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UWB-IMU-Odometer Fusion Localization
Scheme: Observability Analysis

and Experiments
Boli Zhou , Hongbin Fang , Member, IEEE, and Jian Xu

Abstract—In this article, we present a novel ultrawideband
(UWB)-inertialmeasurement unit (IMU)-odometer fusion local-
ization scheme for nonholonomic ground robots in global
positioning system (GPS)-denied environments. To overcome
the severe drift problems caused by the large acceleration
bias of low-cost IMUs, rather than using the conventional IMU-
only propagation model, a wheel odometer and a three-axis
gyroscope are integrated to propagate the system states. Fur-
thermore, the observability conditions of the proposed sys-
tem with nonholonomic constraints are theoretically derived
by a nonlinear observability analysis. The results reveal the
minimum number of anchors (or leader robots) required for position observability (at least three anchors for UWB-time
of arrival (ToA) measurements and one anchor for both ToA and angle-of-arrival (AOA) measurements). In addition, the
system inputs (linear velocity and angular velocity along different axes) need to be excited for attitude observability.
Simulations and experiments have verified that the proposed approach produces accurate position estimation and
outperforms previous methods. Meanwhile, the position and attitude observability conditions have been verified through
rich experiments, and the degenerated cases where the states cannot be observed are enumerated and tested, making
the scheme complete.

Index Terms— Error state Kalman filter (ESKF), nonholonomic constraints, observability analysis, sensor fusion,
ultrawideband (UWB).

I. INTRODUCTION

ACCURATE estimation of each robot’s pose in a com-
mon frame is crucial for robot applications, such as

collision avoidance and navigation. Conventional positioning
techniques tend to rely on the aid of the global position-
ing system (GPS) outdoors or Wi-Fi positioning systems
and RFID-based localization systems indoors. Although these
techniques have already been widely adopted, they all have
obvious limitations: the GPS provides meter-level accuracy
outdoors and is commonly integrated with inertial naviga-
tion system (INS) [1], but it fails to work indoors due to
sporadic access to satellite signals. Meanwhile, although the
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general Wi-Fi-based [2] or RFID-based indoor positioning
systems [3] are easy to establish and deploy, the positioning
accuracy is low. Therefore, obtaining accurate poses with
bounded errors in GPS-denied environments is a practical
problem that must be addressed. A prevalent solution is a
simultaneous localization and mapping (SLAM) technology,
which leverages onboard sensors, such as light detection and
ranging (LiDAR) or cameras, for scene understanding and
pose determination. Nonetheless, in these circumstances, high
processing capabilities, high memory capacity, and advanced
sensing systems are required. In addition, long-term drift
errors and weak robustness to harsh environments remain
difficult to handle. Compared with these localization schemes,
ultrawideband (UWB) technology can provide centimeter-level
ranging accuracy, with the advantages of low power consump-
tion, high-bandwidth communication, and strong robustness,
making it a priority for building indoor communication and
positioning networks.

Typical research and applications of UWB-only-based robot
localization systems generally use trilateration approaches
[4] that rely on multiple fixed anchors to determine the
robot’s position. In addition, integrating UWB with iner-
tial measurement unit (IMU) is a popular and robust
solution to estimate both the position and the attitude.
You et al. [5] proposed an unscented Kalman filter (UKF)-
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based pose estimation approach for quadrotor UAVs, which is
suitable for nonlinear observations and effectively improves
the estimation accuracy of UWB-IMU nonlinear systems.
Li et al. [6] used the extended Kalman filter (EKF) to fuse
UWB and IMU measurements to estimate the position and
velocity of UAVs as well as the acceleration and angular
velocity biases. In addition, Goudar and Schoellig [7] proposed
a tightly coupled UWB-aided inertial localization scheme
with online spatial–temporal calibration for UAV systems,
which reduces the positioning errors caused by time delay
and extrinsic parameters between sensors. In these algorithm
frameworks, state propagation is performed by integrating
the acceleration and angular velocity of the IMU, and the
operating platforms are typically UAV systems with frequent
sharp motions. However, for ground robots with gentle or even
uniform motions, the actual acceleration and angular velocity
are usually tiny or even close to zero, which makes it difficult
for a low-cost IMU to detect the motion. Not only that the
measurement noise and biases of low-cost IMUs, especially
from acceleration, will lead to huge drift errors and fluctua-
tions. Therefore, high-precision IMUs are often required for
wheeled robot positioning in the UWB-IMU fusion. Li et al.
[8] proposed an accurate 6-DOF positioning algorithm for
underground coal mine robots, where the error state Kalman
filter (ESKF) was used to fuse UWB and high-precision IMU
measurements, with a positioning accuracy close to that of the
advanced LiDAR odometry. In addition to methods to improve
the accuracy of IMU itself, velocity observation is also an
effective way to constrain drifts. Cao et al. [9] proposed a
speed estimator that solves the velocity drift problem in low-
cost IMU and UWB fusion by continuously monitoring UWB
range variations instead of integrating the acceleration data.
This method can obtain accurate 2-D pose estimation for a
low-cost IMU-based wheeled robot; however, it is performed
under the assumption that the robot is moving at a constant
speed. Wang and Li [10] proposed a pedestrian positioning
method by fusing UWB and IMU data based on particle
filtering, in which the zero-velocity update (ZUPT) method
was used to detect the zero-velocity state and constrain the
cumulative errors. Brossard et al. [11] achieved accurate pure
inertial navigation of a car under long-range trajectories by
detecting the zero-speed state of the IMU through a recurrent
neural network combined with the ZUPT method. What these
methods have in common is that they are all effective in
estimating or detecting the velocity. Note that using a wheel
odometer is the most direct and effective way to observe the
velocity and bound the drift of a ground robot with no need
to design a speed estimator or employ the ZUPT method.
Therefore, to make the low-cost IMU positioning scheme
feasible, noisy acceleration measurements are excluded, and
one-axis linear velocity from the wheel odometer and three-
axis angular velocities from the gyroscope are combined to
propagate the 3-D motion.

In addition, observability is a necessary condition for the
convergence of state variables to unbiased estimates of the true
system states [12]. To study the observability, the commonly
used methods include a linear matrix rank test for linear
systems and a differential geometry approach that is preferable
for nonlinear systems. Previous studies have examined the

observability properties of multisensor fusion systems, such
as camera-IMU systems [12], UWB-IMU systems [13], and
GPS-IMU systems [14]. In particular, the observability of
UWB in combination with inertial sensors or wheel odometers
has attracted significant attention. Goudar and Schoellig [7]
conducted an observability analysis of a tightly coupled UWB-
IMU system with extrinsic parameters. The object of this
study is a moving target, such as a human or a drone, which
can move and rotate along all three axes of the body, rather
than a general ground robot with nonholonomic constraints,
which often cannot move purely laterally or upward perpen-
dicular to the ground. Therefore, sufficient motion excitation
can be provided for the IMU-only propagation model with
acceleration and angular velocity as system inputs in [7].
In general, different models (e.g., different system inputs)
will lead to different observability results. Araki et al. [15]
investigated the observability of relative poses between multi-
ple robots equipped with UWB and wheel odometers, where
only 2-D models were considered, and absolute poses were
not included in the states. Absolute information, such as
anchors, is beneficial in making absolute poses observable
[16]. Fontanelli et al. [17] showed that in 2-D space, when
two UWB anchors are used and the robot does not move in a
straight line, the system is globally observable. However, the
characteristics of wheel odometers indicate that the motion
model is 2-D, so UWB anchors generally need to be arranged
in the same horizontal plane as the robots.

