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Abstract: In GNSS-denied environments, especially when losing measurement sensor data, inertial
navigation system (INS) accuracy is critical to the precise positioning of vehicles, and an accurate
INS error compensation model is the most effective way to improve INS accuracy. To this end, a
two-level error model is proposed, which comprehensively utilizes the mechanism error model and
propagation error model. Based on this model, the INS and ultra-wideband (UWB) fusion positioning
method is derived relying on the extended Kalman filter (EKF) method. To further improve accuracy,
the data prefiltering algorithm of the wavelet shrinkage method based on Stein’s unbiased risk
estimate–Shrink (SURE-Shrink) threshold is summarized for raw inertial measurement unit (IMU)
data. The experimental results show that by employing the SURE-Shrink wavelet denoising method,
positioning accuracy is improved by 76.6%; by applying the two-level error model, the accuracy is
further improved by 84.3%. More importantly, at the point when the vehicle motion state changes,
adopting the two-level error model can provide higher computational stability and less fluctuation in
trajectory curves.

Keywords: two-level error model; INS; UWB; DWT; EKF; fusion positioning method

1. Introduction

In global navigation satellite system-denied (GNSS-denied) environments, the multi-
sensor fusion positioning method is mainstream, and most of them are based on INS
to realize fusion positioning. With the development of micro-electro-mechanical system
(MEMS) technology, applications of the inertial navigation system (INS) on small UAVs are
becoming more and more extensive. This is because compared to high-precision inertial
sensors, MEMS-IMU has the advantages of small size and low cost. These merits of MEMS-
IMU present an attractive option for advanced applications, such as intelligent navigation
and positioning in GNSS-denied environments [1]. Nevertheless, the drawbacks of high
noise levels, instability of characteristics and large stochastic variance make it a challenge
to use MEMS-IMU for extended periods. The noise (or error) estimation and compensation
of MEMS-IMU are the key points to realize the high-precision positioning of INS-based
fusion methods.

At present, INS error estimation and compensation methods are divided into two as-
pects: one is modeling the errors of MEMS-IMU from a mechanism level [2–7]; the other is
establishing the error propagation model based on the principle of navigation. In terms
of IMU error modeling methods, especially MEMS-IMU, some studies divide IMU errors
into two types, which are deterministic errors, such as scale factor, bias and misalignment,
and stochastic errors such as bias instability and scale factor instability [2]. The measure-
ment of deterministic error is the main part of this type of error compensation algorithm,
and extensive experimentation is required to determine the error parameters [2–4]. The
authors of [2] summarized the methodology of how to define deterministic errors by a
27-state static test setup and a 60-state dynamic test setup and how these errors were used
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in error compensation models. A novel dynamic test setup was proposed in [3], which
overcame the limitations in the conventional calibrations with the static or quasi-static test
setups. Although an accurate error model can be established based on the above methods,
many parameters need to be calibrated, and the calibration process is complicated. Other
studies model inertial sensor errors from the perspective of random processes, considering
MEMS-IMU errors as stochastic noise [5,8–11]. The authors of [5] proposed a model for
the combined residuals and random errors, where residuals referred to the error left after
the compensation of deterministic errors, and the model was still stochastic. For random
noise modeling, the commonly used methods are the Allan variance [8], PSD [9], the
Gauss–Markov (GM) model, the autoregressive (AR) model [10], etc. The above meth-
ods are all based on models to realize error estimation and compensation. The authors
of [12–16] introduced unknown inputs into systems to reduce the impact of error (or noise)
on the accuracy of filter estimations. Because the unknown input of the system is usually
generated by factors such as environmental disturbances and mutations, it is difficult to
establish a corresponding model and obtain prior information. The author of [12] derived
the robust two-stage Kalman filter based on the U-V transform, which was an unknown
input decoupled filter. In this method, filters were divided into bias estimator and bias-free
estimator. Different from designing an unknown input decoupled filter, [13] developed the
optimal filter based on the minimum variance unbiased estimation and realized the simul-
taneous estimation of the input and the state of a linear discrete-time system. The authors
of [14] introduced an internal model approach to unknown input problems and generalized
the classical internal model principle to the case with arbitrary unknown disturbances.
This is a generalized model for a certain class of problems. The authors of [15] proposed
a robust three-stage unscented Kalman filter and solved the unknown input problem in
navigation for the Mars entry phase. The authors of [16] improved the accuracy of multiple
homogeneous MEMS gyroscope fusions when suffering from unknown environmental
disturbances. This article considers reducing the measurement error of IMU from the
perspective of the model method and does not conduct an in-depth study of the problems
of systems with unknown inputs. We summarize a set of error modeling methods. It is
different from unknown input problems in that the relatively accurate prior information
of noise can be obtained by using Allan variance. Additionally, the estimation errors are
compensated for at the mechanism level and propagation level.

