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Abstract—Real-time localization and mapping for micro
aerial vehicles (MAV) is a challenging problem, due to the
limitation of the onboard computational power. In this pa-
per, a tightly coupled light detection and ranging (LiDAR)-
inertial odometry is developed, which achieves high accu-
racy, real-time trajectories estimation for MAV utilizing only
onboard sensors and a low-power onboard computer. The
key idea of the proposed method is to integrate the IMU
measurements, correct LiDAR matching measurements, Li-
DAR matching outliers into one nonlinear and noncontinu-
ous objective function, and formulate the localization and
mapping problem as a stochastic optimization problem.
To deal with the nonlinear and noncontinuous objective
function, a gradient-free optimization method is proposed
to solve the stochastic optimization problem with a single
parallel iteration. The novel constructed objective function
and gradient-free optimization algorithm enable the pro-
posed LiDAR-inertial odometry to achieve high accuracy
and low time consumption. The effectiveness of the pro-
posed method is demonstrated through various scenarios,
including public datasets and real-world flight experiments.

Index Terms—LiDAR-based perception, Aerial robots,
Sensor fusion, State estimation, Parallel processing.

I. INTRODUCTION

LOCALIZATION and mapping is a fundamental task in
developing autonomous MAV. With the deployment of

the autonomous MAV, it has the potential to enable surveil-
lance, information gathering, and exploration. Both of these
missions rely on reliable state estimation for MAV. During the
last decade, the global navigation satellite system (GNSS) [1],
motion capture systems [2], and ultra-wideband (UWB) [3] are
well-applied for MAV-based applications. However, these nav-
igation systems rely on external sensings are only functional
under certain environmental conditions. For the real-world
application, MAVs have to travel through a variety of diverse
environments or operate in previously unknown unstructured
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rough terrain where external sensors are difficult to set up.
With the goal of achieving a fully autonomous application for
MAV in different scenarios flexibly, it is necessary to develop
a real-time localization and mapping system that can work
without external sensors. Thanks to the continuously reduced
cost and weight of LiDAR in recent years, it has become a
viable onboard sensing payload for MAV. Compared with vi-
sual navigation systems (VNS), LiDAR-based localization and
mapping systems can provide more reliable state estimation
thanks to the direct depth measurement, which is immune to
scene illumination and texture changes. The aforementioned
character is critical for the aerial platforms since they are
easily destroyed when state estimation failures occur. Despite
the above advantages, the large number point cloud generated
by LiDAR worsens the computational complexity. Different
from the ground vehicles, which are easy to take laptop, or
even desktop onboard, a low-power onboard computer is the
preference for MAV to improve its duration of the flight.
Hence, a LiDAR-based navigation system that can provide
real-time localization and mapping with a low-power onboard
computer is crucial for autonomous MAV applications.

A. Related Work

Real-time localization and mapping is a challenging prob-
lem for LiDAR navigation systems (LNS). In [4], a portable
LiDAR-based localization and mapping system is developed
through the point cloud registration technology represented
by iterative closest point (ICP) [5], generalized iterative clos-
est point (GICP) [6], and normal distribution transformation
(NDT) [7], which can provide pose estimation by the dense
point cloud. Processing the dense point cloud is very computa-
tionally costly, with the aim of reducing the computational cost
of [4], a voxelization strategy is adopted in LiTAMIN [8] and
LiTAMIN2 [9] to downsample a large number of the raw point
cloud, and a high-performance graphics processing unit (GPU)
is used to accelerate the localization and mapping procedure.
However, different from the low-power GPU preferred by
MAVs, the high-performance GPU is difficult to take onboard,
due to the power and weight limitation of MAVs. In DLO [10],
a lightweight LNS is developed through the GICP matching
method in the context of the DARPA Subterranean Challenge.
DLO enables the use of dense point cloud to provide real-
time pose estimation for MAV, through the pruning of GICP
matching with an adaptive keyframe strategy. Nonetheless,
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the keyframe strategy is a trade-off between accuracy and
real-time performance. Feature-based LNS extracts geometric
features from LiDAR scans to improve the real-time perfor-
mance without sacrificing localization and mapping accuracy.
LOAM [11] is a popular localization and mapping algorithm,
which can provide low-drift pose estimation and mapping.
Simple geometric feature extraction strategies are introduced
in LOAM, where the feature points are segmented into edge
features and planar features based on local smoothness, and the
robot pose is estimated by doing edge-to-edge and planar-to-
planar matching procedure. However, LiDAR-only localization
and mapping methods will struggle to perform robustly during
high-speed motion. Therefore, LiDAR is typically fused with
an IMU for robust localization and mapping. LIMO [12], a
tightly-coupled LiDAR-inertial odometry, introduced a bundle
adjustment (BA) into LNS to jointly optimize measurements
from LiDAR and IMU. Although BA has good performance in
the VNS field, for LiDAR odometry which has 10 to 100 times
of feature points than the visual odometry, BA is designed to
process all the LiDAR features in the local window, the real-
time performance is difficult to achieve by onboard computing
power. With the aim of improving the real-time performance of
the BA process performed in LIOM [12], LINS is presented
in [13], which uses an error-state Kalman filter to fuse the
measurements from LiDAR and IMU in a tightly-coupled
manner. In LIO-SAM [14], one of the state-of-the-art LiDAR-
inertial odometry is proposed by fusing the IMU preintegration
factor and scan-to-map matching factor into a factor graph,
which can achieve real-time with onboard computing power
thanks to the keyframe strategy. In CLINS [15], a continuous
time LiDAR-inertial system is proposed by adopting a non-
rigid registration using B-splines. With the aim of achieving
localization and mapping for autonomous MAV, FAST-LIO is
presented in [16], a Sherman-Morrison-Woodbury equation is
adopted to reduce the computation complexity of the iterated
extended Kalman filter (IEKF) update procedure. To further
improve the real-time performance of FAST-LIO, an incremen-
tal KD-tree [17] is implemented in FAST-LIO2 [18], which
significantly improves the efficiency of LiDAR matching and
mapping procedure.