In this article, the object of our analysis is the ground robots
with nonholonomic constraints. Since the IMU-odometer
motion model used is a 3-D model with nonholonomic con-
straints, we investigate the observability of the UWB-IMU-
odometer (UIO) system based on this 3-D model. In addition,
the observability of the absolute poses is analyzed since the
absolute information is known and used, such as the positions
of the anchors or the poses of moving leader robots (LRs).
Here, LRs refer to robots that can obtain accurate global poses
and play the role of anchors. The main objective of this study is
to propose a novel approach based on UIO fusion for resource-
constrained ground robots. Meanwhile, observability analyses
are carried out to deepen the insight into the proposed UIO
system. The specific contributions achieved in this study are
given as follows.

1) A novel multisensor fusion localization scheme combin-
ing UWB, wheel odometers, and IMUs is proposed to
achieve accurate global localization and avoid drifts and
fluctuation caused by integrating low-grade accelerom-
eter data.

2) The observability conditions for the proposed
UIO-fusion system are derived theoretically, which
suggests that at least three noncollinear anchors are
required to make the robot’s position observable.
In addition, the linear velocity along the body x-axis
and the angular velocity along the body z-axis are
excited to ensure the attitude observability. Special cases
in which the states are unobservable are enumerated.

3) UWB-angle-of-arrival (AOA) protocol is incorporated
into the system, and the observability conditions for
position and attitude are derived from theoretical
analyses; the incorporation of AoA reduces the observ-
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ability conditions, allowing robot localization with only
one anchor.

4) Through both simulations and experiments, the effec-
tiveness and superiority of the proposed scheme over the
conventional techniques are demonstrated and validated.
The derived observability conditions are fully verified by
simulations and practical tests.

II. PROBLEM STATEMENT

Traditional UWB-IMU fusion [5], [6], [8], [9], [10], [13]
techniques face the following problems: 1) the large drifts
associated with the fusion of low-cost IMU and UWB and
2) the observability of the UIO system has not yet been
analyzed. This research addresses these challenges separately.
First, a wheel odometer is used to avoid imprecise velocity
estimation, enabling accurate pose estimation based on low-
grade IMUs. Compared to the conventional INS formulated
in [18], acceleration data from the IMUs are excluded, and
only the readings from the gyroscopes and wheel encoders
are utilized to quantify the 3-D motion. Second, observability
analyses based on a differential geometry approach [19] are
carried out to deepen the insight into the proposed system
with different measurement models (time of arrival (ToA)/both
ToA and AoA). Meanwhile, a geometric interpretation of
observability is provided. The advantages of the proposed
method and the observability theorems of the system are
verified by rich experiments, in which each ground robot runs
a separate state estimator based on the ESKF by fusing wheel
odometer, IMU, and UWB data.

III. MODELS

In this section, the notations are first explained; then, the
system states to be estimated are presented; and the sensor
measurements, including the wheel odometer, the gyroscope,
and the UWB, are modeled.

A. Notations
Without loss of generality, an “LR” is used to act as a static

or a moving anchor, and its absolute information is known. The
other robots are called “follower robots” (FRs). We consider a
team of N robots {RN }, consisting of Nl LRs {LRNl } and N f

FRs {FRN f }. The global frame and body frame of the robot
are denoted by {G} and {B}, respectively. For convenience, the
frame {B} coincides with the IMU frame, with the origin at
the robot center, the x-axis pointing in the forward direction
of the robot, and the z-axis pointing upward.

For two arbitrary frames {U} and {V}, we adopt U
V p and

U
V q to, respectively, describe the position and quaternion
orientation of the frame {V} with respect to the frame {U}. U

V R
is the corresponding rotation matrix of U

V q. For an arbitrary
variable a, we use at , am , â, and ã to, respectively, denote the
true, measured, estimated, and error value of a. Furthermore,
the following two operators are defined:

� (ω)=
�

0 −ωT

ω − �ω�×

�
,

�
q
�

l = qwI +
�

0 −qT
v

qv �qv�×

�
(1)

where q = [qw qT
v ]T is a Hamilton quaternion and [·]l is

the left-quaternion-product matrix operator. For an arbitrary
3-D vector ω, �·�× is a skew-symmetric operator

�ω�× =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ , ω =

⎡
⎣ ωx

ωy

ωz

⎤
⎦ . (2)

B. UIO System
1) Propagation Model: A UIO system is specifically

designed for one FR equipped with the wheel odometer.
Excluding accelerometer data from a low-cost IMU, the three-
axis gyroscope and the one-axis odometer constitute a reduced
inertial-odometer system, with state variables parameterized
by

x (t) =



G
B pT (t) , G

B qT (t) , bT
g (t)

�T ∈ R
10 (3)

where bg is the time-varying gyroscope bias. For the sake of
brevity, time t is omitted in the following. Measurements of
the gyroscope wm and the odometer vm are modeled as

wm = wt + bg + ng, vm = vt + nv (4)

where nv and ng are zero-mean white Gaussian noises [18],
[20]. Furthermore, after modifications to the pure IMU prop-
agation model [18], the system dynamics are modeled as

G
B ṗ = G

B R (vm − nv )

G
B q̇ = 1

2
�

�
wm − bg − ng

 G
B q

ḃg = nwg (5)

where nwg is the zero-mean white Gaussian noise, i.e., the
gyro bias is modeled as a random walk process. In this article,
we focus on generic nonholonomic ground robots, and thus,
the body linear velocity and the noise yield

vt = [vx , 0, 0]T , nv = [nxv , 0, 0]T . (6)

2) Measurement Model With ToA: A UWB-distance mea-
surement between an FR and LRi is

d = �G
Li

p − G
B p�2 + ndi , i = 1, . . . , s (7)

where G
Li

p represents the position of the i th LR in the global
frame, which is known by FRs via communication. The
measurement error ndi is assumed to be zero-mean Gaussian
noise, || · ||2 represents the Euclidean norm, and s denotes the
number of LRs that are in the measurement range of the FR.

3) Measurement Model With Both ToA and AoA: AoA can be
measured by calculating the phase difference of arrival through
the UWB antenna array. Combined with the ToA protocol,
distance, elevation, and azimuth angle can be measured by
state-of-the-art hardware [21]. Furthermore, the position of the
FR in the body frame of the LR (i.e., Li

B p) can be obtained.
The measurement model is

Li
B p = Li

G R
�

G
B p − G

Li
p
�

+ nai , i = 1, . . . , s (8)

where nai are assumed to be the Gaussian noise [22].
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IV. SYSTEM WITH TOA MODEL

A. Observability Analysis
Observability is a necessary condition for the convergence

of state variables, based on filter methods, to unbiased esti-
mates of the true system states. In this study, we adopt a
differential geometry approach [19], which is preferred for
nonlinear systems, to derive the conditions under which the
system is locally weakly observable.