Another way to analyze and compensate for an INS error is by building an error
propagation model based on navigation principles [17–21]. There are two basic approaches
to the deviation in INS error models in the literature: the phi-angle approach (or the true
frame approach) and the psi-angle approach (or the computer frame approach) [17,18]. The
attitude calculation in INS has three approaches: Euler angle, direction cosine matrix and
quaternion. The quaternion method has received extensive attention for the advantages
of less computation, higher accuracy and avoiding singularities [20,21]. Nevertheless,
most of the error propagation models were established based on the geographic frame
and relied on latitude and longitude to provide location information. In GNSS-denied
environments, such as an indoor environment, these error models were inconvenient to
use. Meanwhile, there are a few pieces of research combining the mechanism error model
with the propagation error model.

This paper aims to comprehensively utilize the mechanism error model and propa-
gation error model, propose the two-level error model and summarize a complete set of
methods from data prefiltering to data fusion. The rest of this article is organized as follows.
In Section 2, we introduce the data prefiltering method in relation to raw IMU data. In
Section 3, we propose the two-level error model and EKF fusion method based on this. The
different experiments and results are shown in Section 4. Section 5 summarizes this article.

2. Data Prefiltering

The vast majority of multi-sensor positioning methods are based on INS, which rely on
IMU, especially MEMS-IMU, to achieve positioning and navigation. MEMS-IMU includes
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one accelerometer and one gyroscope, which can measure three-axes acceleration and three-
axes angular velocity. The measurements of MEMS-IMU always contain a certain amount of
noise, which leads to non-negligible drifts in vehicle path estimation due to time integration.
There are two categories of noise: short-term noise with a high frequency and long-term
noise with a low frequency. In the time domain, the vehicle motion information mixes
with such noise, and they cannot be distinguished directly. While in the frequency domain,
the movement frequency of a vehicle is usually no more than 20 Hz, and a land vehicle is
usually below 5 Hz [22], whereas short-term noise can reach more than 50 Hz. Therefore,
we need to employ data prefiltering methods before utilizing the two-level error model to
eliminate short-term noise whose frequency is around the vehicle movement frequency.

2.1. Wavelet Denoising Method

Fourier transform (FT) is the most common and extremely useful method for frequency
analysis. However, through transforming the signal to the frequency domain by FT, the
time-domain information is lost. Short-time Fourier transform (STFT) can overcome this
drawback by adding a window function. However, both time localization and frequency
resolution cannot be optimal at the same time. Therefore, performing a wavelet trans-
form to realize IMU signal decomposition in both the time and frequency domains is a
superior method.

From multiresolution analysis, φ(x) and ψ(x) are the scaling function and wavelet
function, respectively, and they satisfy the following equations:

φ(x) =
√

2∑
n

hnφ(2x− n) (1)

ψ(x) =
√

2∑
k

gkφ(2x− k) (2)

The coefficients of the scaling and wavelet functions obey the following equations:

hn =
√

2
∫

φ(x)φ(2x− n)dx (3)

gk =
√

2
∫

ψ(x)φ(2x− k)dx (4)

where hn has the characteristic of a finite impulse response (FIR) low-pass digital filter,
and the FIR digital filter that consists of the wavelet coefficient, gk, is a high-pass digital
filter [23]. By performing discrete-time FT as Equations (5) and (6), we can get the frequency
response of both filters.

H(w) =
∞

∑
n=−∞

hne−inw (5)

G(w) =
∞

∑
k=−∞

gke−ikw (6)

Based on the Mallat algorithm [24] and the filter bank method, the wavelet denoising
method is divided into three parts: decomposition, threshold denoising method and
reconstruction. For example, the three-level decomposition is shown in Figure 1. x(n)
is the raw IMU signal in the time domain. By applying convolution with digital filter
banks derived from the scaling and wavelet functions, the raw signal is decomposed into
the wavelet coefficient, d1, with high frequency and the scaling coefficient, c1, with low
frequency. Both d1 and c1 are in the frequency domain. After three times repetitions, there
are four parts of the signal corresponding to different frequency intervals. The coefficients
containing motion information have a large amplitude, so setting a suitable thresholding in
specific methods can eliminate a certain amount of noise. After thresholding denoising,
by implementing the inverse wavelet transform that is G̃ and H̃ in Figure 1 on c̃3 and
d̃3, we can get the reconstructed coefficient, c̃2. Additionally, if repeated three times, the
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denoised IMU signal, x̃(n), can be obtained. In the decomposition part, digital filter
banks and downsampling are taken to realize the discrete wavelet transform. While in the
reconstruction part, digital filter banks and upsampling are taken to reconstruct the signal.
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Hard thresholding [25] and soft thresholding [26] are two common thresholding
methods, and some scholars have conducted in-depth research on the selection of thresh-
olds [25,27–29]. In the hard-thresholding method, coefficients with amplitudes less than
thresholding are set to 0, and coefficients that are greater than thresholding remain un-
changed, and the equation is as (7).