B. Motivations and Contributions

In view of the aforementioned analysis, LiDAR-based local-
ization and mapping generally adopt the voxelization method
[8], [9], keyframe strategy [10], [14], effective data structures
[18] to improve LiDAR matching efficiency and solve the
localization and mapping problem through nonlinear optimiza-
tion or the Kalman filter. These methods are the Gaussian
approximation of the maximum a posteriori (MAP) problem
solved through the iterative least-squares optimization. Only
correct LiDAR matchings are used in the aforementioned
methods to make observations satisfying the Gaussian dis-
tribution assumption. However, discarded incorrect LiDAR
matchings may help improve the accuracy, and the itera-
tive process is time-consuming due to the data association
procedure in each iterative. With the goal of designing a
computationally efficient and high-accuracy localization and

mapping system, in this work, a tightly-coupled LiDAR-
inertial odometry is developed with a single parallel-iteration
solver. The key idea of the proposed method is to integrate the
IMU measurements, correct LiDAR matching measurements,
LiDAR matching outliers into one nonlinear and noncontin-
uous objective function, and formulate the localization and
mapping problem as a stochastic optimization problem. With
gradient-free optimization, the nonlinear and noncontinuous
stochastic optimization problem is solved through a Monte-
Carlo sampling in real-time. The main contributions of this
paper are listed as follow:
1) A tightly-coupled localization and mapping approach is

proposed which considers IMU measurements, the like-
lihood of correct LiDAR matchings, and the number of
incorrect LiDAR matchings simultaneously.

2) To deal with the nonlinear and noncontinuous localization
and mapping problem, a gradient-free optimization algo-
rithm is proposed to solve the optimization with a single
parallel iteration, which significantly improves the real-
time performance of the localization and mapping process.

3) The proposed method is fully paralleled, which can pro-
vide real-time localization and mapping with low-power
onboard computation power. Moreover, a real-world au-
tonomous flight is performed to demonstrate the application
of the proposed LiDAR-inertial odometry.

II. SYSTEM OVERVIEW

A system overview of the proposed LiDAR-inertial odome-
try is given in Fig. 1, which takes advantage of measurements
from LiDAR and IMU in a tightly-coupled manner. The
LiDAR point cloud measurements are fed into the feature
extraction algorithm proposed in LOAM [11], which extracts
features on edge and planer by calculating the curvature of
each LiDAR point. In order to perform the LiDAR match-
ing process, the extracted features are registered to a voxel
map. The voxel map management module is in charge of
maintaining a local map in a Hash table through the adaptive
voxelization method [19] and the singular value decomposition
(SVD) technique (Section III-B). The LiDAR matching cost
is constructed by formulating the LiDAR matching problem
as a maximum likelihood estimation (MLE) problem (Sec-
tion IV-A2). Thanks to the acceptance-rejection sampling [20],
which provides a criterion for judging whether a LiDAR
matching is correct, the LiDAR matching cost considers the
likelihood of correct matchings and the number of incorrect
matchings simultaneously. To deal with the nonlinear and
noncontinuous cost functions, a gradient-free optimization-
based sensor fusion method is proposed to approximate the
optimal solution through a fully paralleled Monte-Carlo sam-
pling (Section IV-B).

III. PROBLEM FORMULATION

Consider a localization and mapping system which is mod-
eled by taking advantage of measurements from a LiDAR, and
an IMU. The full state vector is defined as:

x = [t>,v>,R>,b>a ,b
>
g ]> (1)
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Fig. 1. System overview of the proposed LiDAR-inertial odometry.

where t is the translation vector, v is the velocity vector,
R ∈ SO(3) is the rotation matrix, ba and bg are IMU
accelerometer and gyro biases, respectively.

Different from traditional LiDAR-inertial odometry, the
present work solves the localization and mapping problem as
a stochastic optimization problem.

û = arg min
u

Eτ∼Q [S(x, τ )] (2)

where τ is treated as a random vector generated by a Gaussian
noise process τ ∼ Q(u,σu), u =

[
ω>,a>

]>
, which includes

the angular velocity ω and local liner acceleration a, is the
mean vector of τ , and σu is the covariance matrix of τ .
Eτ∼Q [·] denotes the expectation operation over the random
vector τ with respect to Q, which is abbreviated as EQ [·] in
the rest of this paper. S(x, τ ) is the cost function which is
constructed through IMU measurements residual rI(x, τ ) and
LiDAR measurements residual rL(x, τ ).

S(x, τ ) = rI(x, τ ) + rL(x, τ ) (3)

At time tk, S(x, τ ) is a function of the state vector xtk−1
and

the random vector τtk−1
. xtk−1

is the state vector estimated
at time tk−1, which is a constant vector at time tk. τtk−1

is
a random vector with a mean vector of utk−1

. At time tk, if
the mean vector utk−1

can be solved from (2), the state vector
xtk can be estimated by substituting ûtk−1

and x̂tk−1
into the

kinematic model (5).

A. Kinematic Model

The kinematic model is defined as:

ṫ = v, v̇ = Ra, Ṙ = R[ω]∧

ḃω = 03×1, ḃa = 03×1

(4)

where [·]∧ denotes the skew-symmetric cross-product matrix.
The state estimated at time tk can be represented as a discrete-
time kinematic model of the form

xtk = F (xtk−1
,utk−1

) (5)

where F (·) denotes the state-transition funtion.