Specifically, we treat the state space as a smooth manifold,
which is a linear function of control input vectors. It is
noted that the system is aimed at the ground robots with
nonholonomic constraints, and only the forward velocity vx

from the wheel odometer and the 3-D angular velocity wm

from IMU are used as inputs. Since the noises do not affect
the observability [7], [12], the Gaussian noise is removed from
the system dynamics, and (5) is rearranged as a control affine
form

ẋ =
⎡
⎢⎣

03×1

−1

2
�

�
G
B q


bg

03×1

⎤
⎥⎦

� �� �
f0

+
�

G
B R[:,1]
07×1

�
� �� �

f1

vx +
⎡
⎢⎣

03×3
1

2
�

�
G
B q


03×3

⎤
⎥⎦

� �� �
f2

wm

(9)

where �(G
B q) = [G

B q]l[:,2:4], with the subscript [·][:, i: j ] denot-
ing the i th to the j th columns of a matrix, f0 is the drift
vector field, and fk(k = 1, 2) defines a smooth vector field
on the manifold. We consider measurements using three LRs.
For ease of calculation, we use zdi to reexpress the distance
measurement

zdi = hdi (x) = 1

2

��G
Li

p − G
B p

��2
2, hT

d (x)

= [hd1 (x) , hd2 (x) , hd3 (x)] (10)

where hd(x) denotes the vector of measurement function.
According to the definition, the system is locally weakly

observable if the observation matrix, stacked by gradients of
Lie derivatives, has full rank [19]. First, the zeroth-order Lie
derivative of hd(x) is the measurement vector itself, i.e.,

L0hd (x) = hd (x) (11)

and the gradient yields

∇L0hd =


�pT, 03×7

�
, �p = �

�p1,�p2,�p3
�

(12)

where �pi � G
B p − G

Li
p(i = 1, 2, 3), and the subscript Li

denotes the i th LR’s body frame. We set e1 = [1, 0, 0]T, e2 =
[0, 1, 0]T, and e3 = [0, 0, 1]T. The first-order Lie derivatives
of hd about fi are L1

fi
hd (x) = ∇L0hd · fi (i = 0, 1, 2), and we

have

L1
f0

hd (x) = L1
f2

hd (x) = 03×1, L1
f1

hd (x) = �pTG
B Re1. (13)

The nonzero gradients are

∇L1
f1

hd =
⎡
⎣ eT

1
G
B RT −2eT

1 F0
1 01×3

eT
1

G
B RT −2eT

1 F0
2 01×3

eT
1

G
B RT −2eT

1 F0
3 01×3

⎤
⎦ (14)

where F0
i � ([qpi ]l�(G

B q))T, qpi � [0, (G
B p − G

Li
p)T].

Furthermore, calculating the second-order Lie derivative of
hd about fi via L2

f1fi
hd(x) = ∇L1

f1
hd · fi (i = 0, 1, 2) yields

L2
f1f0

hd (x) =

⎡
⎢⎢⎢⎣

eT
1 F0

1�
�

G
B q


bg

eT
1 F0

2�
�

G
B q


bg

eT
1 F0

3�
�

G
B q


bg

⎤
⎥⎥⎥⎦ (15)

L2
f1f1

hd (x) = [1, . . . , 1]T (16)

L2
f1f2

hd (x) =

⎡
⎢⎢⎢⎣

−eT
1 F0

1�
�

G
B q


−eT

1 F0
2�

�
G
B q


−eT

1 F0
3�

�
G
B q



⎤
⎥⎥⎥⎦ . (17)

The nonzero gradients are

∇L2
f1f0

hd =

⎡
⎢⎢⎣

eT
1 F1 −2eT

1 F2
1 eT

1 F3
1

eT
1 F1 −2eT

1 F2
2 eT

1 F3
2

eT
1 F1 −2eT

1 F2
3 eT

1 F3
3

⎤
⎥⎥⎦ (18)

∇L2
f1f2

hd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 03×4 03×3

−eT
3

G
B RT 2eT

3 F0
1 01×3

−eT
3

G
B RT 2eT

3 F0
2 01×3

−eT
3

G
B RT 2eT

3 F0
3 01×3

eT
2

G
B RT −2eT

2 F0
1 01×3

eT
2

G
B RT −2eT

2 F0
2 01×3

eT
2

G
B RT −2eT

2 F0
3 01×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

F1 �
�

bg
�
×

G
B RT, F3

i � −
�

G
B RT�pi

�
×

F2
i �

�
bg

�
×

��
qpi

�
l �

�
G
B q

��T
. (20)

Finally, the third-order Lie derivative of hd with respect to
f0 and the corresponding gradient are computed as follows:

L3
f1f0f0

hdi (x) = ∇L2
f1f0

hd · f0 =

⎡
⎢⎢⎢⎢⎣

eT
1 F2

1�
�

G
B q


bg

eT
1 F2

2�
�

G
B q


bg

eT
1 F2

3�
�

G
B q


bg

⎤
⎥⎥⎥⎥⎦

∇L3
f1f0f0

hd =

⎡
⎢⎢⎢⎣

∇L3
f1f0f0

hd1 (x)

∇L3
f1f0f0

hd2 (x)

∇L3
f1f0f0

hd3 (x)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

eT
1 F4 −2eT

1 F5
1 eT

1 F6
1

eT
1 F4 −2eT

1 F5
2 eT

1 F6
2

eT
1 F4 −2eT

1 F5
3 eT

1 F6
3

⎤
⎥⎥⎥⎦ (21)

where

F4 �
�

bg
�2
×

G
B RT, F5

i �
�

bg
�2
×

��
qpi

�
l �

�
G
B q

��T

F6
i � −

�
G
B RT�pi

�
×

�
bg

�
×+2

��
G
B RT�pi

�
× bg

�
×

. (22)
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Fig. 1. Geometrical interpretation of the observability for positions.
(a) Case of three noncollinear LRs. (b) Case of three collinear LRs.

The gradients of other third-order and higher order Lie deriv-
atives are linearly dependent on the gradients of low-order Lie
derivatives. Hence, by stacking nonzero and linear independent
gradient matrices by row, the observability matrix M can be
constructed, and we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇L0hd

∇L1
f1

hd

∇L2
f1f0

hd

∇L2
f1f2

hd

∇L3
f1f0f0

hd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�pT 03×4 03×3

G
B RT −2F0

1 03×3

G
B RT −2F0

2 03×3

G
B RT −2F0

3 03×3

eT
1 F1 −2eT

1 F2
1 eT

1 F3
1

eT
1 F1 −2eT

1 F2
2 eT

1 F3
2

eT
1 F1 −2eT

1 F2
3 eT

1 F3
3

eT
1 F4 −2eT

1 F5
1 eT

1 F6
1

eT
1 F4 −2eT

1 F5
2 eT

1 F6
2

eT
1 F4 −2eT

1 F5
3 eT

1 F6
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

where rank(M) = rank(M�) and M� is obtained via elementary
transformations on M (rearranging ∇L1

f1
hd and ∇L2

f1f2
hd).

In the presence of three LRs, the observability conditions
for systems (9) and (10) are summarized in Theorem 1.

Theorem 1: The sufficient conditions for the observability
matrix M [i.e., (23)] to be full column rank are: 1) at least
three noncollinear LRs are available; 2) FR is noncoplanar
with the three noncollinear LRs; 3) the linear velocity vx and
angular velocities ωz along the body are excited; and 4) the
angular velocity bias bgx �= 0, and bgy �= 0 or bgz �= 0.

Proof: A detailed mathematical proof of conditions can
be found in Appendix A.