Thard(x) =
{

0, |x| ≤ T
x, |x| > T

(7)

While in the soft-thresholding method, coefficients with magnitudes less than thresh-
olding are set to 0, and coefficients with magnitudes larger than thresholding are reduced
to the difference in them, and the equation is

Tso f t(x) =
{

0, |x| ≤ T
sgn(x)(|x| − T), |x| > T

(8)

Considering the characteristics of the raw IMU signal, this paper presents the soft-
thresholding method for IMU data denoising. More detailed information will be introduced
in Section 2.2.

2.2. Implementation Details

The fundamental theory of the wavelet shrinkage method is that wavelet function has
a better time–frequency property, and discrete wavelet transform (DWT) has an ability to
“focus” on signals because of its multiresolution property. The “focus” ability makes signal
energy fasten on several coefficients, while noise is evenly distributed across the whole
scale space, and this is determined by the distribution property of noise.

The IMU data acquired from MEMS-IMU usually include a large amount of noise;
one reason is that MEMS-IMU lacks high accuracy, and the other is that the movements
of a vehicle always bring vibrations, and this affects the measurement of MEMS-IMU. We
perform two levels of wavelet decomposition on account of the UAV motion frequency and
IMU sampling frequency. Based on the soft-thresholding method, we selected the SURE-
Shrink algorithm to evaluate the noise threshold. This algorithm is a hybrid algorithm
based on the SURE threshold and Universal threshold; it considers the differences in the
statistical properties of the coefficients of different wavelet sub-bands, and it is one of the
best sub-band adaptive wavelet shrinkage algorithms. The calculation is as follows:

T =

{
Tsure, S2

N ≤
ηN√

N
Tuniv, S2

N > ηN√
N

(9)
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where
ηN = log2(N)3/2 (10)

S2
N = ∑

t

(
Y2

t − 1
)

/N (11)

Here, N is the number of coefficients of the wavelet sub-band, and Yt is the t-th coeffi-
cient of the current wavelet sub-band. The two thresholds, Tuniv and Tsure, are calculated by

Tuniv = σn
√

2 ln N (12)

Tsure = argmin
T>0

{
N · σ2

n +
N−1

∑
i=0

max
{

Yi, T2
}
− 2σ2

n#{|Yt| ≤ T}
}

(13)

where #{·} represents the number of elements that satisfy the conditions. From [25], σn
can be estimated as the median absolute deviation in the wavelet coefficients at the finest
level and divided by 0.6745. The finest level of the wavelet coefficients contains the highest
frequency level of the signal, which we think most of them are noise. Additionally, the
equation form is

σn = median(|dN −median(dN)|)/0.6745 (14)

Here, dN is the wavelet coefficients of the finest level. Additionally, the flow chart of
the wavelet shrinkage algorithm is shown in Figure 2.
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The denoising results are detailed in Section 4.1.2.

3. Methodology

In this chapter, according to the mechanism of MEMS-IMU errors and the motion
characteristics of UAV, we introduce the two-level error model EKF method in detail,
which is the main innovation of this paper. The two-level error model is established from
two levels: one is from the mechanism, and the other is from the propagation. In the
mechanism error model, we aim to build an error model that can describe the accelerometer
and gyroscope sensor errors simply and generally. While in the propagation error model,
we intend to establish the error propagation path based on the state equations of the
navigation system.
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3.1. Mechanism Error Model

From the mechanism of error occurrence, the error variables we focus on are δa and
δw, which are errors of state a and w. For these two variables, we selected the stochastic
process model as the mechanism error model; the arguments are as follows:

1. It is convenient to analyze and calculate the parameters of the stochastic model;
2. There are little application condition limitations on the stochastic model;
3. There is no need to calibrate a large number of parameters in contrast to other methods.

The common stochastic models used to describe errors are the autoregressive (AR)
model and Gauss–Markov (GM) process model. More detailed information about the
mechanism error model is discussed in Sections 3.1.1 and 3.1.2.

3.1.1. Stochastic Process Model

In most KF implementations for the INS-based fusion positioning method, the first-
order GM model is used to describe inertial sensor errors with a decaying exponential
autocorrelation sequence [30–33]. The first-order GM model for an inertial sensor error is
given as:

.
x(t) = −βx(t) +

√
2βσ2w(t) (15)

Here, β is the reciprocal of correlation time, and σ2 is the variance in system noise
w(t). The discrete-time equation is written as follows:

xk = (I − β∆t)xk−1 +
√

2βσ2wk∆t (16)

where ∆t is the time interval.
The other stochastic model of inertial sensor errors is the higher-order AR model.

