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Abstract— Multimodal sensor fusion can improve the perfor-
mance of human–machine interfaces (HMIs). However, increased
sensing modalities and sensor count often cause excess redun-
dancies, and when applying deep learning approaches, the
recognition system can become overly complex and difficult for
humans to understand. In this article, we propose an explainable
artificial intelligence (XAI) approach to reduce redundancies in
inertial measurement units (IMUs) and electromyography (EMG)
multimodal systems and optimize sensor disposition in prosthetic
hand control. Four attribution algorithms and four quantitative
evaluation algorithms were used on an open-source dataset of
17 hand gestures from 60 healthy subjects and 11 amputees to
explore the working mechanism behind the multimodal system.
Using an XAI approach, we reduced the total number of required
sensors by 40% while maintaining the same level of accuracy.
These results could enable optimized HMI system design with
reduced sensor costs and manufacturing costs. The proposed
approach lays the foundation for improving HMI systems by
reducing complexity and revealing explainable information that is
typically hidden within deep neural networks, thereby facilitating
patients in the daily use of prosthetic hands and helping improve
their quality of life.

Index Terms— Explainable artificial intelligence (XAI), hand
gesture recognition, human–machine interfaces (HMIs), multi-
modal sensor fusion.

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) is an important human–
machine interface (HMI) technology that has significant

medical applications, including prosthetic control and stroke
rehabilitation [1], [2]. However, EMG still suffers from inher-
ent limitations, including nonstationarity, low robustness, and
low resolution to complex motions [3]. Therefore, in recent
years, sensor fusion technology has been widely deployed in
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EMG-based HMI and greatly improved hand gesture recogni-
tion accuracy [4], [5].

However, the tradeoff for performance improvement results
in a larger system with a more complex structure and higher
cost [6]. Therefore, understanding the mechanism of how each
sensing modality contributes to the system performance is
vital to reducing the HMI system’s redundancy [7]. With the
popularity of deep learning, recognition models are becom-
ing more complex, less explainable, and harder for humans
to understand [8]. The multimodal HMI and recognition
models are also becoming unexplainable black boxes [9].
The unexplainable models not only bring difficulties to the
optimization of system design but also make it hard for
society to trust these systems, and it could cause poten-
tial problems in responsibility identification and data-based
decision-making [10], [11].

Recently, some representative studies on explainable arti-
ficial intelligence (XAI) have been proposed [12]. These
studies clarified basic concepts and definitions of XAI and
provided precursory demonstrations in the fields of medical
image processing [13], autonomous driving [14], and nat-
ural language processing [15]. However, the explainability of
multimodal HMI is seldom investigated by academics and
industries. Since the contribution of each modality and each
sensor unit is unclear in an unexplainable black box, the
working mechanisms are unclear, leading to an increase in the
system’s complexity and manufacturing cost, and also increas-
ing power consumption and decreasing endurance. In addition,
in current hand gesture recognition systems, improvement is
still based on experiments and experience; with an explainable
system, the working mechanisms will be more intuitive, which
will help researchers to provide more accurate and helpful
solutions [16].

In this article, to bridge the gap between interpretability and
high performance, we focused on two vital topics in the HMI
system: reducing multimodal system redundancy and improv-
ing the performance of prosthetic hand control with a less
complex sensing system. First, we quantitatively investigated
the contribution of different sensing modalities on different
muscle positions and verified the XAI explanations’ rationality
with physiology explanations. Second, we analyzed the perfor-
mance of the EMG-ACC multimodal system on amputees to
reveal the influence of sensing modalities and sensing positions
on recognition performance and proposed an optimized sen-
sor disposition with significantly reduced redundancy. Third,
we utilized four quantitative evaluation methods to compre-
hensively assess the explanation results generated by XAI on
faithfulness, sensitivity, complexity, and randomization metrics
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to help researchers to select a more accurate explanation
result.

