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Abstract: Measuring and adjusting the training load is essential in resistance training, as training
overload can increase the risk of injuries. At the same time, too little load does not deliver the
desired training effects. Usually, external load is quantified using objective measurements, such as
lifted weight distributed across sets and repetitions per exercise. Internal training load is usually
assessed using questionnaires or ratings of perceived exertion (RPE). A standard RPE scale is the Borg
scale, which ranges from 6 (no exertion) to 20 (the highest exertion ever experienced). Researchers
have investigated predicting RPE for different sports using sensor modalities and machine learning
methods, such as Support Vector Regression or Random Forests. This paper presents PERSIST, a novel
dataset for predicting PERceived exertion during reSIStance Training. We recorded multiple sensor
modalities simultaneously, including inertial measurement units (IMU), electrocardiography (ECG),
and motion capture (MoCap). The MoCap data has been synchronized to the IMU and ECG data.
We also provide heart rate variability (HRV) parameters obtained from the ECG signal. Our dataset
contains data from twelve young and healthy male participants with at least one year of resistance
training experience. Subjects performed twelve sets of squats on a Flywheel platform with twelve
repetitions per set. After each set, subjects reported their current RPE. We chose the squat exercise as
it involves the largest muscle group. This paper demonstrates how to access the dataset. We further
present an exploratory data analysis and show how researchers can use IMU and ECG data to predict
perceived exertion.

Keywords: fatigue prediction; inertial measurement unit; computer vision; electrocardiography;
machine learning; public dataset

1. Introduction

Controlling the exercise load during resistance and aerobic training is crucial for
optimal training programming. While excessive training loads increase the risk of injuries,
training loads below a certain threshold do not induce optimal training effects [1]. Usually,
the external load is quantified by objective measurements, such as the distance traveled or
the weight lifted. However, subjective measurements, such as questionnaires or Ratings
of Perceived Exertion (RPEs), can provide valuable information about the internal load of
athletes [2]. An RPE scale is a numerical scale where athletes rate their perceived exertion.
A standard scale is the Borg scale [3], which ranges from 6 to 20, where 6 represents no
exertion, and 20 is the highest fatigue ever experienced. In recent years, research efforts
have been made to predict RPE values during physical exercise on the fly using unobtrusive
sensor systems. According to a study by Davidson et al. [4], manual reporting of RPE values
is challenging due to compliance errors, recall bias, peer pressure, or dishonest reporting.
Developing data-driven models trained on sensor data could predict subjective RPE values
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in real-time and alleviate the aforementioned issues in RPE reporting. Especially during
the COVID pandemic, the need for home monitoring systems increased, as many people
could not attend gym or sports lessons. By predicting the perceived exertion in the form of
RPE values, an automated exercise feedback coach could help to pose warnings once the
training load exceeds.

Many studies have investigated physical exertion prediction for different protocols
using machine learning on sensor data. For this, various sensor modalities, such as Elec-
tromyography (EMG), heart rate (HR), Inertial Measurement Units (IMUs), Electrodermal
activity (EDA), optical Motion Capture (MoCap), and Global Positioning System (GPS)
have been used. Moreover, different training environments have been investigated, ranging
from unrestricted outdoor training, such as free running or football training, to controlled
lab studies, including resistance training protocols. An overview of related studies aiming
to predict RPE values is provided in Table 1. It shows the cohort information, the sensor
modalities used, and information about the training protocol used. The studies have used
different versions of the RPE scale, including the classic Borg scale, the Borg CR-10 scale,
and custom scales. The Borg CR-10 scale is a modified version of the Borg scale, which
ranges from 1 to 10. Some studies have modified the target for the RPE prediction by nor-
malizing the RPE values or dividing the RPE scale into different intensity classes. Table 1
also presents the different prediction targets in more detail. The older studies presented
here have used traditional machine learning approaches, such as Random Forest (RF),
Gradient Boosting Regression Trees (GBRT), and Support Vector Regression (SVR). Recent
studies, e.g., by Jiang et al. [5], have also investigated deep learning-based methods, such
as Convolutional Neural Networks (CNNs).

Table 1. Related work sorted by year. Studies include the first author’s name, the study population
size, the recorded sensor modalities, the target RPE scale, and whether the dataset is publicly available
(PA). Some datasets might only be accessible by asking the authors.