B. Map Representation

Following our previous work [21], an adaptive voxelization
method [19] is adopted to maintain a local map for LiDAR-
inertial odometry. The local map is divided into a set of
voxels, each voxel containing a group of LiDAR points
pi(i = 1, . . . , N) indexed in a Hash table. Assuming that each

voxel m in the local map is subject to Gaussian distributions
m ∼ N (mµ,σm).

mµ =
1

N

N∑
i=1

pi

σm =
1

N − 1

N∑
i=1

(pi −mµ)(pi −mµ)>
(6)

where mµ and σm are mean and covariance matrix of the
Gaussian distribution. The voxels in the local map can be
divided into different shapes depending on the relationships
between the eigenvalues of the covariance matrix σm. A SVD
is performed to calculate the eigenvalues of the covariance
matrix σm.

σm = [V1,V2,V3]

 λ1 0 0
0 λ2 0
0 0 λ3

 [V1,V2,V3]> (7)

where λ1, λ2, and λ3 are eigenvalues of the covariance matrix
σm in descending order. V1,V2,V3 are eigenvectors that
correspond to λ1, λ2, λ3, respectively.

Hence, voxels in the local map can be divided into 3
categories:
1) Plane voxel: A voxel that satisfies λ2 � λ3. A plane voxel

is represented by a centroid mµp and a normal vector
mnp = V3 of the plane.

2) Edge voxel: A voxel that is not a plane voxel and satisfies
λ1 � λ2. An Edge voxel is represented by a centroid mµe

and a normal vector mne = V1 of the edge.
3) Candidate voxel: A voxel that is neither a plane voxel

nor edge voxel. Candidate voxel is not considered in cost
function construction and needs more points to cluster
plane voxel or edge voxel.

IV. TIGHTLY COUPLED LIDAR-INITIAL ODOMETRY

A. Construction of the Cost Function
The state of the LiDAR-inertial odometry is estimated

based on sensors observation. For the proposed tightly cou-
pled LiDAR-inertial odometry, IMU measurements cost and
LiDAR matching cost are considered, which are described in
more detail below.

1) IMU measurements cost: The IMU measurements model
is defined as:

am = a + R>g + ba + na

ωm = ω + bg + ng
(8)

where am and ωm are raw IMU measurements, g is the
constant gravity vector, na and ng are the Gaussian white
noise of acceleration and gyroscope measurements.

Thanks to the novel formulation in (2), the IMU measure-
ments residual is defined in (9) instead of the complicated
IMU preintegration formulation [22].

rI(x, τ ) =

∥∥∥∥∥am − â−R̂>g − b̂a

ωm−ω̂ − b̂g

∥∥∥∥∥
2

(9)

For the gradient-free optimization described in Section IV-B,
ω̂ and â are approximated through the Monte-Carlo sampling
over τ .
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2) LiDAR matching cost: The objective of the LiDAR
matching process is to construct the state-dependent cost
through geometric constraints between feature points and the
voxel map. When a new LiDAR scan arrives, edge features
and planer features are extracted by the algorithm proposed in
[11]. The LiDAR matching problem can be formulated as a
maximum likelihood estimation (MLE) problem given below.

T̂ = arg max
T

n∏
i=1

L(TBfi|IM)

= arg min
T

n∑
i=1

− log(L(Ifi|IM))

(10)

where T ∈ SE(3) is the transformation matrix. n is the num-
ber of feature points in the current LiDAR scan. L(Ifi|IM)
represents the likelihood of observing a feature point Ifi
generated from the voxel map M.

Inspired by [23], the likelihood function L(Ifi|IM) can be
simplified through the Gaussian mixture model (GMM).

L(Ifi|IM) = L(Ifi|Imj) (11)

where Imj is the voxel correspondence to feature Ifi, which is
found through the feature-to-map matching (FMM) according
to the hash indexing.

However, the hash indexing is a simple feature correspond-
ing strategy, which may lead to a fraction of incorrect match-
ings. Introducing matching outliers into (10) can compromise
the correctness of the resulting estimate. Hence, an acceptance-
rejection algorithm [20] is adopted to refine the matching
results. With the assumption that each voxel is subject to a
Gaussian distribution, the target distribution is defined as

f(Ifi|Imj) =

1[
(2π)3 |σm,j |

] 1
2

exp

[
−1

2
(Ifi −mµ

j )
>
σ−1
m,j(

Ifi −mµ
j )

]
(12)

The upper bound of the target distribution f̄(Ifi|Imi) can be
defined as

f(Ifi|Imj) ≤ f̄(Ifi|Imj) =
1[

(2π)3 |σm,j |
] 1

2

(13)

Using the acceptance-rejection sampling for each feature point,
the criterion for judging whether a feature point Ifi is corre-
sponding with a voxel Imj is defined as

c ≤ f(Ifi|Imj)

f̄(Ifi|Imj)
(14)

where c ∈ [0, 1] is the acceptance-rejection threshold.
According to the MLE problem (10) and the LiDAR

matching outlier criterion (14), the LiDAR matching cost is
constructed based on the following twofold: 1) The likelihood
of correct matchings, 2) the number of matching outliers. As
noted in our previous work [21], the negative log-likelihood
function − log(L(Ifi|Imj)) can be simplified as point-to-
voxel distance dp2v using such a Gaussian approximation and
principal component analysis (PCA). The LiDAR matching
cost can be noted as

rL(x, τ ) =

{
dp2v , f(I f |Im)

f̄(I f |Im)
≥ c

Kmnm , otherwise
(15)

where nm is the number of incorrect matchings, and Km

is the weighted value that trade-off the importance of the
likelihood of correct matchings and the number of incorrect
matchings. The LiDAR matching cost rL(x, τ ) defined in (15)
can be expressed as a function of x and τ due to the Ifi
in the likelihood function L(Ifi|Imj) can be expressed as
Ifi = RBfi + t, where Rtk and ttk are a part of state vector
xtk . The state vector xtk can be expressed as a function of
xtk−1

and utk−1
through the kinematic model (5), and utk−1

is the mean vector of τtk−1
.