To use this model, long-term measurements from each inertial sensor while stationary
are required for computing the higher-order AR model. The pth-order AR model for a
discrete-time-domain sequence can be described by the following difference equation:

y(n) = −
p

∑
k=1

αky(n− k) + β0w(n) (17)

where α1, α2, α3, . . . , αp are the model parameters, and β0 is standard deviation in sensor
white noise. However, to achieve higher accuracy, the model needs to use a higher order.
Since the AR model is applied to all six axes of inertial sensors, each increase in the model
order will lead to six more states added to the KF state error vector.

3.1.2. Implementation Details

Our aim in this paper is not to establish a noise model to describe the physical
properties of sensor errors in detail but merely to derive generic, simple noise models that
are suitable for the INS-based fusion positioning method. The mechanism error model is
derived from (16); in the discrete-time domain, the equation is as follows:

xk+1 =

(
I − ∆t

τb

)
xk + wk + vk (18)

where xk is the slowly varying process with the correlation time, τb, in the discrete-time
domain, wk is the white noise component of xk, and vk represents the white noise component
of the error model. and v are independent, zero mean, white Gaussian processes of strength
σb and σw, and in the discrete-time domain:

E
[
wkwT

k

]
= ∆t · σ2

b (19)
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E
[
vkvT

k

]
=

σ2
w

∆t
(20)

We define w = w + v, and then

E
[
wwT

]
= ∆t · σ2

b +
σ2

w
∆t

(21)

Now the mechanism error model in the discrete-time domain becomes

xk+1 =

(
I − ∆t

τb

)
xk + wk (22)

When we apply the mechanism error model to six axes of inertial sensors, the pa-
rameters that need to be obtained beforehand are θ = {τb, σb, σw}. By keeping the IMU
stationary for more than 3 h, which means the outputs of IMU only contain noise (including
long-term noise and short-term noise), the parameters σb, σw can be directly read off of the
Allan deviation plot [33], and τb is the correlation time of the output signals.

3.2. Propagation Error Model

For the propagation error model, we derive model equations based on the state
differential equations of navigation systems. The variables we focus on are δp, δv, δq, which
are errors of state p, v, q. We use quaternions, q, instead of Euler angles to describe the
rotations of navigation systems because solving in quaternions can avoid singularities
and the gimbal lock problem. The differential equations that characterize the motion of
navigation systems are given as:

.
p(t) = v(t) (23)

.
v(t) = C[q(t)]a(t) + g[p(t)] (24)

.
q(t) = Ω[w(t)]q(t) = Q[q(t)]w(t) (25)

where p, v are the position and velocity of the navigation systems, respectively, in the
inertial reference frame; a is the specific acceleration vector; the gravitational acceleration
g[p(t)] changes with the unit position; and the rotation matrix based on Hamilton form can
be calculated by

C[q(t)] =

 q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3
2q0q3 + 2q1q2 q2

0 − q2
1 + q2

2 − q2
3

2q1q3 − 2q0q2 2q0q1 + 2q2q3

2q0q2 + 2q1q3
2q2q3 − 2q0q1

q2
0 − q2

1 − q2
2 + q2

3

 (26)

The differential equation of quaternion is given as (27):

.
q =

1
2

q⊗ w = Q(q) · w = Ω(w) · q (27)

where w is the angular velocity, and q = [qw, qv]
T is the Hamilton form of quaternions

with the scalar part, qw, and the vector part, qv; in this form, rotation corresponds to the
right-hand rule. ⊗ denotes quaternion multiplication; the latter two are equivalent forms,
which are matrix multiplication rather than quaternion multiplication. Additionally, the
matrix Ω(w), Q(q) is given as:

Ω(w) =
1
2


0 −w1 −w2 −w3

w1 0 w3 −w2
w2 −w3 0 w1
w3 w2 −w1 0

 =
1
2

[
0 −wT

w −[w]×

]
(28)
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Q(q) =
1
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 (29)

[V]× =

 0 −V3 V2
V3 0 −V1
−V2 V1 0

 (30)

Equations (23)–(25) characterize the true attitude and position of a navigation system
based on true specific acceleration and angular velocity. However, in an actual system, only
measurements are available. For a quantity z, zm = the measurement of z and δz = the
error of z. Additionally, the true quantity can be characterized by the sum of measurement
and error. In the navigation system, there are equations listed as (31)–(35).

p = pm + δp (31)

v = vm + δv (32)

q = qm + δq (33)

a = am + δa (34)

w = wm + δw (35)

The differential equation of the position error can be derived as follows:

δ
.
p =

.
p− .

pm = v− vm = δv (36)

The differential equation of the velocity error can be derived as:

δ
.
v =

.
v− .

vm = C(q)a + g(p)− C(qm)am − g(pm)
= C(qm + δq)(am + δa) + g(pm + δp)− C(qm)am − g(pm)

(37)

The rotation matrix and gravitational acceleration can be approximated with measure-
ments, with first-order errors, as (38) and (39).