Author et al. Study Cohort Sensors Study Protocol RPE Scale PA

Pernek 2015 [6] 11 subjects (3 female,
8 male) IMU

6 upper body exercises,
10 repetitions of each
exercise, repeated with
4 different weights

Classic Borg scale,
ranging from 6–20,
individually
normalized into the
interval nRPE ∈ [0, 1]

No

Carey 2016 [7] 45 Australian
football players HR, GPS, IMU Training session of

American football
Borg CR-10 scale,
ranging from 1–10 No

Vandewiele 2017 [8] 45 Belgian
soccer players HR, GPS, IMU Multiple soccer

training sessions
Borg CR-10 scale,
ranging from 1–10 No

Chowdhury 2019 [9] 22 subjects (17 male,
5 female)

HR, EDA,
skin temperature

Physical activity
protocol consisting of
quiet sitting or
standing, comfortable
walking, brisk
walking, jogging,
fast running

Classic Borg scale,
ranging from 6–20,
intensity divided into
three classes, i.e., low:
6 ≤ RPE ≤ 11,
moderate:
12 ≤ RPE ≤ 14, and
high: RPE > 15

On request

Geurkink 2019 [10] 46 Belgian
soccer players HR, GPS 61 soccer

training sessions
Custom RPE scale,
ranging from 1–10 No

Davidson 2020 [4] 12 male subjects HR, GPS,
VO2 peak

Running until
exhaustion (parkour of
5 km and 2 km for
trained, untrained,
respectively

Classic Borg scale,
ranging from 6–20,
intensity divided into
two classes, i.e.,
medium: RPE ≤ 15,
high: RPE > 15

No
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Table 1. Cont.

Author et al. Study Cohort Sensors Study Protocol RPE Scale PA

Jiang 2021 [5] 14 subjects (12 male,
2 female)

IMU, MoCap,
force plates

Physical exercise
protocol, three
exercises (squat, high
knee jack, and
corkscrew toe-touch),
five repetitions per set
until exhaustion

Custom RPE scale,
ranging from 1–10 No

This study 12 male subjects
IMU, HRV,
MoCap,
Flywheel energy

Flywheel squat exercise
protocol, 12 sets with
12 repetitions each

Classic Borg scale,
ranging from 6–20 Yes

As shown in Table 1, the presented studies have the same goal of predicting RPE
but have different study setups. Pernek et al. [6] only included upper limb strength
exercises performed using dumbbells, which raises the question if the exercises induced
fatigue in subjects properly. Other existing studies were conducted during team training
sessions [7,8,10]. Unrestricted experiment settings have the disadvantage of potentially
including independent variables and thus lack reproducibility for other researchers. The
most related study to ours was conducted by Jiang et al. [5]. This study also included
the squat exercise, among two other exercises. However, the authors did not define
strict inclusion criteria. Subjects performed sets of five repetitions each until exhaustion.
However, the exertion was not confirmed, e.g., by taking lactate measurements. The authors
showed that subjects performed differently, where the lowest number of sets was nine,
while the best subject performed 52 sets. Our dataset contributes to the existing body of
research, as it contains a homogeneous cohort performing a single exercise in a controlled
lab environment. The induced muscle fatigue was confirmed by blood lactate analysis. We
have chosen the squat exercise to exhaust the lower extremity muscles, the body’s largest
muscle group. The squat is one of the integral exercises in resistance and condition training
and represents an overall measure of lower-body strength [11]. A squat simultaneously
activates many large muscles in the body, including the glutes, the quadriceps, and the
hamstrings. Instead of using an external weight with a barbell and plates, we decided to
use a Flywheel platform, a training device that generates load independently of gravity.
The training device allows to generate an eccentric overload, when lengthening of a muscle
occurs while it is contracting. Studies have shown that Flywheel training is effective in
increasing muscle mass and strength, while also offering benefits for rehabilitation and
injury prevention [12]. In particular, the Flywheel can induce significant fatigue to the
lower extremity muscles, while preventing axial loading on the spine, a factor which could
greatly increase injury risk, especially under fatigue. In this respect it offers an advantage
over free weight exercises, which often use barbells and dumbbells. From a technical
perspective, the Flywheel platform is advantageous because the cameras are able to observe
the participant without obstruction, as could be the case when using barbells and dumbbells.
We recorded multiple sensor modalities, including Electrocardiography (ECG), IMU, 3D
cameras, and physical measurements obtained from a Flywheel training device. To the best
of our knowledge, the data sets presented in Table 1 are not publicly available or only upon
request, which makes it hard to reproduce the results or improve the machine learning
algorithms. We aim to contribute to the field of estimating RPE ratings via machine learning
by making our dataset available to other researchers.