The point-to-voxel distance dp2v in (15) can be split into
two cases:
1) For edge features, the point-to-voxel distance between edge

feature and edge voxel is defined as:

dep2v =

nec∑
i=1

(Ifei −mµe
j )>(I−mne

j mne
j
>)(Ifei −mµe

j ) (16)

where nec is the number of correct edge point-to-voxel
matchings.

2) For planar features, the point-to-voxel distance between
planar feature and planar voxel is defined as:

dpp2v =

npc∑
i=1

(Ifpi −m
µp
j )>m

np
j m

np
j

>
(Ifpi −m

µp
j ) (17)

where npc is the number of correct planer point-to-voxel
matchings.

Remark 1: Different from traditional LiDAR-based local-
ization and mapping systems [11], [14], [18], the proposed
LiDAR matching cost (15) considers the likelihood of correct
matchings and the number of incorrect matchings simultane-
ously. For the novel LiDAR matching cost defined in (15),
it penalizes states that produce incorrect matchings which
could otherwise help improve the quality of localization and
mapping.

B. Gradient-free Optimization

Based on the above derivation, the problem solved in the
present work can be summarized as:

û = arg min
u

EQ [rI(x, τ ) + rL(x, τ )] (18)

The cost function defined in (18), constitutes the IMU mea-
surements residual rI (x, τ ) and the LiDAR matching residual
rL (x, τ ), composed of (9)-(17). The stochastic optimization
(18) is difficult to solve using traditional gradient-based meth-
ods, due to the nonlinear and noncontinuous LiDAR matching
residual, which considers the likelihood of correct LiDAR
matchings and the number of incorrect LiDAR matchings in
a piecewise function formulation. In this paper, a sampling-
based and gradient-free optimization is adopted to solve the
stochastic optimization problem (18), which is fully parallel
and suitable for performing on GPU.

Assume that Q∗ is the optimal distribution of τ ,
which makes EQ∗ [S(x, τ )] provides the lower bound of
EQ [S(x, τ )].

EQ∗ [S(x, τ )] ≤ EQ [S(x, τ )] (19)
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Hence, the stochastic optimization problem (18) can be con-
verted into:

û = arg min
u

EQ [S(x, τ )] (20)

, EQ∗(τ ) =

∫
q∗(u)udu (21)

where q∗ is the density function correspondence to the optimal
distribution Q∗. The step from (20) to (21) follows because
EQ [S(x, τ )] achieves the lower bound by sampling from the
optimal distribution Q∗. Hence, if the optimal distribution Q∗
can be defined, the stochastic optimization problem (18) can
be solved through calculate the expected value of τ sampled
from the optimal distribution Q∗.

1) Optimal distribution: The definition of the optimal den-
sity function q∗ is crucial to solving (21), which can be derived
from the lower bound of EQ∗ [S(x, τ )]. As noted in [24], the
lower bound of EQ∗ [S(x, τ )] can be defined as follows

EQ∗ (S (x, τ )) ≥

− λ log

(
EQ
[
exp

(
− 1

λ
S (x, τ )

)])
− λD(Q∗||Q)

(22)

which establishes a relationship between the lower bound
of EQ∗ [S(x, τ )] and the distribution Q, λ ∈ R+ is a
value similar to the kernel bandwidth of the Gaussian kernel
function [25], and D(Q∗||Q) is the KL-divergence between
distributions Q∗ and Q, which can be expanded as:

D(Q∗||Q) = EQ∗

[
log

(
q∗

q

)]
(23)

where q∗ and q are density functions correspondence to
distributions Q∗ and Q, respectively.

Substituting (23) into (22) yields

λEQ∗

[
log

(
q∗

q

)]
≥

− λ log

(
EQ
[
exp

(
− 1

λ
S (x, τ )

)])
− EQ∗ [S (x, τ )]

(24)

which leads to
λEQ∗ [log (q∗)]− λEQ∗ [log (q)] ≥

− λ log

(
EQ
[
exp

(
− 1

λ
S (x, τ )

)])
− EQ∗ [S (x, τ )]

(25)

With the aim of finding the optimal density function q∗, (25)
can be rewritten as:

EQ∗ [log (q∗)] ≥ EQ∗

[
− log

(
EQ
[
exp

(
− 1

λ
S (x, τ )

)])]
+EQ∗

[
log

(
exp

(
− 1

λ
S (x, τ )

))
+ log (q)

] (26)

which can be simplified as

EQ∗ [log (q∗)] ≥ EQ∗

[
log

(
exp

(
− 1
λ
S (x, τ )

)
q

EQ
[
exp

(
− 1
λ
S (x, τ )

)])] (27)

Hence, the optimal density function q∗ can be defined as

q∗ =
exp

(
− 1
λ
S (x, τ )

)
q

EQ
(
exp

(
− 1
λ
S (x, τ )

)) (28)

According to the derivation in (23)-(27), the optimal density
function defined in (28) can make EQ∗ [S (x, τ )] achieve

Algorithm 1: Gradient-free LiDAR-inertial odometry
Input : BF: Newly obtained feature set, IM: The voxel

map, m: Number of samples, u0: The initial guess
of u.