The observability of the system is also interpreted from a
geometric point of view. When there exists one LR and the
distance between the LR and the FR is measured, it is possible
for the FR to be located anywhere on a sphere; when two
LRs exist, it is possible for the FR to be located anywhere
on a circle; when there are three noncollinear LRs, the FR
is located at one of the two discontinuous points (e.g., point
A or A�) or one point (e.g., point B that is coplanar with
the LRs), as shown in Fig. 1(a). Hence, in the case of one or
two LRs, the system is neither globally observable nor locally
weakly observable for the robot’s position because a point on
a sphere or circle is indistinguishable from other points in

the global manifold [19]. For the case of three noncollinear
LRs, the system is only locally weakly observable for positions
because only distinguishability in its neighbors is considered
[12]. When three LRs are collinear, similar to the case with
two LRs, the FR is still located on a circle [Fig. 1(b)] such
that the positions of the system are unobservable.

In addition, when vx �= 0 and ωz �= 0, significant motions
can be produced and render the 3-D orientation observable.
This is confirmed by detailed simulations and experiments.
In addition, if conditions 1)–4) are all satisfied, the full rank
of the observation matrix has shown that the angular velocity
bias bg is observable as shown in [13].

In particular, for the case that the FR is coplanar with
the three noncollinear LRs, the FR locates at the only point
(e.g., point B), as shown in Fig. 1(a), suggesting that the sys-
tem is observable for positions according to the locally weakly
observable definition [19]. In addition, mobile strategies of
LRs are worthy of future study for condition 1).

B. State Estimator Based on ESKF
Based on the above observability analysis, the spatial con-

figuration of the anchors and the excitations for the robot
are determined, making the states able to be estimated with
bounded errors. Although the traditional trilateration method
can determine the position of the robot using only UWB,
the sensors fusion strategy is still adopted because UWB
measurements are prone to interference from the external
environment, such as multipath effects [23], which may lead
to positioning failures. Fusing odometry data from IMUs or
wheel odometers can greatly reduce positioning errors [8],
[20]. In addition, traditional trilateration methods rely on fixed
anchors, while our approach can be independent of them.

To this end, an ESKF framework is employed to fuse
the measurements from the reduced inertial-odometer system
and the UWB for state estimation of the nonlinear system.
Specifically, the true states xt include the estimated states x̂
and error states x̃. The dynamics of the estimated states are

G
B

˙̂p = G
B R̂vm

G
B

˙̂q = 1

2
�

�
wm − bg

 G
B q̂

˙̂bg = 0. (24)

The attitude error G θ̃ follows the definition of global angular
error [18]:

G
B Rt ≈

�
I +

�
G θ̃

�
×

�
G
B R̂. (25)

Hence, the dynamics of error states can be derived as

G
B

˙̃p = −
�

G
B R̂vm

�
×

G θ̃−G
B R̂nv

G ˙̃
θ = −G

B R̂b̃g − G
B R̂ng

˙̃bg = nwg . (26)

The measurement Jacobian matrix corresponding to (7) is

Hdi =
⎡
⎣

�
G
B p̂ − G

Li p
T����

G
B p̂ − G

Li p
T

���
2

, 01×6

⎤
⎦ . (27)
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Fig. 2. System architecture from the FRi’s perspective.

The discrete-time error-state transition matrix of (26) is
obtained by the Euler numerical integration [18]. The remain-
ing standard steps are omitted for brevity [18].

The architecture of the proposed UIO system is shown from
the FRi ’s perspective in Fig. 2. The odometer and gyroscope
readings from the previous and the current moments are
weighted and smoothed. UWB outliers are removed twice:
first by preset thresholds and, then, Mahalanobis distance [24]
is calculated and compared with the threshold of Mahalanobis
distance to choose whether to carry out the filter update steps.
In addition, the global frame {G} is established and coupled to
the initial body frame {B} of FR at first and the UWB frame
is calibrated artificially to ensure precise initial alignments.

V. SYSTEM WITH BOTH TOA AND AOA MODEL

A. Observability Analysis
The observability of the proposed UIO system with both

ToA and AoA measurements is also studied further. We con-
sider one LR, and the corresponding measurement model is
rewritten as

ha (x) = L
GR

�
G
B p − G

L p
�

. (28)

The detailed process of the observability analysis is similar to
that in Section IV-A and is omitted here. By deriving the Lie
derivatives and their gradients, we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇L0ha

∇L1
f1

ha

∇L2
f1f0

ha

∇L2
f1f1

ha

∇L2
f1f2

ha

∇L3
f1f0f0

ha

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M� =

⎡
⎢⎢⎢⎢⎢⎣

G
L RT 03×4 03×3

09×3 −2F7 09×3

03×3 −2F8 F9

03×3 −2F10 F11

⎤
⎥⎥⎥⎥⎥⎦

(29)

where rank(M) = rank(M�) and M� is obtained via elementary
transformations on the observation matrix M. In (29),

F7 =
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Defining ri = eT
i

G
L RT, qri � [0, ri ], we have
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(31)

In the presence of one LR, the observability conditions for
systems (9) and (28) are summarized in Theorem 2.

Theorem 2: The sufficient conditions for the observability
matrix M [i.e., (29)] to be full column rank are: 1) at least one
LR is available; 2) the linear velocity vx and angular velocities
ωz along the body are excited; and 3) the angular velocity bias
bgx �= 0, and bgy �= 0 or bgz �= 0.

Proof: A detailed mathematical proof can be found in
Appendix B.

Furthermore, we analyze the observability of the system
from a geometric point of view. When both ToA and AoA
measurements (i.e., distance, elevation, and azimuth) from
one LR are obtained, the FR’s position can be uniquely
determined from the output (distinguished from points in
the neighborhood), suggesting that the position is observ-
able. Similarly, vx and ωz need to be excited to render
the 3-D orientation observable. In the same way, if condi-
tions 1)–3) are all satisfied, the full rank of the observa-
tion matrix has shown that the angular velocity bias bg is
observable.

B. State Estimator Based on ESKF
Although both ToA and AoA measurements can obtain the

position of FR in the body frame of LR and then directly
obtain the position of FR in the global frame according to the
pose of LR, the UWB measurements may not be completely
reliable and may be influenced by multipath effects [23].
Fusing the odometry supplied by IMUs and wheel odometers
will reduce positioning errors caused by interfered UWB
measurements.

The dynamics of the estimated and error states are the same
as (24)–(26). The measurement Jacobian matrix corresponding
to (8) is

Ha = �
L
GR 03×6

�
. (32)

In practice, the UWB modules with antenna arrays are
installed on an LR, and an FR can get the AoA measurement
from the neighbor LR. The orientation of the LR, i.e., L

GR,
is known and transmitted to the FR. In addition, the measure-
ment is first obtained in the UWB-AoA local frame, rather
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Fig. 3. Estimated trajectories of FR1 based on different fusion
approaches when UWB-distances between three LRs and FR1 are
measured. For reference, the GT is also provided.

than the LR body frame. Hence, the transformation between
the body frame of the LR and the UWB-AoA local frame is
calibrated manually in advance.

VI. SIMULATIONS

The proposed UIO fusion approach is evaluated in this
section via MATLAB simulations. Specifically, two scenarios,
i.e., UWB-distance measurements and both UWB-distance and
AoA measurements, are considered. In addition, the derived
local weak observability conditions are verified. The parame-
ters used for simulations are based on the actual parameters
of a low-cost IMU [28], a UWB module [29], and a wheel
encoder.