To our best knowledge, this is the first study that focuses on
explainable hand gesture recognition or prosthetic hand control
sensor fusion algorithms. The proposed method successfully
reduced the system complexity and improved the performance.
Our work could provide urgently needed information to guide
the design of multimodal HMI. It could also help patients
to understand the treatment they receive and reduce their
insecurity while helping doctors explain their decision to
implement AI and reduce potential ethical and legal risks.

II. BACKGROUND RESEARCH

A. Sensor-Fusion-Based HMI

In real-life scenarios, since the sensing targets are usu-
ally too complex for a single sensing modality to capture
enough information to support the recognition model’s deci-
sion, multisensor fusion solutions were proposed [17], [18].
For instance, in autonomous vehicles, to fully grasp com-
plex road information, researchers always adopt sensor fusion
solutions, including lidar, millimeter-wave radar, and vision
cameras [19]. In biometrics areas, since muscle activities con-
tain multidimensional information, with integrated multimodal
systems (e.g., near-infrared sensors for collecting muscle
hemodynamics information [20], the ultrasonic imaging for
collecting muscle morphological information [21], and EMG
for collecting muscle electricity [22]), recognition accuracy for
a single task can be improved [6]. Jiang et al. [23] proposed
a force myography (FMG)–EMG sensor fusion wristband
for hand gesture recognition, which overcomes the sweat
vulnerability of EMG and the low information density of
FMG. Ceolini et al. [24] proposed a camera-EMG fusion hand
gesture recognition system, which aims to utilize visual infor-
mation to improve recognition accuracy or recognize objects
during grasping to adjust the prosthetic. Krasoulis et al. [25]
proposed the inertial measurement unit and electromyography
(IMU–EMG) sensor fusion hand gesture recognition method,
which successfully improved the recognition accuracy of
amputees from 40% to around 80%.

For sensor fusion algorithms, there are four categories: pixel
(raw data) level fusion, feature level fusion, decision level
fusion, and hybrid fusion [26], [27]. Among these, the pixel
level and the feature level are the two most common cate-
gories, and the most representative method is a matrix-based
fusion method called multimodal tensor fusion network
(TFN) [28]. However, since the TFN method requires lots of
tensor outer product during the fusion process, which requires
huge computation resources and lacks high-order fusion abil-
ity, modified versions of this method such as row-rank mul-
timodal fusion [29] and polynomial tensor pooling [30] were
also proposed. Other sensor fusion algorithms based on atten-
tion mechanism [31], adversarial learning [32], and auto-
encoder [33] were also applied to natural language processing
and image processing applications. In addition, with the rapid
development of sensor fusion technologies, how to select and
evaluate these methods has become a key problem.

B. Explainable Artificial Intelligence

With the rapid development of deep learning technology,
some models’ parameters have exceeded the order of mag-
nitude of millions. These complex models are impossible

for humans to understand. Therefore, developing explain-
able methods becomes extremely important. There are
mainly two kinds of explanation methods: gradient-based and
perturbation-based. The gradient-based methods analyze the
gradient flow through a model to generate explanations. For
example, the layer conductance based on integrated gradi-
ents and their flow through the hidden neuron can provide
researchers with pictures of neuron importance of a neural net-
work [34]. The DeepLIFT method based on back-propagation
and the gradient SHAP method based on Shapley values
proposed in cooperative game theory can provide researchers
with images of primary attribution of input data [35], [36]. The
perturbation-based methods perturb input values and measure
the change in the model’s output to generate explanations.
Occlusion and Shapley value sampling are both perturbation-
based methods that can generate attribution for input data [37],
[38]. Occlusion replaces each input feature with a given value
to analyze the difference in output, and Shapley value sampling
adds the feature values to a baseline to analyze the difference
in output.

In addition, since XAI has drawn great attention from
academia and various XAI methods have been proposed in
recent years, choosing appropriate XAI methods by reasonable
quantitative evaluation methods also becomes vital for success
and correct explanation results. In general, XAI methods
can be evaluated on five aspects: faithfulness, sensitivity,
complexity, randomization, and localization [39]. Faithfulness
evaluates whether important features also play important roles
in the prediction process. Sensitivity quantifies whether the
explanations are stable when encountering slight perturbations.
Complexity evaluates the concise degree of explanations. Ran-
domization can quantify how explanations deteriorate when
the network’s parameters become randomized. Finally, local-
ization tests if the explanation methods are concentrated on
the target object. In different scenarios, these five quantitative
evaluation methods are not equally important, and not all
methods are necessary at the same time.