C(qm + δq) = C(qm) +
∂C
∂qm
· δq (38)

g(pm + δp) = g(pm) +
∂g

∂pm
· δp (39)

Then, the new differential Equation (40) of the velocity error can be obtained from (38)
and (39). Considering sufficiently small errors, the products of errors can be neglected, and
(40) can finally become (41).

δ
.
v =

[
C(qm) +

∂C
∂qm
· δq
]
· (am + δa) +

[
g(pm) +

∂g
∂pm

· δp
]
− C(qm)am − g(pm) (40)

δ
.
v = C(qm) · δa +

∂C
∂qm

am · δq +
∂g

∂pm
· δp (41)

The differential equation of quaternion can be derived as

δ
.
q =

.
q− .

qm = Ω(wm + δw) · (qm + δq)−Q(qm) · wm
= Ω(wm + δw) · δq + Ω(wm + δw) · qm −Q(qm) · wm

(42)



Sensors 2023, 23, 557 9 of 20

It can be easily approved that Q(q) · w = Ω(w) · q, and (42) becomes

δ
.
q = Ω(wm + δw)δq + Q(qm)(wm + δw)−Q(qm)wm
= Ω(wm + δw)δq + Q(qm)δw

(43)

Neglecting the products of small errors, the error equation of quaternions becomes

δ
.
q = Ω(wm)δq + Q(qm)δw (44)

The propagation error model can finally be obtained:

δ
.
p = δv (45)

δ
.
v = C(qm) · δa +

∂C
∂qm

am · δq +
∂g

∂pm
· δp (46)

δ
.
q = Ω(wm)δq + Q(qm)δw (47)

3.3. Error Model EKF Method
3.3.1. Basic EKF Method

The continuous-time nonlinear system’s state equation is

.
x = f (x, u, w, t), w ∼ (0, Q) (48)

Additionally, the continuous-time nonlinear measurement equation is

y = h(x, v, t), v ∼ (0, R) (49)

The discrete-time nonlinear system equations can be obtained by discretization, and
(48) and (49) become

xk = fk−1(xk−1, uk−1, wk−1), wk ∼ (0, Qk) (50)

yk = hk(xk, vk), vk ∼ (0, Rk) (51)

Applying Taylor series expansion and keeping the first order at xk−1 = x̂+k−1, the state
Equation (50) becomes

xk = Fk−1xk−1 + ũk−1 + Lk−1wk−1 (52)

Here,

Fk−1 =
∂ fk−1

∂x

∣∣∣∣
x̂+k−1

, Lk−1 =
∂ fk−1

∂w

∣∣∣∣
x̂+k−1

(53)

ũk−1 = fk−1

(
x̂+k−1, uk−1, 0

)
− Fk−1 x̂+k−1 (54)

Additionally, the nonlinear measurement equation becomes (55) after a first-order
approximation at xk = x̂−k .

yk = Hkxk + zk + Mkvk (55)

Here,

Hk =
∂hk
∂x

∣∣∣∣
x̂−k

, Mk =
∂hk
∂v

∣∣∣∣
x̂−k

(56)

zk = hk
(
x̂−k , 0

)
− Hk x̂−k (57)

Here, the basic Kalman filter equations can be applied after the above discretization
and linearization; there are the state estimations of (58) and (59) and the measurement
updates of (60)–(62).

P−k = Fk−1P+
k−1FT

k−1 + Lk−1Qk−1LT
k−1 (58)
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x̂−k = fk−1

(
x̂+k−1, uk−1, 0

)
(59)

Kk = P−k HT
k

(
HkP−k HT

k + MkRk MT
k

)−1
(60)

x̂+k = x̂−k + Kk
[
yk − hk

(
x̂−k , 0

)]
(61)

P+
k = (I − Kk Hk)P−k (62)

3.3.2. Two-Level Error Model EKF Method

In this section, the two-level error model is applied to the EKF method. We take the
ultra-wideband (UWB) system as the measurement and derive the EKF method based
on this. The state vectors that need to be considered include p: position; v: velocity; and
q: quaternion; especially, in this paper, we need to discriminate their nominal states and
error states. Therefore, the state vector is given as follows:

x =
[

p1×3, v1×3, q1×4, δp1×3, δv1×3, δq1×4, δa1×3, δw1×3
]T

(63)

where δa is the error state of acceleration obtained by the accelerometer, and δw is the error
state of angular velocity obtained by the gyroscope. The state vector, x, is a 26× 1 column
vector. In order to facilitate the subsequent matrix derivation, the following statements are
given here. Variables except for quaternion, which is a 1× 4 row vector, are composed of
three elements, which are (we take the position as an example): p1×3 = [p1, p2, p3], and
they match the x, y and z axes, respectively.