A. UIO Fusion Algorithm
1) Distance Observations: Four robots, i.e., LR1, LR2, LR3,

and FR1, are set up and can measure and communicate with
each other. The ground truth (GT) and estimated trajecto-
ries of FR1 are shown in Fig. 3. It reveals that the pro-
posed UIO-ESKF approach can obtain more accurate position
estimations compared to the traditional UWB-IMU fusion
(UI-ESKF) approach and the dead reckoning based on the
IMU-odometer method. In particular, due to the large noises
of the low-cost accelerometer, the conventional UI-ESKF
approach is hard to track the true trajectory accurately, while
our proposed UIO-ESKF approach succeeds, which shows the
advantage of replacing the low-grade accelerometer with a
wheel odometer. Table I shows the mean root-mean-square
error (RMSE) of pose estimations based on the three methods
through 50 Monte Carlo simulations.

2) Distance and AoA Observations: In this scenario, only
one LR and FR1 are set. FR’s position and attitude are
observable when distance and AoA measurements are used,
and vx and ωz are excited according to the theoretical analysis
in Section V-A. The trajectory of FR1 is estimated based
on different approaches (i.e., UIO-ESKF with both distance

TABLE I
POSITION AND ORIENTATION RMSE BETWEEN ESTIMATED STATES

AND TRUE STATES BASED ON THE IMU-ODOMETER METHOD, THE

UI-ESKF METHOD, AND THE UIO-ESKF METHOD

Fig. 4. Estimated trajectories of FR1 based on different fusion
approaches when the distance and AoA between one LR and FR1 are
measured. For reference, the GT is also provided.

TABLE II
POSITION AND ORIENTATION RMSE BETWEEN ESTIMATED STATES

AND TRUE STATES BASED ON THE UIO-ESKF METHOD UNDER

DIFFERENT EXPERIMENTAL CONDITIONS WHEN

DISTANCE MEASUREMENTS ARE USED

and AoA measurements, UIO-ESKF with the distance mea-
surement, and the IMU-odometer method). The simulation
results are shown in Fig. 4, which suggests that by using both
distance and AoA measurements, the proposed UIO-ESKF
approach can acquire the most accurate position estimation
with bounded drift errors. On the contrary, with only one LR
and the corresponding distance measurement, the performance
of the UIO-ESKF approach is unsatisfactory; and the error
based on the IMU-odometer method inevitably diverges. The
mean RMSE of pose estimations based on the three methods
is also listed in Table I.
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Fig. 5. Simulated and estimated trajectories based on the UIO-ESKF
approach under different cases with UWB-distance measurements for
verifying the position observability. (a) Three collinear anchors. (b) Three
noncollinear anchors are coplanar with the robot. (c) Only two anchors.
(d) All observability conditions are all satisfied.

B. Verification of Observability Conditions
To verify the position observability, estimated trajectories

under different cases are shown in Fig. 5. Each case in
Fig. 5(a)–(c) only violates one observability condition in The-
orem 1. Whether there are two anchors or three collinear
anchors, the position estimations are both unobservable and
drifting errors exist. In particular, when the anchors are copla-
nar with the robot, the errors are mainly generated in the z-axis
[seen in Figs. 5(b) and 6(f)]. However, when all observability
conditions are satisfied, the position estimation can converge
to the true one, which effectively demonstrates the position
observability (see Table II). As for the position observability
under both distance and AoA measurements, it is obvious since
the measurements (i.e., distance, elevation, and azimuth angle)
can uniquely determine the spatial position, which has been
verified in Fig. 4.

Furthermore, we focus on the observability of the
3-D orientation of the proposed UIO system and verify it
by simulating various degradation cases that fail to sat-
isfy the observability conditions. The attitude errors along
with 3σ (σ is the standard deviation) bounds are plotted
in Fig. 6(a)–(e) under different cases through 50 Monte Carlo
simulations. Although the error of each Monte Carlo simula-
tion may diverge with time, the error may be positive or neg-
ative, and the mean error is generally around zero, which has
little value for observability judgment. However, the standard
deviation σ calculates the square root of the error, so it can
be seen whether the error converges with time and then judge
whether the state is observable. As shown in Fig. 6(a) and (b),
when all conditions in theorem 1 are satisfied, especially vx �=
0, ωz �= 0, the 3-D orientation is observable whether the robot
moves on a flat surface or an uneven surface, i.e., whether ωx

and ωy are zero. It is noted that the observability of roll angle

is slightly weaker than that of pitch and yaw angle. This may
be due to the fact that the axis vector corresponding to the roll
angle coincides with the forward direction, that is, the direction
of the linear velocity vx , which means that only the change
of the roll angle has less influence on the change of the
robot’s position compared with the change of pitch and yaw
angles. Fig. 6(c) shows that the roll, pitch, and yaw angles are
all unobservable when the robot is static. This makes sense,
because when the robot is at rest, the attitude is obtained
by integrating the angular velocity and cannot be corrected
indirectly by UWB measurements. Fig. 6(d) shows that the
roll angle is unobservable when the robot moves in linear
motion, which is intuitive because the change of roll angle
under linear motion will not be reflected by UWB-distance
measurements. Similarly, UWB-distance measurements also
cannot reflect the yaw angle of the robot when it pirouettes,
as shown in Fig. 6(e). In summary, the attitude observability
is verified by the variations of the standard deviation trend in
the above cases, which indicates that the linear velocity vx

and angular velocity ωz need to be excited simultaneously to
make the 3-D orientation observable (see Table II).

As for the attitude observability under both distance and
AoA measurements, through simulation, we find that the
tendency of the standard deviation is consistent with those
under distance measurements, which is essentially due to
the same propagation model. Considering limited space, the
attitude observability analysis under both distance and AoA
measurements is omitted.

VII. EXPERIMENTS

Real-world experiments are carried out based on com-
mercial wheeled mobile robots, called WHEELTEC. Each
robot is equipped with a Raspberry Pi, motors with encoders,
a controller with an STM32F103 chip, a low-cost MPU9250-
IMU [28], and a Nooploop UWB module [29]. The IMU
and the encoders provide measurements at 50 Hz, and the
UWB module provides distance and AoA measurements and
communicates at 200 Hz. The noise density and random walk
biases of the IMU are initialized according to the practical
product manual. The UWB module claims a precision of
±5 cm and ±5◦. In the experiment, each robot is remotely
controlled by a handle. A differential-drive model is set in
the control algorithm so that the robot loses its purely lat-
eral motion capability, thus satisfying the nonholonomic con-
straints. The experiments are conducted in a room, equipped
with a motion capture system called Vicon that provides the
GT. Fig. 7 shows the photographs of the robot platform, the
uneven ground on which the robot moves, and the experiment
site. The influence of sensors’ extrinsic parameters on the
positioning error is small and therefore ignored [8], [16]. The
experiments are carried out from two aspects: one is to verify
the superiority of the proposed UIO-ESKF method compared
with the traditional UI-ESKF method and the other is to verify
the observability conditions of the proposed UIO system.