Machine learning and deep learning have improved the
human ability to diagnose and treat diseases [40]. However,
due to the ethical and legal requirements, doctors must explain
the output results of these models, and patients must under-
stand these results [41]. Therefore, XAI is extremely important
to medical applications. Molle et al. [42] proposed visual-
ized convolutional neural networks (CNNs) to support skin
lesion classification. Biffi et al. [43] proposed interpretable
anatomical feature learning methods through deep generative
models to provide an explanation for deep-learning-based
cardiac remodeling. Jin et al. [44] provided a comprehensive
evaluation of multimodal medical imaging and proposed a
modality-specific feature importance metric to encode the
clinical requirements on modality prioritization and feature
localization. To our best knowledge, there are few related
studies on explainable hand gesture recognition or prosthetic
hand control sensor fusion algorithms. Our work could provide
urgently needed information to the community and could
guide the design of future wearable sensor fusion systems and
algorithms.

III. METHODS

A. Target Model

This article tries to use XAI methods to obtain the per-
formance variation mechanism of different sensing modalities
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Fig. 1. Architecture of the proposed methods. This article proposed an analysis methodology that includes state-of-the-art XAI algorithms and empirical
knowledge to reduce the system’s complexity and provide an optimized sensor disposition.

and dispositions (see Fig. 1) and, based on the results, pro-
poses a redundancy reduction and disposition solution. First,
a target model needs to be built for analysis. In general,
for hand gesture recognition, there are two main kinds of
recognition algorithms: traditional machine learning models
and deep learning models. The deep learning models have
surpassed the machine learning models in many aspects, and
in this article, we built a representative time-series recognition
model as the target model (Fig. 2). The architecture of the
model, from top to bottom, is a 1-D convolutional layer with
32 channels (kernel size is three), a 1-D convolutional layer
with 64 channels (kernel size is three), two 1-D convolutional
layers with 128 channels (kernel size is one), and three full
collected layers (units are 256, 100, and 17). The input is
60 ms of EMG, accelerometer (ACC), gyroscope (GYRO),
and magnetometer (MAG) signal of 120 channels, and the
output is the hand gesture recognition result. To validate
the reasonability of using the neural network as the target
model, we tested it with datasets introduced in Section IV.
When tested with an EMG–IMU multimodal fusion dataset,
the target model’s recognition accuracy of the healthy group
is 95.6%. When tested with the EMG–ACC fusion dataset, the
model’s recognition accuracy of the healthy group is 91.5%
and amputees is 79.2%.

B. Explanation Generation
For the CNN, the contribution of each data point to the final

recognition can be represented or indirectly expressed as the
gradient (or other parameters) of the model. Therefore, after
the target model was built, attribution algorithms were utilized
to generate the contribution map. These attribution algorithms
can calculate the contribution distribution of input data to the

Fig. 2. Network architecture of the target model.

recognition model. By analyzing the contribution distribution
combined with sensor modality and placement information,
the performance variation mechanism of different sensing
modalities and dispositions can be acquired. Since different
attribution algorithms have different results, to provide a
more comprehensive explanation of results, four state-of-the-
art attribution algorithms were deployed.

Saliency is a classic method to calculate the input data’s
contribution attribution [45]. The basic idea of the saliency
method is to process the first-order Taylor expansion for the
model input and take its weight coefficient as the gradient and
its absolute value as the contribution to the classification result

S f (xi ) ≈ wT xi + b (1)

w = ∂S f

∂xi i0

(2)

where S f is the saliency score function of a neural network
and w is the derivative of S f at point i0. Because the saliency
method was proposed years ago, it may not outperform other
XAI methods in any dimension. However, the saliency method
is a classic method and has become the foundation of many
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other XAI methods. In addition, the working principle of the
saliency method is intuitive and easy to understand. Therefore,
we think including the saliency could provide readers with
more complete information.