Output: x̂: The estimated state vector.
for i← 0 to m− 1 do

ui ← SampleQ(u0,σu);
Get Ti from kinematic model (5) and ui;
Compute the IMU measurment residual rI(x,ui);
for each Bfj ∈B F do

Transform Bfj into the inertial frame Ifj = TB
i fj

Find Imk = FMM(Ifj ,
IM);

if IsCorrectMatching(Ifj ,
Imk) is true then

if fj ∈ Fe then
rL(x,ui) = rL(x,ui)+

(Ifj −mµe
k )>(I−mne

k mne
k
>)(Ifj −mµe

k )

else if fj ∈ Fp then
rL(x,ui) = rL(x,ui)+

(Ifj −m
µp
k )>m

np
k m

np
k

>
(Ifj −m

µp
k )

else
rL(x,ui) = rL(x,ui) +Km

S(x,ui) = rI(x,ui) + rL(x,ui)

û =
m−1∑
i=0

exp(− 1
λ
S(x,ui))ui

m−1∑
j=0

exp(− 1
λ
S(x,uj))

Get x̂ from kinematic model (5) and û;
return x̂

the lower bound in (22), which means that the stochastic
optimization problem (18) can be solved by substituting (28)
into (21).

2) Importance Sampling: With the definition of the optimal
distribution, (21) can be solved through the importance sam-
pling technique [26], which compute expectations with respect
to Q∗ by sampling from Q.

û =

∫
q∗(τ )

q(τ )︸ ︷︷ ︸
w(τ)

q(τ )τdτ = EQ [w(τ )τ ] (29)

where w(τ ) is the weight of importance sampling.
In practice, the expectation EQ [w(τ )τ ] is difficult to

perfectly evaluate. The optimal solution defined in (29) is
approximated through a Monte-Carlo sampling.

û =

m−1∑
i=0

exp
(
− 1
λ
S (x,ui)

)
ui

m−1∑
j=0

exp
(
− 1
λ
S (x,uj)

) (30)

where m is the number of Monte-Carlo sampling, and ui is a
vector obtained from i-th sampling on the Gaussian distribu-
tion Q(u,σu). The mean vector u is calculated by substituting
raw IMU measurements into (8), and the covariance σu is a
predefined matrix based on the IMU measurement noise. û
is the estimated vector of the angular velocity ω and local
linear acceleration a. The state vector can be estimated by
substituting (30) into the kinematic model defined in (5).
The process of the proposed gradient-free LiDAR-inertial
odometry is given in Algorithm 1.
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Remark 2: Different from traditional LiDAR-based local-
ization and mapping systems [11], [14], [18], the LiDAR-
inertial odometry described in Algorithm 1 is fully paralleled,
which can be performed efficiently with a GPU. In [11], [14],
[18], the localization and mapping problem is solved through
gradient optimization or IEKF, which is time-consuming due
to the LiDAR matching process for each iteration. For the
proposed method, a Monte-Carlo sampling is adopted to solve
the optimization with a single parallel iteration, which sig-
nificantly improves the real-time performance of the LiDAR-
inertial odometry. Moreover, the computation of Jacobians
can be problematic for complex systems, the gradient-free
optimization introduced in this paper does not require to
deriving the Jacobians, which makes the algorithm flexible
to deal with noncontinuous constraints.

C. Practical Implementation

The proposed LiDAR-inertial odometry build with the
Robots Operating System (ROS) under Ubuntu. The feature
extraction and voxel mapping process are implemented on the
CPU, and the gradient-free optimization process described in
Algorithm 1 is implemented on a GPU with Nvidia’s CUDA
architecture. It is worth noting that, there exists a nested loop
in Algorithm 1. In order to deploy Algorithm 1 on GPU
parallelly, a dynamic-parallelism-like strategy [27] is adopted.
In our implementation, Algorithm 1 uses m×k CUDA threads,
where m is the number of Monte-Carlo sampling and k is
the number of features. For example, the l-th CUDA thread,
where 0 ≤ l < m × k, is in charge of calculating LiDAR
measurements residual corresponding to mod(l, k)-th feature
and l/k-th Monte-Carlo sampling. All the residuals calculated
in 0 to m × k − 1 CUDA threads are saved in a matrix
with a dimension of m × k. The cost function S(x,ui),
i = 0, . . . ,m − 1, is calculated by summing all the column
vectors of the matrix through a reduction sum operation in
CUDA Thrust [28].

Predefined parameters of Algorithm 1 are set to c = 0.98,
and σu = diag(3.0, 3.0, 3.0, 0.1, 0.1, 0.1) for all experiments
evaluated in Section V. As noted in [24], the negative exponen-
tiation required by (30) is numerically sensitive to the range
of the input values. For this reason, we shift the range of the
costs S so that the best cost sampled has a value of 0. Define
Smin as the minimum cost of S(x,ui), i = 0, . . . ,m − 1,
where m is the number of Monte-Carlo sampling. Multiply
exp( 1

λSmin)
/

exp( 1
λSmin) to (30) results in

û =

m−1∑
i=0

exp
(
− 1
λ

(S (x,ui)− Smin)
)
ui

m−1∑
j=0

exp
(
− 1
λ

(S (x,uj)− Smin)
) (31)

which can prevent numerical overflow or underflow. The
exp

(
− 1
λ (S (x,ui)− Smin)

)
in (31) is similar to the Gaussian

kernel function formulation [25], where the parameter λ is
corresponding to the kernel bandwidth. As noted in [25], the
spatial extent of the Gaussian kernel ranges from −∞ to +∞,
but in practice, it has negligible values for (S (x,ui)− Smin)
larger than a few (say 5) λ. Hence, if λ� (S (x,ui)− Smin)

the solution of (31) places all its mass on a single Monte-
Carlo sampling, whereas as λ � (S (x,ui)− Smin) all the
Monte-Carlo sampling have close equal weight. To prevent
the numerical instability of (31), the parameter λ is set as a
self-adapting value according to the average cost Smean and
the minimum cost Smin. We set λ = (Smean − Smin)/5 for
all experiments evaluated in Section V.

V. RESULTS
In this section, the effectiveness of the proposed LiDAR-

inertial odometry is demonstrated through various scenarios,
including public datasets and real-world experiments. For
more details, a video demonstration is available online1.