A. UIO Fusion Algorithm
1) Distance Observations: Three noncollinear anchors were

fixed in the indoor environment, and their positions were
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Fig. 6. Attitude or position errors along with 3σ bounds when three anchors are present and UWB-distance measurements are used. (a) Robot
moves on the uneven surface, and vx �= 0 and ωz �= 0. (b) Robot moves in a planar circular motion, and vx �= 0 and ωz �= 0. (c) Robot is static,
i.e., vx = 0 and ωz = 0. (d) Robot moves in the linear motion, i.e., vx �= 0 and ωz = 0. (e) Robot rotates in place, i.e., vx = 0 and ωz �= 0. (f) Robot
moves on the uneven surface, and vx �= 0 and ωz �= 0, but it is coplanar with three LRs.

precisely calibrated to be (−1.94, 0.42, 1.26) m, (1.69, 2.03,
1.26) m, and (1.81, −1.22, 1.26) m. Fig. 8 shows the overview
of the six tests, three of which were performed on smooth
ground [Fig. 8(a)–(c)] and the other three were performed on
the uneven ground full of stones [Fig. 8(d) and (e)], as shown
in Fig. 7(b). Specifically, the true trajectory from Vicon and
the estimated trajectories based on both the proposed UIO-
ESKF approach and the conventional UI-ESKF approach are
displayed and compared. In terms of the UI-ESKF approach,
the IMU-only propagation model [5], [18], [25] is used, that
is, both acceleration and angular velocity information are
adopted, and UWB measurements are tightly coupled with
IMU measurements. Obviously, due to the large noises of the
low-cost accelerometer, the estimated trajectory based on the
conventional UI-ESKF approach fluctuates significantly, which
is more terrible on the bumpy ground, while the estimated
trajectory based on our proposed method is smoother and
agrees better with the GT provided. Essentially, the reason
for the great jitter of the trajectory based on the UI-ESKF
method is that there is no observation of the velocity although
the robot’s position was constrained by the UWB measure-
ments. In this way, direct integration of noisy acceleration
data will produce unstable position jitter, especially during

sharp motion. In addition, it was found in the experiment that
the fluctuation was particularly prominent when the velocity
changed greatly. The absolute trajectory error (ATE) [26] is
used to calculate and evaluate the accuracy of the positioning
methods. The ATE for two approaches under different trajec-
tories in 3-D space is shown in Table III. The results reveal
that the average ATE of six field tests, i.e., trajectories (a)–(f),
based on the proposed UIO-ESKF approach is 0.09 m, while
the average ATE based on the UI-ESKF approach is 0.92 m,
which indicates the outstanding performance of the UIO fusion
approach compared with the UWB-IMU fusion.

2) Distance and AoA Observations: By incorporating the
AoA measurement, only one anchor is required to assist the
FR. In this experiment, due to the limitations of the com-
mercial UWB hardware used, the AoA measurement can only
contain distance and azimuth angle, so LR and FR are set to
move in the same plane such that we assume that the measured
elevation angle is zero. The anchor with UWB antenna arrays
is located in (−2.6, 0, 0.34) m. Fig. 9(a)–(d) shows that after
fusing both distance and AoA measurements, the proposed
UIO-ESKF approach performed satisfactorily in terms of the
drift error compared to the UIO-ESKF approach with distance
measurements, validating the observability analysis results that
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Fig. 7. (a) Wheeled robot platform used in experiments. (b) Uneven
ground surface on which the robot moves. (c) Experiment site equipped
with a motion capture system.

TABLE III
ATE OF VARIOUS TRAJECTORIES BASED ON THE UIO-ESKF

APPROACH AND THE UI-ESKF APPROACH IN 3-D SPACE

WHEN UWB-DISTANCE MEASUREMENTS ARE

USED IN THE FIELD TESTS

TABLE IV
ATE OF THE VARIOUS TRAJECTORIES IN 3-D SPACE BASED ON THE

UIO-ESKF APPROACH WITH DISTANCE AND AOA MEASUREMENTS

AND THE UIO-ESKF APPROACH WITH DISTANCE MEASUREMENTS

only one LR can guarantee accurate position estimation with
bounded errors. The ATE based on the two approaches for the
trajectories in Fig. 9 is listed in Table IV. The incorporation
of AoA greatly reduced the estimation error, and the average
estimation accuracy is 0.133 m. In summary, although the mea-
surement accuracy of the AoA angle is slightly worse than that
of the distances in practice, which is reflected in more noise
and fluctuation in the green line in Fig. 9, the number of the

Fig. 8. Estimated trajectories based on different approaches when
UWB-distance measurements were used. (a)–(c) Robot moved on the
2-D plane. (d)–(f) Robot moved on the uneven surface. For reference,
the GT is also provided by Vicon.

anchors is reduced, and the positioning accuracy after fusion
is close to that using three-anchor distance measurements.

B. Verification of Observability Conditions
The accurate position estimations of the robot have verified

the position observability in Section VII-A. For UWB-distance
observations, three noncollinear anchors make the position
to be observable. For both distance and AoA observations,
one anchor ensures that the position estimation converges to
the true values. For degradation cases where the position is
unobservable, the estimated trajectories based on the UIO
fusion approach in Fig. 10(a) and (b) indicate that the robot’s
position cannot be determined by using three collinear anchors
or only two anchors, which is consistent with the theoretical
analysis and the simulation. Their corresponding ATEs are
0.353 m [Fig. 10(a)] and 0.196 m [Fig. 10(b)]. In addition,
when the robot is coplanar with three noncollinear anchors,
the estimated trajectory is shown in Fig. 10(c) and the position
errors along the x-, y-, and z-axes are shown in Fig. 11(b). For
comparisons, the position errors of the trajectory in Fig. 8(a)
based on the UIO-ESKF approach are also given in Fig. 11(a).
At this time, since the UWB measurements had little infor-
mation about the z-position and the geometric dilution of
precision (GDOP) was poor, large errors along the z-axis are
generated for the coplanar case, as shown in Fig. 11(b). The
corresponding ATE of trajectory in Fig. 10(c) was 0.185 m.
Furthermore, the attitude observability is analyzed and verified
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Fig. 9. Estimated trajectories based on different approaches and when
both distance and AoA measurements were used during the experi-
ments. For each subgraph, the upper graph represents the estimated
trajectories, and the second and third are, respectively, the distance and
AoA measurements. For reference, the GT is also provided by Vicon.

Fig. 10. Estimated trajectories based on the proposed UIO-ESKF
approach when UWB-distance measurements were used. Blue lines
represent the true trajectory and orange lines represent the estimated
trajectory. (a) Three anchors are collinear. (b) Only two anchors are used.
(c) Robot is coplanar with three noncollinear anchors.

in the following, and three degradation cases are tested. Since
both the linear velocity vx and the angular velocity ωz need to

Fig. 11. Position errors (a) when the robot is not coplanar with three
noncollinear anchors and (b) when the robot is coplanar with three
noncollinear anchors.

be excited to make the 3-D attitude observable, three types of
tests for the degradation scenarios are performed, i.e., static
state (vx = 0, ωz = 0), pirouette (vx = 0, ωz �= 0), and
linear motion (vx �= 0, ωz = 0). At this time, three anchors
are used to provide the distance measurements, which first
guarantees the position observability. The 3-D attitude errors
(yaw, pitch, and roll errors) between the estimated values and
true values are shown in Fig. 12. When the robot is stationary,
the estimated roll, pitch, and yaw angles all gradually diverge
and the error accumulates over time, as shown in Fig. 12(a).
When the robot spins in place, the position is still unchanged,
and thus, the yaw angle obtained by integrating ωz is unable
to be observed by UWB measurements and the yaw error
accumulates gradually, as shown in Fig. 12(b). When the
robot moves along one line, the roll angle is hard to be
observable, shown in Fig. 12(c), because the axis vector of
roll angle coincides with the direction of linear motion, which
means that the change in the roll angle cannot be reflected
by the change in the robot’s position or UWB-distance
measurements.