Input X gradient is an extension of the saliency
approach [46]. Different from the saliency method directly
using the gradients as the contribution, input X gradient takes
the gradients and multiplies by the input feature values as the
total contribution of the input to the classification result.

Integrated gradient (IG) is the most representative XAI
method [47]. For IG, the attribution of the i th input is defined
as the integral of gradients from a given baseline to input along
a straight path

IGi (x) ::= (
xi − xi

′) ×
∫ 1

α=0

∂ f
(
x ′ + α × (

x − x ′))
∂xi

dα (3)

where xi
′ is the baseline, xi is the i input, f is the target

network for explanation, and (∂ f (x)/∂xi) is the gradient of f
on the i th dimension.

The gradient SHAP (Shapley additive explanation) com-
bines integrated gradients and SHAP into a single expected
value equation [36]. For each prediction, the model generates
a prediction value that is the summation of the SHAP value
of each input

yi = ybase + Sh(xi1) + Sh(xi2) + · · · + Sh(xik) (4)

where xi is the i input sample, the j feature of xi is xij, the
model’s prediction value is yi , and the baseline is ybase. The
Sh(xij) is the SHAP value of the xij. In general, the Sh(xij) is
the contribution of the xij to the prediction result.

C. Explanation Validation

As mentioned above, different attribution algorithms will
provide different contribution results, and quantitatively eval-
uating the attribution results is vital for the accuracy of the
explanation. This article gives full quantitative evaluations
of the attribution algorithms from faithfulness, sensitivity,
complexity, and randomization aspects. For the faithfulness
assessment, we adopted the faithfulness correlation (FC)
method [48]. By measuring the correlation between the ran-
domly selected and baseline value replaced subset of given
attributions and the difference in function output, the FC can
provide the faithfulness source for a given XAI algorithm

Faith( f, g; x) = corr

(∑
iεS

g( f, x)i , f (x) − f (x̄s)

)
(5)

where g is an explanation function, S is the randomly sampled
subsets, xs = {xi, iεS}, and x̄s is the input that is set to the
baseline.

For the sensitivity assessment, we adopted the max-
sensitivity (MS) method [49]. The MS method proposes to
measure the maximum sensitivity of an explanation as follows:

SENSMAX(g, f, x) = max‖g( f (x + ε)) − g( f (x))‖ (6)

[�x g( f (x))] j = lim
ε→0

g
(

f
(
x + εe j

)) − g( f (x))

ε
(7)

where e j is the j th coordinate basis vector, whose j th entry
is one and all others are zero.

For the complexity assessment, we adopted the sparse-
ness method [50]. The sparseness value is calculated by the

Gini Index, and a higher sparseness value (Gini Index) indi-
cates a more concise explanation

G(v) = 1 − 2
d∑

k=1

v(k)

‖v‖1

(
d − k + 0.5

d

)
(8)

where v is a vector of nonnegative values and d is the
dimension of v and k ε [d].

For the randomization assessment, we adopted the model
parameter randomization (MPR) method [51]. The working
principle of MPR is randomizing the parameters of single
model layers and then measuring the difference between the
new explanation and the original explanation.

All four XAI methods (saliency, integrated gradients, gra-
dient SHAP, and input X gradient) were used to perform
the attribution of input data and four quantitative evaluation
methods were used to evaluate the attribution result. Based
on the quantitative evaluation result, the best-performing XAI
method’s attribution result was chosen as the final result for
further analysis. In addition, the consistency between the XAI
results and empirical analysis is also important. Based on the
knowledge of anatomy, a clear relationship between muscles
and motions can be obtained. The working principles of differ-
ent sensing modalities have also been clearly summarized [3].
The problem is that the empirical analysis is not quantized
and can only be described by empirical statements. However,
the results of XAI methods should not conflict with empirical
analysis. Therefore, it is important for the two methods to be
cross-validated, and in this article, we provide the XAI results
with detailed physiological evidence.