The elements in the state vector are divided into three groups: sensor errors corre-
sponding to mechanism error model variables, δa, δw; motion errors corresponding to
propagation error model variables, δp, δv, δq; and motion nominal state variables, p, v, q.
Modifications need to be applied to the traditional EKF method to adopt the two-level error
model. At the moment, k, the state estimation of the navigation system is divided into
two layers: (a) the motion nominal state performs a prediction based on sensor errors of
moment k-1 and is updated based on UWB measurements at the moment, k; (b) the motion
errors perform a prediction based on their state at the moment, k-1, and sensor errors at
the moment, k-1. Additionally, the sensor errors at the moment, k, are predicted by the
mechanism error model. The true motion state of the navigation system at the moment, k,
is the sum of the motion nominal state and motion errors. The data fusion process is shown
in Figure 3.
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The state equations with propagation error models in continuous time are as follows:

.
p = v (64)

.
v = C · (am + δa) + g (65)

.
q =

1
2

q⊗ (wm + δw) (66)

δ
.
p = δv (67)

δ
.
v = C(q) · δa +

∂C
∂q

am · δq +
∂g
∂p
· δp (68)

δ
.
q = Ω(wm)δq + Q(q)δw (69)

By discretization, (64)–(69) become

pk = pk−1 +
1
2

(
vk + vk−1

)
· ∆t (70)

vk = vk−1 +
[
Ck−1

(
ak−1

m + δak−1
)
+ gk−1

]
· ∆t (71)

qk = qk−1 ⊗ q
{(

wk−1
m + δwk−1

)
· ∆t

}
(72)

δpk = δpk−1 +
1
2

(
δvk + δvk−1

)
· ∆t (73)

δvk = δvk−1 +

[(
∂C
∂q

)k−1
· ak−1

m · ∆t

]
· δqk−1 + C

(
qk−1

)
· δak−1 · ∆t (74)

δqk = Q
(

qk−1
)
· δwk−1 + Ω

(
wk−1

m

)
· δqk−1 (75)

Additionally, the mechanism error models are

δak+1 =

(
I − ∆t

τb,a

)
δak + wa,k (76)

δwk+1 =

(
I − ∆t

τb,w

)
δwk + ww,k (77)

where

E
[
wa,kwT

a,k

]
= ∆t · σ2

b,a +
σ2

w,a

∆t
(78)

E
[
ww,kwT

w,k

]
= ∆t · σ2

b,w +
σ2

w,w

∆t
(79)

Applying Taylor series expansion and keeping the first order, the state equations
finally become

xk = F · xk−1 + G · wk−1 (80)
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where wk−1 =
[
wk−1

a , wk−1
w

]T
, and wa is the associated white noise process of the accelerom-

eter with the known covariance; ww is that of the gyroscope with the known covariance.
The state transition matrix F is a 26× 26 matrix and is calculated as:

F =



F11 F12 0 0 0 0 0 0
0 F22 F23 0 0 0 F27 0
0 0 F33 0 0 0 0 F38
0 0 0 F44 F45 0 0 0
0 0 0 0 F55 F56 F57 0
0 0 0 0 0 F66 0 F68
0 0 0 0 0 0 F77 0
0 0 0 0 0 0 0 F88


(81)

The derivations in the individual elements of the state transition matrix F can be found
in Appendix A. For the noise vectors wa and ww, the noise coefficient matrix G is a 26× 6
matrix and is calculated by

G =

[
0 0 0 0 0 0 I3×3 · ∆t 0
0 0 0 0 0 0 0 I3×3 · ∆t

]T

(82)

The measurement vector z contains four distances because of the deployment of four
UWB base stations. The distance is measured based on the arrival time difference of
electromagnetic waves. Additionally, the vector z is given as (83).

z = [d1, d2, d3, d4]
T (83)

di(k) =
√
(p1(k)− xi)

2 + (p2(k)− yi)
2 + (p3(k)− zi)

2, i = 1, 2, 3, 4 (84)

where p(k) = [p1(k), p2(k), p3(k)]
T , in which subscript (1,2,3) corresponds with the axes

(x, y, z). (xi, yi, zi) make up the coordinate of the i-th UWB base station.
The discrete-time measurement equation is given by (85):

z = H · x + r (85)

where H is the measurement coefficient matrix, and r is the measurement noise vector,
which is the assumed white noise. The matrix H is derived by (86).