A. Quantitative Evaluation on the NTU VIRAL Datasets
The proposed LiDAR-inertial odometry is evaluated quanti-

tatively on the NTU VIRAL dataset [29] which provides point
clouds captured by two 16-channel lightweight LiDAR OS1
(horizontal LiDAR measurements are used in experiments),
high-frequency inertial data, and ground truth from the Leica
laser tracker. Different from datasets with 3D LiDAR mounted
on ground vehicles, the NTU VIRAL dataset is aerial vehicle
viewpoint, which has much more complex motion in 3D
space with frequent aggressive rotational and translational
motions. We compare our work with current state-of-the-art
LiDAR-based odometry such as LOAM2 [11], LIO-SAM3

[14], and FAST-LIO24 [18]. For a fair comparison, all methods
are implemented without loop closure. Moreover, an ablation
study on the proposed method is performed to understand
the influence of the sampling number, we run the algorithm
in various Monte-Carlo sampling numbers of 512, 1024,
2048, so-called proposed 512, proposed 1024, proposed 2048,
respectively. Each experiment is conducted on a computer
equipped with an Intel Core i7-7700 and an NVIDIA GeForce
GTX 1080.

1) Accuracy evaluation: To quantitatively evaluate the ac-
curacy of the LiDAR-inertial odometry, the absolute trajectory
error (ATE) results of each method over NTU VIRAL datasets
are shown in Table I. An ablation study on the parameter
Km is also performed to understand the effect of incorrect
LiDAR matchings considered in (15). For Km = 0, which
means only correct LiDAR matchings are considered in the
LiDAR matching cost, the proposed method converges into
a sub-optimal local minimum that leads to system failure.
As an extreme example, assuming that there exists a trans-
formation T̂ that matches all the features to the incorrect
voxels. Obviously, the transformation T̂ is a sub-optimal local
minimum when Km = 0. For Km > 0, the novel LiDAR
matching cost defined in (15) penalizes states that produce
incorrect matchings which could otherwise help improve the
quality of localization and mapping and attempts to escape
the local minimum. From the results shown in Table I, for
Km > 0, better accuracy can be achieved when a higher

1https://b23.tv/1bMhFY5
2https://github.com/brytsknguyen/A-LOAM
3https://github.com/brytsknguyen/LIO-SAM
4https://github.com/shenhm0516/FAST LIO
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number of samples is adopted for the proposed method, and
the proposed method with 2048 samples achieves the best
accuracy in all data sequences. This is because the gradient-
free optimization algorithm introduced in Section IV-B is a
suboptimal estimator, which approximates the optimal solution
through the Monte-Carlo sampling, and the approximation
performance is determined by the number of samples. In
Table I, we also compare the ATE of the proposed method
at Km = 0.5 and Km = 1.0. In all sequences, the accuracy
of the proposed method with Km = 0.5 performs similarly
to Km = 1.0, and we choose Km = 0.5 for all the rest of
the experiments performed in this section. The comparison
between the proposed method with 2048 samples and ground
truth is shown in Fig. 2(a).

2) Running time evaluation: Table II shows the average
running time for process one scan of the proposed method
with different sampling numbers, and each state-of-the-art
method. The time consumption of each individual component,
including feature extraction (“FE” in Table II), state estimation
(“SE” in Table II), and mapping (“Map” in Table II), are com-
pared across all 9 sequences. For the feature extraction, FAST-
LIO2 achieves the best real-time performance, due to FAST-
LIO2 registering raw points to the map without extracting
features. Thanks to the fully paralleled optimization algorithm
introduced in Section IV-B, which can be accelerated through
massive parallel sampling on a GPU, the proposed method
with 512 samples achieves the best real-time performance in
state estimation, and the proposed method with 1024 samples
(state estimated by the scan-to-map matching) achieves a
similar state estimation time with LOAM (state estimated
by the scan-to-scan matching). For the mapping time, the
proposed method maintains a voxel map in a hash table instead
of a KD-tree used in LIO-SAM and LOAM or the iKD-
tree used in FAST-LIO2. It is worth noting that, similar to
FAST-LIO2, the proposed method maintains the voxel map
incrementally without re-build the local map in KD-Tree (the
time complexity of re-building the KD-Tree is O(n log n)
[17]). Furthermore, thanks to the effective data insertion
operation of hash data structure, which takes a constant time
complexity of O(1), features can insert into the voxel map
more efficiently, when compared with the iKD-tree adopted in
FAST-LIO2 (the time complexity of point insertion on iKD-
tree is O(log n) [18]). The total time for feature extraction,
state estimation, and mapping ultimately affects the real-time
performance of the localization and mapping system, which
is also summarized in Table II (“Total” in Table II). As the
results show in Table I and Table II, for the proposed method,
the number of samples is a tradeoff between accuracy and real-
time performance. The proposed method with 2048 samples
outperforms each state-of-the-art method in accuracy with
an acceptable processing time. Compared with optimization-
based methods, LOAM and LIO-SAM, the proposed method
with 1024 samples achieves a comparative accuracy and a
significant efficiency improvement, which saves 70% to 90%
processing time, and the proposed method with 512 samples
achieves the best real-time performance in all data sequences.
Fig. 2(b) shows the frames per second (FPS) on nya 03 se-
quence. The result indicated that the proposed LiDAR-inertial
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Fig. 2. Comparison results of under the nya 03 sequence.

VLP-16 Lidar

Onboard Computer

Flight Controller

IMU

Fig. 3. The aerial platform used in real-world experiments.

odometry reaches the speed of over 200 Hz and achieves 1.5
to 2 times FPS compared with FAST-LIO2.