IV. EXPERIMENTS

A. Dataset

The open-source Nina pro database’s second, third, and
seventh subsets were chosen to validate our proposed meth-
ods [25], [52]. Database 2 (DB2) [52] included EMG and
ACC data of 40 healthy participants. Database 3 (DB3) [52]
included EMG and ACC data of 11 amputee participants. The
purpose of DB2 and DB3 is to analyze the performance differ-
ence of sensor fusion technology between healthy participants
and amputee participants. Database 7 (DB7) [25] included
EMG, ACC, GYRO, and MAG data of 20 healthy participants.
The purpose of DB7 is to provide a comprehensive analysis
of the performance of different sensor fusion solutions. The
EMG signals were sampled at 2 kHz, and the IMU (ACC,
GYRO, and MAG) data were sampled at 128 Hz.

Seventeen gestures were included in these datasets. Eight
of them are movements of the fingers, including: 1) thumb
up (TU); 2) extension of index and middle, flexion of the
others (EIM); 3) flexion of the ring and little finger, the
extension of the others (FRL); 4) thumb opposing base of
the little finger (TO); 5) abduction of all fingers (AA);
6) fingers flexed together in the first (FF); 7) pointing index
(PI); and 8) adduction of extended fingers (AE). Nine of them
are wrist movements: 9) wrist supination (axis: middle finger)
(WSM); 10) wrist pronation (axis: middle finger) (WPM);
11) wrist supination (axis: little finger) (WSL); 12) wrist
pronation (axis: little finger) (WPL); 13) wrist flexion (WF);
14) wrist extension (WE); 15) wrist radial deviation (WRD);
16) wrist ulnar deviation (WUD); and 17) wrist extension with
closed hand (WEC).
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Fig. 3. (a) Attribution results of four XAI methods. (b) Quantitative evaluation results of four XAI methods. (c) Contribution difference of different sensor
placement locations.

The datasets were collected by 12 fusion sensors placed
on participants’ arms. The first eight sensors were equally
spaced around the forearm, and the rest were placed on the
extensor digitorum communis muscle (EDC), flexor digito-
rum superficialis muscle (FDS), biceps brachii, and triceps
brachii.

B. Experimental Protocol

This article separately conducted three experiments on
two groups of participants (healthy groups and a group of
amputees, six experiments in total). These experiments mea-
sured the contribution difference of four sensing modalities,
the contribution difference of different gesture categories, and
the influence of sensor placement location on sensor fusion
performance.

For the healthy groups, 17 gestures of 20 healthy partici-
pants were collected by 12 fusion sensors (DB7). Each fusion
sensor contained a single-channel EMG, a three-axis ACC,
a three-axis GYRO, and a three-axis MAG. Since the hand
gestures were static and according to previous work, the raw
data were segmented into 60 ms per segment before being
processed by the neural network [53], [54], [55]. Therefore,
each input of the classification network was a 120 × 120
matrix (the sampling rate was 2 kHz, and 120 axes of four
different modalities were used). After preprocessing, the target
network was trained with the segmented data. According to the
dataset’s source paper, sixfold cross-validation was adopted
in the training process [25]. When the target network was

trained, we used four XAI algorithms introduced in Section III
to generate the attribution map for further analysis.

For the amputee group, 17 gestures of 40 healthy partici-
pants and 11 amputee participants were collected by 12 fusion
sensors (DB2 and DB3). Each fusion sensor contained a
single-channel EMG and a three-axis ACC. Before being
processed by the neural network, the raw data were segmented
into 60 ms per segment. Therefore, each input of the classi-
fication network was a 120 × 48 matrix (the sampling rate
was 2 kHz, and 48 axes of four different modalities were
used). After preprocessing, the target network was trained
separately with the segmented data of the healthy participants
and amputees, and then it generated the attribution map of the
48-axis sensor.