H4×26 =
[

Hd
p,4×3, 04×23

]
(86)

The matrix Hd
p,4×3 has the form of

Hd
p,4×3 =


p1(k)−x1

R1

p2(k)−y1
R1

p3(k)−z1
R1

p1(k)−x2
R2

p2(k)−y2
R2

p3(k)−z2
R2

p1(k)−x3
R3

p2(k)−y3
R3

p3(k)−z3
R3

p1(k)−x4
R4

p2(k)−y4
R4

p3(k)−z4
R4

 (87)

where
Ri =

√
(p1(k)− xi)

2 + (p2(k)− yi)
2 + (p3(k)− zi)

2 (88)

The algorithm flow of the two-level error model EKF is shown in Algorithm 1.
Algorithm 1. Process of two-level error model EKF.
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Algorithm 1: Two-Level Error Model EKF

State Variables: x = [p, v, q, δp, δv, δq, δa, δw]T

Initialization: x0, P0
Input: xk−1, Pk−1,1 uk−1, zk
Output: x̂k, P̂k
1 : ak−1 ← ak−1

m + δak−1 ; wk−1 ← wk−1
m + δwk−1 ;

u+k−1 ← [ak−1, wk−1]
T

2 : x̂−k ← fk−1

(
xk−1, u+k−1

)
3 : P−k ← Fk−1Pk−1FT

k−1 + Gk−1
2Qk−1GT

k−1

4 : Kk ← P−k HT
k
(
HkP−k HT

k +3 Rk
)−1

5 : x̂+k ← x̂−k + Kk
[
zk − hk

(
x̂−k , 0

)]
6 : P̂k ← (I −KkHk)P

−
k

7 : p̂k ← p̂+k + δp̂+k ; v̂k ← v̂+k + δv̂+k ; q̂k ← q̂+k ⊗ δq̂+k
8 : x̂k ←

[
p̂k, v̂k, q̂k, δp̂+k , δv̂+k , δq̂+k , δâ+k , δŵ+

k
]T

9 : Return: x̂k, P̂k

uk−1 =
[

ak−1
m , wk−1

m

]T
, Qk−1 = E

[
wk−1wT

k−1

]
, Rk = E

[
rkrT

k

]
4. Experiment Results and Discussion

In this section, we discuss the experiment results of the two-level error model EKF
method based on the UWB-drone dataset [34]. We present the results in three sections. In
Section 4.1, we introduce the dataset used in this paper and present the prefiltering results.
In Section 4.2, the parameters in the two-level error model, which need to be acquired
beforehand, are shown. Additionally, in Section 4.3, the comparison results of the two-level
error model and the basic EKF method are presented.

4.1. Dataset Description and Prefiltering
4.1.1. Dataset Description

The UWB-drone dataset is about UWB-based UAV localization in GNSS-denied en-
vironments, and we selected UAV/anchor_in_room_corners to carry out the experiment.
This dataset contains UAV IMU information, UWB anchor distance and position and Mocap
data as the ground truth. The positions of the x–y planes in relation to UWB and Mocap
are shown in Figure 4a, and the distance sequence figure of the four anchors is shown in
Figure 4b.

4.1.2. Data Prefiltering Results

The data prefiltering results of the gyroscope are shown in Figure 5, with the ac-
celerometer similarly. From the three-axes raw data figures and their spectrum maps, it can
be seen that the raw signals from IMU have obvious fluctuations. After applying two-level
wavelet decomposition and reconstruction from the SURE-Shrink thresholding method,
the results are shown in Figure 5c,g,k, and the last column of figures corresponds to the
spectrum map. The fluctuation of raw signals is significantly reduced after denoising.
In the spectrum maps of data after denoising, the high-frequency signal amplitude is
significantly weakened.
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spectrum map of gyroscope; (c,g,k) are data after prefiltering corresponding to x, y and z axes; and
(d,h,l) are spectrum map of data after prefiltering.
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4.2. Two-Level Error Model Parameter Estimation Results

In the two-level error model, especially the mechanism error model, we need to
estimate the parameters θ = {τb, σb, σw} beforehand. τb can be obtained by calculating
correlation time, while σb, σw can be obtained from the Allan variance plot. The dataset
UAV/anchor_in_room_corners does not contain long-term IMU stationary data, and the ex-
periment was conducted on a UAV with a Pixhawk2.4 controller whose IMU was MPU6000.
Thus, we performed the inertial sensor stationary experiment on MPU6000 for 5 h to obtain
static IMU data, and then, we created the Allan variance plot, as shown Figure 6. In this
figure, the raw data of a six-axes IMU are plotted in solid lines, and the prediction curves
of six-axes data are plotted in fine-dotted lines. σw is the strength of the rate or the accelera-
tion white noise process and is often termed “angular/velocity random walk”, while in
Figure 6, this corresponds to the curve with slope −1/2. σb is termed “bias diffusion” and
corresponds to the curve with slope 1/2. The fine-dotted curves are plotted according to
the estimated parameters σb, σw.
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The parameter estimation results are shown in Table 1.

Table 1. Results of model parameter estimation of MPU6000.