Meanwhile, when both the linear velocity vx and the angular
velocity ωz are motivated, the 3-D orientation errors based
on the UIO fusion approach are shown in Fig. 13, where
Fig. 13(a) shows the attitude errors of trajectory (a) in Fig. 8,
i.e., motion on a plane, and Fig. 13(b) shows the attitude errors
of trajectory (d) in Fig. 8, i.e., motion on an uneven surface.
It can be seen that the attitude error converges to zero and does
not diverge over time no matter on the plane or rugged ground.
The corresponding 3-D attitude RMSE, which is the Euclidean
distance between the Euler angles defined in [27], is calculated
as 0.090 rad [Fig. 13(a)] and 0.150 rad [Fig. 13(b)]. If only the
yaw error is considered, the corresponding errors are 0.052 and
0.059 rad. Not only that, when the initial yaw angle was
set as a wrong value, the estimated yaw angle could still
converge to the true value quickly, as shown in the green
region in Fig. 13(b). These results effectively confirm the
observability of the 3-D attitude. For both distance and AoA
observations, when vx �= 0 and ωz �= 0, the attitude errors
of trajectory (c) in Fig. 9 are shown in Fig. 13(c), and the
calculated 3-D attitude RMSE is 0.168 rad and the yaw error
is 0.062 rad. From the trend of errors with time, we can find
that the 3-D orientation is observable when the observability
conditions under both distance and AoA measurements are
satisfied.
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Fig. 12. Attitude errors when three anchors are present and UWB-distance measurements are used. (a) Robot is static, i.e., vx = 0 and ωz = 0.
(b) Robot rotates in place, i.e., vx = 0 and ωz �= 0. (c) Robot moves in the linear motion, i.e., vx �= 0 and ωz = 0.

Fig. 13. Attitude errors when vx �= 0 and ωz �= 0. (a) Attitude errors when UWB-distance measurements are used (three anchors) and the robot
moves on the plane. (b) Attitude errors when UWB-distance measurements are used (three anchors) and the robot moves on the uneven surface
full of stones. (c) Attitude errors when distance and AoA measurements (one anchor) are used and the robot moves on the plane.

C. Multirobot Positioning Tests
When some of the multirobots can obtain accurate global

poses, they can play the role of the moving anchors to assist
the rest of the robots in positioning. In the experiment, the
LRs’ true global poses were captured by the motion capture
system as known values and subscribed by other FRs. In the
actual scenes, especially in the unknown environments, the
estimation values from high-precision SLAM algorithms can
be used as an alternative to replacing the results of the motion
capture system.

Five experiments are performed to test the effectiveness
of our approach when using LRs instead of anchors. Fig. 14
shows the estimated trajectories of the FR (along the outermost
shape) from one of five experiments when three LRs moved
along the letters, i.e., “F,” “D,” and “U” and UWB-distance
measurements are used, as shown in Fig. 7(c). The average
ATEs of five tests based on the UIO-ESKF method and the
UI-ESKF method are, respectively, calculated as 0.358 and
0.717 m. The position error is mostly along the z-axis, and
the maximum error in the z-direction is 1.355 m based on the
UIO-ESKF approach in Fig. 14, but no outliers are found in
the UWB-distance measurements at this time, which illustrates
that the errors resulted from the fact that the FR is coplanar
with three LRs. Assuming that the errors in the z-axis are not
considered, the average ATE of the estimated values in the

Fig. 14. Estimated trajectories based on different approaches when
UWB-distance measurements are used. For reference, the GT is also
provided by Vicon.

xoy plane is calculated as 0.259 m (UIO-ESKF) and 0.472 m
(UI-ESKF). On the other hand, the average attitude errors of
five tests based on the UIO-ESKF method and the UI-ESKF
method are, respectively, 0.422 and 0.355 rad. The attitude
error is mostly from the roll and pitch angle for the UIO-ESKF
approach and is greater than the error in Fig. 13(a) and (b).
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Fig. 15. Estimated trajectories based on both distance and AoA mea-
surements and distance-only measurements during the experiments. For
reference, the GT is also provided by Vicon.

The reason for the large attitude error is that the FR’s trajectory
is mainly linear motions, and the movement speed is slow,
which makes the excitation of attitude observability insuffi-
cient. If only the yaw error is considered, the average RMSE
of yaw is 0.106 and 0.353 rad. For the UI-ESKF method, the
2-D attitude error is close to the 3-D attitude error essentially
because three-axis acceleration information is helpful for roll
and pitch angles to be observable. In addition, we find that
the estimated trajectories based on the UI-ESKF method do
not fluctuate much compared with those in Fig. 8, which may
be due to the slow movement and no drastic speed change in
this process.

In addition, when only one LR exists and both distance and
AoA measurements are used, six experiments are performed.
The estimated trajectories from one of six experiments are
shown in Fig. 15, in which LR follows a rectangular shape and
FR follows a musical note shape. Obviously, the estimated tra-
jectory based on the UIO-ESKF approach with both distance
and AoA measurements agrees better with the true trajectory
compared with that using distance measurements. The average
ATEs of six experiments based on the UIO-ESKF method
with both distance and AoA measurements and the UIO-ESKF
method with distance measurements are 0.13 and 0.226 m,
respectively, and the average attitude RMSEs of six exper-
iments are 0.149 and 0.247 rad. These results demonstrate
that only one LR and the corresponding distance and AoA
measurements can guarantee the FR’s position observability,
while one LR and the corresponding distance measurements
cannot. Furthermore, we speculate that the position observabil-
ity is a prerequisite for attitude observability for this system.
Since the position cannot be determined using one LR and the
corresponding distance measurements, even if vx and ωz are
excited, the Euler angles cannot be indirectly determined by
the changes of the position.

In summary, these two kinds of experiments on multirobot
localization illustrate that when the true global poses of LRs
are known and the observability conditions are satisfied, they
can assist the other FRs in localization although the positioning
accuracy is slightly inferior to using static anchors.

VIII. CONCLUSION

In this article, we propose a novel UIO fusion localization
scheme in GPS-denied environments. Rather than the INS that
calls for high-precision accelerometers, the wheel odometer
is employed and integrated with the gyroscope to propagate
the system state, enabling low-cost IMUs usable in this
approach. We analyze the observability property of the pro-
posed UIO system with different measurement models for non-
holonomic ground robots, which reveals that to ensure locally
weakly observable for positions, at least three noncollinear
anchors/LRs are required to assist FRs when using the ToA
measurement model and one LR is required when using the
both ToA and AoA measurement model. Furthermore, the
linear velocity along the body x-axis and the angular velocity
along the body z-axis are excited in such a way that the
3-D orientation can be observable. In summary, the proposed
scheme has a few advantages and values. First, the proposed
UIO-fusion solves the problem of tightly coupled UI-fusion,
i.e., large drifts caused by low-cost IMUs. The localization
performance based on the UIO-ESKF approach outperforms
the previous UWB-IMU fusion or IMU-odometer fusion
methods, and the feasibility and effectiveness are verified
through simulation and experiments. Second, the observability
conditions of the 3-D position and attitude for the proposed
UIO system are theoretically determined and experimentally
verified, and the degenerate cases where the states cannot be
observed are enumerated, making the scheme complete. Third,
it has a wider application range than traditional triangulation
methods because not only static anchors but also moving
LRs can be used as absolute known information to assist
robots in localization. However, it is worth noting that only
forward velocity from the wheel odometer is utilized, and the
error may drift when the wheels slip in the proposed UIO
fusion scheme. Future study will focus on adding lateral and
vertical velocities observations for correcting drift errors and
establishing more accurate robot motion models to compensate
for wheel slippage.