V. RESULTS AND DISCUSSION

A. Quantitative Evaluation of the XAI Methods

Since the attribution results of different XAI methods are
not consistent, it is important to select the most suitable one for
this problem. We adopted four quantitative methods introduced
above to evaluate the four XAI methods on faithfulness,
sensitivity, complexity, and randomization aspects. To ensure
the stability of the evaluation, we took the average value across
subjects and gestures. As shown in Fig. 3(b), the IG method
showed the best performance in faithfulness, sensitivity, and
randomization. Although it did not get the best performance in
complexity, the complexity characteristics only represent the
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TABLE I

CONTRIBUTION OF THE FOUR SENSING MODALITIES

concise degree of the XAI method. Therefore, we chose the
IG method for further analysis.

B. Results of Explanations of Healthy Group

As shown in Fig. 3(a), the results of all four XAI methods
showed prominent modality properties and axis properties,
which affirms the rationality of choosing sensing modalities
and sensor axes as analysis objects. By averaging the attribut-
ion of all axes of a sensing modality and then calculating the
mean value among all the subjects and all the hand gestures,
we found that the most important sensing modality is MAG,
then ACC, EMG, and GYRO. MAG, ACC, EMG, and GYRO
contributed 45.1%, 26.9%, 17.6%, and 10.4%, respectively,
to the final recognition results. The detailed contribution of
the four sensing modalities on 17 hand gestures is listed in
Table I.

In addition, the hand gesture categories also showed impacts
on the performance of sensing modalities. For the eight-finger
movement gestures, MAG, ACC, EMG, and GYRO con-
tributed 42.7%, 28.3%, 18.8%, and 10.2%, respectively, to the
final recognition results. For the nine-wrist movement gestures,
MAG, ACC, EMG, and GYRO contributed 47.3%, 25.6%,
16.5%, and 10.6%, respectively, to the final recognition results.
In addition, from the attribution map (Fig. 4), EMG also
showed a higher temporal resolution, indicating that it could
capture fine-grained signals. These results showed that EMG
is better at recognizing fine-grained gestures compared with
recognizing directional gestures. It is worth mentioning that,
although MAG showed a huge contribution to the recognition
results, according to the attribution map (see Fig. 4), MAG
sensor is strongly location-dependent. In a real-life scenario,
the MAG might suffer a huge accuracy decrease when encoun-
tering placement location shifts.

GYRO took 30% of the system sensing channels but only
contributed 10.4% to the recognition accuracy. Compared with

Fig. 4. Attribution map of the integrated gradients method. EMG showed
higher temporal resolution; however, for the final recognition results, the
classifier paid more attention to MAG. In addition, the placement location
showed a great impact on the sensor performance, especially the MAG
sensors.

ACC and MAG, which each took 30% of the sensing channels
but contributed 45.1% and 26.9% to the recognition results,
GYRO seriously increased the system’s redundancy. There-
fore, from the XAI results, to reduce the system’s complexity,
removing GYRO is the best option. Also, in actual use,
GYROs are usually high power-consuming, so removing them
will also improve the endurance of the system. If further sim-
plification is required, then the target hand gestures need to be
taken into consideration. If the gesture set contains many fine-
grained gestures, then EMG should not be removed. Therefore,
it is necessary to choose customized sensor solutions for
specific tasks or to design specific gestures for different sensor
hardware.

In addition, the conclusion from the XAI methods can be
validated from the physiology aspect. Based on our previous
systematic study on the working principle of different sensing
modalities and their measured biological characteristics [3],
EMG captures muscles’ neural firing information (current
intensity), which does not include any intuitional motion infor-
mation or directional information. Therefore, EMG is sensitive
to fine-grained gestures (e.g., finger movement gestures) but
has difficulty recognizing gross gestures or directional gestures
(e.g., wrist movement gestures). ACC can capture both the
vibration of muscle contraction and the acceleration of motion
signals. Therefore, it is suitable for both fine-grained gestures
and gross gestures. MAG can directly measure the posture and
recognize gestures from it. Therefore, the MAG has a high
recognition accuracy for static gestures. While, in real-life
applications, MAG frequently has serious drifting problems,
hindering the MAG sensing method from achieving high
performance. However, GYRO mainly captures the rotation
signals which are mainly seen in the sign language gesture
set. Therefore, for interaction gesture sets, the contribution of
the GYRO sensor is relatively low.