Sensor Axis œw œb

Accelerometer
x 2.419× 10−3 4.402× 10−5

y 2.725× 10−3 1.63× 10−4

z 3.9× 10−3 1.403× 10−5

Gyroscope
x 1.52× 10−4 0
y 8.2× 10−5 0
z 1.02× 10−4 0

4.3. Two-Level Error Model-Based EKF Method Results

We now apply the two-level error model proposed in Section 3 to the UAV dataset. We
show that the two-level error model can improve the attitude estimation performance of
the fusion algorithm in the UAV motion process by comparing three-axes trajectory plots,
which indicate attitude estimation performance, and error figures. The methods we use to
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compare are the EKF method based on the two-level error model, the basic EKF method
and the EKF method based on the data after wavelet denoising.

Figure 7 shows the trajectory comparison of three methods in the x, y and z axes. The
ground truth is plotted in black lines, and the UWB position is plotted in red lines. The
sub-graphs g–i correspond to the EKF method based on the two-level error model; a–c
correspond to the basic EKF method; and d–f correspond to the EKF method based on the
data after denoising. By comparing d–f with a–c, we can see that the SURE-Shrink wavelet
denoising method brings a large performance enhancement to the EKF fusion method, and
the mean positioning error is eliminated to 0.457 m from 1.949 m, as shown in Figure 8. At
the points where the UAV motion state changes, applying the two-level error model can
provide better computational stability, which manifests by less curve fluctuations in the
figures—blue widow parts in d–f as examples.
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Figure 7. Trajectory plots of three methods (two-level error model EKF method, basic EKF method and
EKF method with data after denoising) in x, y and z axes. (g–i) are trajectory estimation comparisons
of two-level EKF, UWB and ground truth by Mocap. (a–c) are trajectory estimation comparisons of
basic EKF method, UWB and ground truth. (d–f) are trajectory comparisons of EKF based on data
after denoising, UWB and ground truth.
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Figure 8. Partially enlarged trajectory plots of two-level error model EKF in x and y axes correspond-
ing to (a,b).

Applying the EKF fusion method based on raw IMU data does not effectively improve
the UAV positioning accuracy, even though the UWB positions are quite close to the ground
truth, as shown in Figure 7a–c. However, by applying the two-level error model, the fusion
positions are closer to ground truth than the UWB positions, as shown partially enlarged
in Figure 9. At the beginning of EKF based on the two-level error model fusion, the curve
has large fluctuations because the initial gain matrix deviates far from the optimal value.
Compared to x and y axes’ results of the two-level error model EKF method, the z-axis
result has larger fluctuations. The reasons that cause these fluctuations can be divided into
two aspects: one is that the UWB positioning accuracy is poorer in the z-axis than the x and
y axes, which causes large fluctuations in the UWB position results; the other is that the
inertial data in this UAV dataset generally contain much vibration, and these two reasons
explain the large fluctuations.
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Figure 9. Error figure of all three methods, basic EKF (“B” for short), EKF based on data after
denoising (“E” for short) and two-level error model EKF method (“T” for short). The mean errors are
on the right.

Figure 9 shows the error figures of the three methods. Applying the EKF fusion
method on raw inertial data causes a large error, and the average error of the basic EKF



Sensors 2023, 23, 557 18 of 20

method is 1.949 m. After applying the SURE-Shrink wavelet denoising method, the fusion
accuracy is greatly improved, and the average error is eliminated to 0.457 m; the accuracy is
improved by 76.6%. After applying the two-level error model, the computational stability
is largely enhanced at UAV motion state change points, and the accuracy is improved
by 84.3%.

5. Conclusions

This paper set out to modify the INS-based fusion positioning method by providing
generic noise models. In this paper, the IMU wavelet denoising method based on SURE-
Shrink threshold was summarized, and the two-level error model was proposed, which
includes the mechanism error model and the propagation error model. The mechanism er-
ror model was established from stochastic process theory, and the propagation error model
was derived from navigation principles; both compensate for the inertial sensor errors. We
derived the EKF fusion method based on the two-level error model, and the experimental
verification was carried out with UWB measurements. The experimental results suggest
that applying the wavelet denoising method could largely improve positioning accuracy by
76.6% compared to the basic EKF method. Additionally, applying the two-level error model
could further improve positioning accuracy by 84.3% compared to basic EKF. Meanwhile,
at the points where the UAV motion state changes, using the two-level error model could
provide higher computational stability and less trajectory curve fluctuations.

At the end of the curve for the z-axis in the two-level error model EKF method in
Figure 7i, huge data fluctuations exist in the fusion. This is an interesting phenomenon, and
we do not consider the case of unknown inputs in the system. This is an issue for future
research to explore.
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Appendix A

F11 = I3×3
F12 = I3×3∆t

F22 = I3×3
F27 = Ck−1∆t

F44 = I3×3
F45 = I3×3∆t

F55 = I3×3
F57 = Ck−1∆t

F66 = Ω
(

wk−1
m

)
F68 = Q

(
qk−1

m

)
F77 = I3×3 − ∆t

τb,a

F78 = I3×3 − ∆t
τb,w

(89)
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