B. Real-world Experiments
To attest the practicality of the proposed localization and

mapping method, a variety of real-world experiments is
performed with a quadrotor aerial platform. As shown in
Fig. 3, the aerial platform is equipped with a Pixhawk4 flight
controller, a Velodyne VLP-16 LiDAR, a MicroStrain 3DM-
GX5-25 IMU, and a low-power onboard computer (Nvidia
Xavier worked with the 30W 6 Core power model). The real-
world experiments are divided into two parts: 1) Verification of
real-time performance and global consistency in a large-scale
urban environment. 2) Autonomous flight in a GPS-denied
environment.

1) High precision map building in real-time: To evaluate
the performance of the proposed LiDAR-inertial odometry, a
MAV running the proposed method with 512 samples onboard
is flown manually to reconstruct a dense 3D, high-precision,
large-scale map of campus in real-time. The mapping result
is shown in Fig. 4, which is merged with the Google Earth
image to examine the accuracy of the proposed method. This
experiment is convincing due to the fact that MAV has to travel
through a bridge over an open lake, typically a challenging
scene for the LiDAR-based localization and mapping system,
and the result shows that the proposed method can close the
loop when MAV returns to the start point without loop closure.
The high-quality point cloud demonstrates that the proposed
LiDAR-inertial odometry is able to provide high-precision
reconstruction in a large-scale environment. To analyze the
accuracy and real-time performance of the proposed method,
we compare the proposed method with FAST-LIO2 [18], LIO-
SAM [14], LOAM [11], CLINS [15], and LINS [13] on a
low-power ARM onboard computer (Nvidia Xavier). From the
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TABLE I
ABSOLUTE TRAJECTORY ERROR (ATE, METERS) OVER NTU VIRAL DATASETS. THE BEST RESULT IS HIGHLIGHTED IN BLUE, THE SECOND BEST

RESULT IS HIGHLIGHTED IN RED, AND THE THIRD BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Proposed 512 Proposed 1024 Proposed 2048 FAST-LIO2 LIO-SAM LOAM
Km = 0 Km = 0.5 Km = 1.0 Km = 0 Km = 0.5 Km = 1.0 Km = 0 Km = 0.5 Km = 1.0

eee 01 -1 0.1429 0.1379 - 0.0996 0.0949 - 0.0944 0.0955 0.2096 0.1022 0.2309
eee 02 - 0.1192 0.1610 - 0.0865 0.0830 - 0.0840 0.0796 0.1649 0.1113 0.1963
eee 03 - 0.1415 0.1613 - 0.1132 0.1089 - 0.1067 0.1108 0.1945 0.1469 0.1730
nya 01 - 0.1277 0.1245 - 0.0962 0.1030 - 0.0937 0.0977 0.1217 0.0943 0.0973
nya 02 - 0.1425 0.1406 - 0.1138 0.1233 - 0.1071 0.1212 0.2424 0.1200 0.1165
nya 03 - 0.1239 0.1230 - 0.1098 0.1062 - 0.1025 0.1064 0.1349 0.1049 0.1029
sbs 01 - 0.1242 0.1237 - 0.1044 0.0998 - 0.0964 0.0965 0.1600 0.1072 0.1793
sbs 02 - 0.1270 0.1264 - 0.1075 0.1006 - 0.0977 0.0968 0.1831 0.0980 0.1175
sbs 03 - 0.1157 0.1167 - 0.0968 0.0962 - 0.0903 0.0953 0.1519 0.1034 0.3016

1 - denotes that the system failure.

TABLE II
AVERAGE PROCESSING TIME (MILLISECONDS) FOR INDIVIDUAL COMPONENTS WHEN PROCESSING ONE SCAN. THE BEST RESULT IS HIGHLIGHTED

IN BLUE, THE SECOND BEST RESULT IS HIGHLIGHTED IN RED, AND THE THIRD BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Proposed 512 Proposed 1024 Proposed 2048 FAST-LIO2 LIO-SAM LOAM

Total FE SE Map Total FE SE Map Total FE SE Map Total FE SE Map Total FE SE Map Total FE SE Map
eee 01 15.60 2.17 11.70 1.72 25.30 2.18 21.66 1.46 40.15 2.33 36.07 1.76 22.23 0 18.16 4.07 125.47 2.29 42.99 80.19 229.28 3.04 15.26 210.98
eee 02 15.89 3.22 10.96 1.72 23.26 2.31 19.42 1.53 38.08 2.54 33.76 1.78 27.94 0 23.26 4.68 102.69 2.96 40.79 58.95 193.61 3.30 14.93 175.37
eee 03 16.36 3.18 11.31 1.87 25.59 3.32 20.70 1.57 39.74 3.42 34.50 1.82 40.38 0 32.23 8.14 112.00 2.76 50.01 59.23 173.55 3.23 15.19 155.13
nya 01 12.26 3.06 8.08 1.12 18.05 3.34 13.48 1.24 30.56 3.30 25.60 1.66 26.86 0 23.63 3.23 75.61 3.22 28.81 43.58 126.81 3.23 15.15 108.43
nya 02 12.19 3.12 7.92 1.15 18.15 3.59 13.24 1.52 30.06 3.33 25.04 1.69 25.34 0 22.78 2.56 78.47 3.07 37.01 38.38 132.27 3.17 15.24 113.85
nya 03 12.74 3.19 8.01 1.15 17.28 3.21 12.79 1.27 30.56 3.37 25.49 1.69 18.85 0 16.97 1.88 80.16 3.13 30.95 46.08 136.76 3.34 15.94 117.48
sbs 01 13.27 2.41 9.36 1.50 21.50 2.84 17.15 1.51 33.46 2.39 29.29 1.78 28.64 0 24.41 4.23 102.98 2.56 41.10 59.23 192.29 2.56 12.94 176.78
sbs 02 13.22 2.48 9.28 1.47 20.50 2.88 16.09 1.53 33.17 2.60 28.76 1.81 20.89 0 17.89 3.01 99.62 2.67 34.81 62.19 193.54 2.61 12.89 178.04
sbs 03 13.07 2.49 9.12 1.47 21.06 2.98 16.58 1.50 33.56 2.49 29.28 1.80 32.15 0 27.74 4.40 96.41 2.62 33.30 60.48 208.85 2.43 13.02 193.40