Based on the sensor placement location provided by the
dataset’s introduction, 12 sensing locations were divided into
three categories: Category A, including eight fusion sensors
equally spaced around the forearm; Category B, including
two fusion sensors placed on the EDC and FDS; and Cat-
egory C, including two fusion sensors placed on the biceps
brachii and triceps brachii. For the three placement locations
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[Fig. 3(c) (left)], location A contributed most to the recognition
results (60.2%), location C contributed 21.2%, and sensors at
location B contributed least to the recognition results (18.6%).
Also, the gesture categories did not show any impact on
the locations’ contribution distribution. For a single sensor
(Fig. 3(c) right, all the results were averaged among sensor
numbers and subjects), if it is placed on location A can
contribute 27.8% to the final recognition results, 33.9% on
location B, and 38.3% on location C. Similarly, the gesture cat-
egories did not show any impacts on the locations’ contribution
distribution. In addition, if taking sensor placement location
into consideration, GYROs on location A only contribute
7.0% to the recognition results, on location B, 2.2%, and on
location C, 2.6%. To be more specific, each GYRO sensor
on locations A, B, and C only contributes 0.29%, 0.37%,
and 0.43% to the recognition results. However, the average
contribution of four sensor modalities in these three locations
is 0.75%, 0.93%, and 1.06%. The contribution of GYRO is
significantly lower than other sensing modalities.

Based on the quantitative results, we can see that the
sensors placed on individual muscles have better performance,
while sensors placed on the forearm muscles may experience
interference from signal crosstalk. These results also explained
that interaction-purposed devices are always made into band-
shapes, which are easier to wear and more comfortable to
use. The band shape will damage the performance but can
meet daily requirements. However, for medical purposes,
like prosthetic control, muscles including EDC, FDS, biceps
brachii, and triceps brachii are indispensable.

C. Results of Explanations of Amputees

Prosthetic hand control is an important application of hand
gesture recognition. Each of the amputees lost their hand and
part of the forearm, leading to the amputees’ motor ability
being significantly lower than the healthy group’s. In addition,
due to much less motor stimulation, the amputees’ muscles
on the upper and lower arms are significantly atrophied. This
means that many times, the amputees have the motion inten-
tion but lack actual movements. The lack of actual movements
reduces the quality of the ACC signal and thus causes bad
recognition results. For EMG, since muscle atrophy will lead
to weak muscle activation intensity, the signal-to-noise ratio
will be lower and thus will cause bad EMG signal quality and
recognition accuracy. In addition, since it is hard to collect
amputees’ data, providing researchers with knowledge on col-
lecting amputees’ signals will help the development process of
prosthetics. Compared with the healthy groups, the recognition
of all the sensing modalities on amputees is significantly lower.
The EMG-ACC fusion system’s recognition accuracy dropped
from 91.5% to 79.2%, and the ACC’s recognition accuracy
dropped from 90.0% to 76.8%.

By averaging the attribution of all axes of a sensing modality
and then calculating the mean value among all the subjects and
all the hand gestures, we found that, in the EMG-ACC sensor
fusion system, EMG only contributed 8.3% to the recognition
results, and ACC contributed 91.7%. If only considering the
wrist movement gesture, EMG contributed 7.8%, and ACC
contributed 92.2%; while if only considering the finger ges-
ture, the EMG contributed 8.8%, and the ACC contributed
91.2%. Each EMG sensor contributed 0.69% to the recognition
result. Compared with the healthy groups (0.63%), EMG

sensors on amputees were 9.5% more effective. In addition,
in many cases, amputees only have motion intention but lack
actual movements, making it hard for the ACC sensor to
collect motion signals; therefore, EMG is more important to
the amputees than to the healthy group.