APPENDIX A
In this section, we provide a mathematical proof of

Theorem 1. We consider three LRs, and their positions are
denoted as G

Li
p = [G

Li
x, G

Li
y, G

Li
z]T, i = 1, 2, 3. Since the global

frame can be set up arbitrarily, which does not affect the
observability of the system, therefore, to simplify the proof,
the body center of LR1 is chosen as the origin of the global
frame (i.e., G

L1
x = 0, G

L1
y = 0 and G

L1
z = 0). The x-axis

is set to follow the direction from LR1 to LR2. As a result,
G
L2

x �= 0, G
L2

y = 0 and G
L2z = 0 (G

L2
x �= G

L1
x because the

overlapping of multiple LRs is regarded as one LR). Then,
we determine the y-axis so that LR3 also sits on the xoy plane,
which means that G

L3z = 0.
Furthermore, we use the Gaussian elimination to prove

the full rank of the observation matrix (23). We separately
consider the conditions for the full rank of the three columns
of (23). The first column has full column rank if �pT is full
rank, so we first compute the determinant of �pT����pT

��� = G
L2

x G
L3

yG
B z (33)
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where |·| represents matrix determinant. Since G
L2

x �= 0, the
conditions for �pT to be full rank are G

L3
y �= 0 and G

B z �= 0.
Here, G

L3
y �= 0 means that LR3 cannot be collinear with

LR2 or LR1, which results in condition 1) in Theorem 1.
G
B z �= 0 indicates that FR cannot be coplanar with the
three noncollinear LRs, which gives rise to condition 2) in
Theorem 1. Therefore, if conditions 1) and 2) are satisfied, the
first column of M� has a full rank (the rank equals 3). Now,
we can use the first row of (23) to eliminate the first column
of the other rows of (23) through Gaussian elimination.

Second, rows 2–4 in column 2 of M� form a 9 × 4 matrix,
denoted by F0. After taking four rows from F0 and calculating
their determinant, we have

det (1, 2, 4, 7) = 16G
L2

x G
L3

yG
B z

�
r13

G
B x + r23

G
B y + r33

G
B z

�
(34)

det (1, 4, 5, 7) = 16G
L2

x G
L3

yG
B z

�
r13�x2 + r23

G
B y + r33

G
B z

�
(35)

det (1, 4, 7, 8) = 16G
L2

x G
L3

yG
B z

�
r13�x3 + r23�y3 + r33

G
B z

��
(36)

where

�x2 = G
B x − G

L2
x, �x3 = G

B x − G
L3

x, �y3 = G
B y − G

L3
y (37)

and ri j represents the i th row and the j th column of the matrix
G
B R. det(1, 2, 4, 7) denotes the determinant of the matrix
consisting of the first, second, fourth, and seventh rows of
F0. Similarly, so are (35) and (36).

We prove by contradiction that the matrix of F0 has full
column rank. First, we assume that all three determinants,
i.e., (34)–(36), are equal to 0. When (34) is zero, we can
obtain

r13
G
B x + r23

G
B y + r33

G
B z = 0. (38)

Substituting it into (35) and (36), we have

det (1, 4, 5, 7) = −16G
L2

x2G
L3

yG
B zr13 = 0 ⇒ r13 = 0. (39)

Furthermore, substituting (38) and (39) into (36), we have

det (1, 4, 7, 8) = −16G
L2

x G
L3

y2G
B zr23 = 0 ⇒ r23 = 0. (40)

Finally, substituting r13 = 0, r23 = 0, and G
B z �= 0 into (38),

we find that r33 = 0, which violates the full rank of the rotation
matrix G

B R. Therefore, the assumption does not hold, that is,
the three determinants cannot be all zero. This means that F0

has a full column rank, i.e., the second column of M� has a
full rank (rank is equal to 4). It is worth noting that rows 1, 4,
and 7 of F0 correspond to the excitation of vx , and rows 2, 5,
and 8 correspond to the excitation of ωz , which indicates that
the sufficient condition for the full column rank of F0 is that
vx and ωz are both excited at the same time. Now, we can
eliminate the second column of the remaining rows of (23)
with F0.

Similarly, we extract the last three rows of the last column
of the matrix M� and construct it as a new matrix, denoted
by F6. Its determinant yields

|F6| = 2G
L2

x G
L3

yG
B zbgx

�
b2

gy + b2
gz

�
. (41)

Since G
L2

x G
L3

yG
B z �= 0, the conditions for F6 to be full rank are

that the angular velocity bias bgx �= 0, and bgy �= 0 or bgz �= 0,
which result in condition 4) in Theorem 1. Note that the
angular velocity bias is one of the mechanical properties of the
gyroscope, which is affected by the ambient temperature and
varies each time the gyroscope is energized. Thus, in general,
the bias is not 0. At this time, the third column of the
remaining rows of (23) can be eliminated with F6 through
Gaussian elimination. Finally, the observation matrix (23) can
be reduced to a full rank identity matrix.

APPENDIX B
In this section, we provide a mathematical proof of Theo-

rem 2. For the first column of (29), first, the rotation matrix
G
L RT is full rank, so the first column is full rank (rank is
equal to 3). G

L RT is actually derived from accurate known
information. Therefore, it corresponds to condition 1) in
Theorem 2. Now, we can use the first row of (29) to eliminate
the first column of the other rows of (29) through Gaussian
elimination.

Besides, for the second column of (29), we extract four rows
from the 9 × 4 matrix F7 and calculate their determinant, i.e.,

det (1, 2, 4, 7) = 16
�

L
GRG

B R
�

[1,3]
= 16

�
L
BR

�
[1,3]

det (1, 4, 5, 7) = −16
�

L
GRG

B R
�

[2,3]
= −16

�
L
BR

�
[2,3]

det (1, 4, 7, 8) = 16
�

L
GRG

B R
�

[3,3]
= 16

�
L
BR

�
[3,3]

(42)

where the subscript [i, j ] denotes the i th row and the j th col-
umn of the matrix. Since the third column of any rotation
matrix cannot all be zero, it shows that F7 has a full column
rank. Similarly, rows 1, 4, and 7 of F7 correspond to the
excitation of vx , and rows 2, 5, and 8 correspond to the
excitation of ωz , which indicates that the sufficient condition
for the full column rank of F7 is that vx and ωz are both
excited at the same time. At this time, we can eliminate the
second column of the remaining rows of (29) with F7.

Furthermore, for the third column of (29), we can find that
the determinant of F11 is equal to 2bgx(b2

gy + b2
gz), which

indicates that when bgx �= 0 and bgy �= 0 or bgz �= 0, the third
column is also full rank. This gives rise to condition 3) in
Theorem 2. The third column of the remaining rows of (29)
can be eliminated with F11 through Gaussian elimination.
Finally, the observation matrix (29) can be reduced to a full
rank identity matrix.
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