Fig. 4. The mapping result of the proposed method.

result shown in Table III, thanks to the parallel acceleration of
the low-power onboard GPU, the proposed method achieves
the best real-time performance than other methods. Compared
with optimization-based methods, the proposed method is 8
times faster than LIO-SAM, 12 times faster than LOAM, and
15 times faster than CLINS. Even compared with the state-of-
the-art filter-based method FAST-LIO2, the proposed method
saves more than 24% of the total processing time and is 7
times faster than LINS. For accuracy, end-to-end errors are
also reported in Table III. Both LIO-SAM, LOAM, CLINS,
and LINS shows large drift because their total computation
time greatly exceeded 100ms, which leads them to drop a
lot of LiDAR scan to achieve real-time performance. When
compared with FAST-LIO2, the state-of-the-art filter-based
LiDAR odometry, the proposed method still shows better end-
to-end accuracy and real-time performance, thanks to the fully

paralleled optimization method introduced in Section IV-B.
Fig. 5 reports the computation time for the individual com-
ponents of state estimation (the method described in Al-
gorithm 1) when performing the large-scale reconstruction.
The FMM process dominates the real-time performance of
the state estimation process, which is in charge of finding
correspondence voxel for each feature. It should be noted
that the FMM process can be quite computationally expensive
since 512 × k features should be conducted, where 512 is
the number of Monte-Carlo sampling, and k is the number
of features in one sampling. In this paper, the FMM process
is split into 512 × k threads and accelerated through Nvidia
CUDA. Thanks to this strategy, we can cut down the mean
FMM time to 34.33ms compared to several seconds when
using a single CPU thread. While cost function construction
process is accelerated through a reduction sum operation in
CUDA Thrust [28] (details can be found in Section IV-C),
has an average processing time of 5.72ms, and the optimal
solution is approximated through an importance sampling
technique, which has an average processing time of 0.42ms.
Thank to the Gradient-free optimization method introduced in
Section IV-B which can approximate optimal solution with
a single parallel-iteration solver, the proposed tightly-coupled
LiDAR odometry has highly real-time performance under low-
power GPU acceleration. The average running time of the
proposed method for process one scan is 49.46ms, much less
than 100ms, which demonstrates that the proposed LiDAR-
inertial odometry can achieve real-time without dropping any
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TABLE III
END-TO-END ERROR (METERS) AND AVERAGE PROCESSING TIME

(MILLISECONDS) FOR INDIVIDUAL COMPONENTS WHEN PROCESS ONE
SCAN. THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Proposed FAST-LIO2 LIO-SAM LOAM CLINS LINS
Feature Extraction 6.85 0 11.78 24.43 13.55 15.79
State Estimation 40.47 58.59 244.92 51.41 741.51 63.22
Mapping 2.14 6.54 141.44 528.85 21.20 269.17
Total 49.46 65.13 398.12 604.69 776.26 348.18
End-to-End Error 0.12 0.17 5.33 19.02 14.12 30.52
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Fig. 5. The computation time for state estiamtion.

scan (LiDAR rotation rate is 10 Hz) and is suitable to perform
on low-power onboard computing power.

2) Application of MAV autonomous flight: To attest the
practicality of the proposed localization and mapping method,
two autonomous flights are performed, which are called ag-
gressive flight test and fully autonomous flight test. During the
aggressive flight test, the proposed method is used for feedback
control of the MAV which tracks a high-speed trajectory. Poses
estimated by the proposed method are shown in Fig. 6(a), in
addition, the linear velocity and angular velocity are shown in
Fig. 6(b). The maximum velocity reaches 9m/s, the maximum
angular velocity achieves 180deg/s (the square root of the
triaxial angular rate achieves 245deg/s) during the aggressive
flight test. The results show that the proposed LiDAR-inertial
odometry is suitable for MAV real-time control and trajectory
tracking. For the fully autonomous flight test, a real-world
autonomous flight is performed in a cluttered forest scenario.
This test is illustrated due to only the onboard computing
power is adopted to run the proposed localization and mapping
algorithm with the additional workload, such as the motion
planning algorithm [30], sensor drivers, in real-time. During

(a) Estimated poses.
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Fig. 6. Results of the aggresive flight test.

Fig. 7. Fully autonomous flight.

this flight test, MAV track the reference trajectories for achiev-
ing obstacles avoidance, and the localization and mapping
results are illustrated in Fig. 7. The results demonstrated that
the proposed LiDAR-inertial odometry has the ability to enable
the fully autonomous flight without a prior map and external
sensings.

VI. CONCLUSION

In this article, an efficient and high-accuracy localization
and mapping algorithm is developed for MAV. The proposed
method formulate the localization and mapping problem as
a stochastic optimization problem, which fuses IMU mea-
surements and LiDAR measurements in a tightly-coupled
manner. A novel LiDAR matching cost is constructed by
formulating the LiDAR matching problem as an MLE problem
and simplifying it as a piecewise function through GMM and
acceptance-rejection sampling, which consider the likelihood
of correct matchings and the number of incorrect matchings
simultaneously. Thanks to the gradient-free optimization, the
nonlinear and noncontinuous stochastic optimization problem
is solved by a fully paralleled Monte-Carlo sampling, which
can provide real-time localization and mapping with a low-
power onboard computer. The proposed LiDAR-inertial odom-
etry is validated with an extensive evaluation in both public
datasets and real-world experiments. The results show that the
proposed method produces real-time and accurate localization
and mapping results, and has a great potential to enable many
autonomous aerial robots applications.
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