Sensor placement location showed a great impact on the
results. For amputees, in the EMG-ACC fusion system, loca-
tion A contributed most to the recognition results (56.1%),
location C contributed 30.2%, and sensors at location B
contributed least to the recognition results (13.7%). Also, the
gesture categories did not show any impact on the locations’
contribution distribution. However, for a single sensor, the
amputees showed a significant difference from the healthy
group. For amputees, if a sensor was placed on location A,
it contributed 27.8% to the final recognition results, and 24.0%
on location B, but 51.2% on location C (the gesture categories
did not show any impacts on the locations’ contribution
distribution).

As shown above, the sensors placed on the biceps brachii
and triceps brachii are vital for amputees. Although the
forearm of the amputees still exists, the lack of hand motions
will lead to the atrophy of the forearm muscles. However,
in order to fit the new living conditions, they will try to use the
forearm to replace part of the hand functions, and during this
process, the biceps brachii and triceps brachii on the affected
arm will become stronger. Therefore, the biceps brachii and
triceps brachii showed more importance to amputees than to
the healthy groups in hand gesture recognition.

With the explanation results, we proposed an optimized
EMG-ACC sensor fusion solution for amputees. In this solu-
tion, all the ACC sensors and the EMG sensors that were
placed on the biceps brachii, and triceps brachii were kept.
We tested the proposed solution with the same experimental
protocol. The result showed that with the optimized sensor
fusion system, the number of sensors in the fusion system was
reduced by 40%, and the recognition accuracy was increased
to 79.9%. Compared with the ACC-only solution (accuracy
76.8%) and EMG-ACC solution (accuracy 79.2%), the IG XAI
method effectively simplified the sensor fusion system and
reduced the cost of hardware.

D. Comparative Analysis and Future Work

Compared with previous studies, our work filled the gap of
the explainable multimodal sensor fusion in HMI. Li et al. [56]
proposed a two-channel region-based CNN for explainable
vision-based hand gesture recognition, which is significantly
different from wearable-based methods. Lee et al. [57] pro-
posed an explainable deep learning model for EMG-based
finger angle estimation using attention but did not include
multimodal sensor fusion or hand gesture recognition.
Gozzi et al. [7] and Gulati et al. [58] utilized XAI methods to
explain EMG-based hand gesture recognition; however, they
did not include multimodal sensor fusion or a quantification
explanation validation. Therefore, to our best knowledge, this
is the first study to focus on the explainability of multimodal
sensor fusion in HMI applications.

The influence of the target model’s structure on the explana-
tion results still needs to be investigated. From our preliminary
experiment, if the target model changes slightly (e.g., the num-
ber of convolutional layers, kernel size, the number of fully
collected layers’ units, and so on), the attribution results stay
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almost the same. However, if the target models are specially
designed for optimization of the original attribution of the
input data, the previous results might significantly change.
These models include the attention mechanism, adversarial
neural network, and other algorithms that adjust the weights
of different data channels. With the development of deep
learning technology, the structure of the target model will also
become more and more complex, bringing a huge challenge to
a generalized explanation result. Future work should include
building a model-independent XAI framework or performing
a deeper analysis of the different model structures.

VI. CONCLUSION

This article is the first work that utilized XAI methods to
explain the working principle of multimodal sensor fusion sys-
tems in hand gesture recognition. Four attribution algorithms
and four quantitative evaluation algorithms were performed
on data of 17 hand gestures from 60 healthy subjects and
11 amputees to explore the working mechanism behind the
multimodal system. Based on our proposed methods, the target
system’s redundancy is significantly reduced by 40%. With
the cross-validation between the XAI result and physiological
evidence, the working principle of the sensor fusion system is
also more transparent. In addition, our work tries to maintain
high universality to ensure the reliability of the result, and
we intend to further investigate the effect of different model
structures. In the end, our work could provide urgently needed
information to the community to help improve HMI systems
by reducing complexity and revealing explainable information
that is typically hidden within deep neural networks, thereby
facilitating patients’ daily use of prosthetic hands and helping
improve their quality of life.
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