The rest of the paper is structured as follows: Section 2 provides an overview of
the collection of this data set and the measurement methods used. Section 3 provides an
explanation of the data set structure as well as highlights methods on how to process the
obtained data. In Section 4, we present data analysis of multiple modalities. The paper
ends with a conclusion in Section 5.
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2. Materials and Methods

This section presents the study setup, defined protocol, and the sensors used for the
data collection. We have selected the squat exercise for our protocol as it targets the largest
muscle groups of the body and, therefore, should induce fatigue quickly and reliably.
Instead of performing squats with a weighted barbell placed on the shoulders, we chose
a Flywheel training platform. The Flywheel works with inertial weight induced by the
athletes by accelerating an inertial weight plate. The load in Flywheel training is determined
by the diameter of the inertial disc as well as by its angular velocity [13]. The ethics review
board (ERB) of the University of Potsdam approved this study (Application no. 21/2021).
The data recording took place between April and May 2021 in the lab of the Connected
Healthcare chair at the Hasso Plattner Institute, University of Potsdam.

2.1. Participants

For our study, we recruited sixteen young and healthy male participants. Participants
were between 18 and 30 years old and underwent screening using the Physical Activity
Readiness Questionnaire (PAR-Q), a frequently used questionnaire to assess the physical
state [14]. Furthermore, participants needed to perform regular resistance training for at
least one year. Table 2 shows the anthropometric data and the athlete’s average weekly
workout times. Due to the SARS-CoV-2 pandemic, we inquired about the athlete’s weekly
training times and how the training times changed since the second lockdown in Germany
with the closing of gyms. At this early stage, we only included male participants to have
a homogeneous population. Additionally, subjects had to be able to execute the squat
exercise correctly, i.e., bringing the thighs parallel to the floor. Every participant gave
written consent before the data recording. Of the 16 individuals who participated in this
study, 12 gave their consent to share data anonymously.

Table 2. Participant characteristics and information about the weekly training time, before and since
the second lockdown in Germany. SD stands for standard deviation.

Minimum Mean ± SD Maximum

Age (y) 19.9 23.3 ± 2.9 29.1
Body mass (kg) 75.0 82.6 ± 4.8 90.0
Height (cm) 174.0 183.8 ± 5.3 192.0
Training experience (y) 1.0 3.7 ± 2.3 10.0
Workouts per week 2 3.4 ± 1.3 6
Training duration (m) 50.0 75.0 ± 19.8 120.0
Workouts per week since COVID 0 2.7 ± 1.5 6
Training duration since COVID (m) 0.0 60.4 ± 33.3 120.0

2.2. Flywheel Training Machine

The Flywheel training machine (Exxentric Training, Sweden), as shown in Figure 1,
does not work with external weight, which is accelerated towards the ground by gravity,
but creates and controls the force and training intensity by a spinning inertial weight
plate. The Flywheel consists of a platform with a wheel connected to a harness. Pulling
the harness up accelerates the wheel and creates a moment of force. The wheel can be
stopped by maintaining a static position or performing a countermovement that neutralizes
the energy.
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Figure 1. The Flywheel training device consists of the platform, the rotating flywheel in the front,
and the belt coming out of the center of the platform. For squats, a hip harness is connected to the
belt of the platform.

For the squat exercise, the athlete is wearing a hip harness that is connected to the
wheel via a belt that is wrapped around a transmission shaft fixed to the Flywheel on
the other end. The starting position is in a squat, as shown in Figure 2a. Thus, when a
participant extends his knees and hips to move his center of mass upwards, they unwrap the
belt from the shaft and spin up the Flywheel. The upward motion is caused by concentric
contraction of the knee and hip extensors. At the topmost position, as shown in Figure 2b,
the Flywheel induces a downward pull on the belt, which the athlete has to counteract.
Biomechanically, the participant neutralizes the Flywheel’s rotational energy by controlling
the motion downwards with an eccentric movement. When halting the motion, the subject
will again be in the starting position. In contrast to barbell squats, the starting position is
in the squat itself, not the standing position. The Flywheel platform can be operated with
plates of different sizes. All of the participants in our experiment used the medium-sized
plate (0.025 kgm2). For squats with external weight, such as a barbell, load is typically
determined by measuring the one-repetition maximum (1 RM) of an athlete and using a
certain percentage of that value for training. However, such load quantification in Flywheel
training is impossible [13]. We determined the training load for each participant by having
them perform several repetitions with maximum effort. Here, they had to apply force
against the belt strapped around their waist as fast and hard as possible. This force was
transferred via a strap to an axle around which the inertial weight was secured. The
approach is similar to that reported by Raeder et al. [11]. During this test, the so-called max
speed test, the time of each repetition was first measured. Then, the participants had to
perform all subsequent squats at 90% of this velocity. To ensure the timing was correct, all
repetitions during the fatigue protocol were guided by a visual metronome.

