the identification of

patterns indicative of pathology. The overall performance of the

algorithm we developed to determine horse activity was reasonable,

but only for prevalent behaviour. Further algorithm development is

required for infrequent behaviours such as pawing, and distinguish-

ing distinct bouts of weight-shifting from those that are due to a

transition to another behaviour.
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