The Flywheel platform comes with an optional measurement unit, the so-called kMeter.
This sensor measures the Flywheel’s rotation with 500 Hz. It calculates information, such
as the concentric, eccentric, and average power (in watts), energy (in kilojoules), number
of repetitions, and vertical movement (in cm). The accuracy of the kMeter sensor was
evaluated using a force plate as a reference, as shown in the study by Weakley et al. [15]. The
kMeter device is positioned underneath the Flywheel platform. We recorded the kMeter
data during the experiments by streaming the sensor data to an Android smartphone in
real-time using the kMeter app.
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(a) Starting position (b) Standing position
Figure 2. An athlete performing the squat exercise on the Flywheel training machine. The Flywheel
is operated without external weights, using only the athlete’s invested energy.

2.3. Study Setup

We used multiple sensor sources during our experiments, including IMU, ECG, RGB-
D cameras, and the kMeter device (as mentioned in the previous section). Figure 3a shows
the study setup in the laboratory, including the camera placement. Figure 3b shows the
placement of IMU and ECG sensors, as further explained in the following sections.

(a) Entire study setup (b) Sensor placement
Figure 3. Overview of the study setup (a) and the placement of IMU and ECG sensors on the
participants (b). The red boxes indicate the IMU sensors and the blue circles indicate the ECG
electrodes. Figure (b) also shows an IMU with its three axes.



Data 2023, 8, 9 7 of 19

2.4. Inertial Measurement Unit Sensors

IMU sensors measure their movement in three dimensions. They measure linear
acceleration (m/s2) and angular velocity (deg/s) with three accelerometers and gyroscopes
placed orthogonally to each other, respectively. For our data collection, we used six Physilog
5 (GaitUp® Corporation, Lausanne, Switzerland) IMU sensors that recorded 3D acceleration
and gyroscope. Figure 3b shows a sensor unit with its 3D axes. The sensors sampled data
at a frequency of 128 Hz.

We decided on our sensor locations based on related studies and our own experiences.
Following the study by O’Reilly et al. [16], we placed a sensor on the back at the height
of the fifth lumbar vertebra. We placed another sensor on the sternum to measure chest
displacement respective to the lower back. Increasing the relative movement between the
sternum and lower back might indicate an incorrect pose of the participant that could
be prominent in the data. Four IMU sensors were placed on the right and left thigh and
the right and left calf, as proposed by Lee et al. [17]. Figure 3b shows the entire sensor
placement. The six sensors streamed the data in real-time to a custom Android application
developed for online streaming of sensor data (SensorHub [18]) via Bluetooth.

2.5. Electrocardiography Device

ECG data was recorded using the one-channel Faros 180 sensor (Bittium® Corporation,
Oulu, Finland). ECG sensors measure the electrical activity of the heart muscle, where
the QRS complex is the most prominent pattern in every heartbeat. The QRS complex
reflects the ventricular stimulation, with the R peak as the point of maximum expansion
of stimulation of the heart muscle cells. This is reflected as the peak with the maximum
amplitude in the ECG signal. The electrode placement of our 1-channel system is shown
in Figure 3b. The Faros 180 sampled the ECG data at 1000 Hz, which was directly sent to
the SensorHub app. The ECG signal was recorded during the entire session, including
the resting phases of the protocol. From that ECG data, so-called Heart Rate Variability
(HRV) parameters can be calculated by measuring the distance between successive R peaks.
HRV parameters are deduced from the change in intervals between R peaks and can be
interpreted to provide a wealth of information about the status of a subject [19]. A higher
heart rate implies a greater strain on the cardiovascular system, for example as a result of
exercising. Overall, HRV parameters can be split into time-domain, frequency-domain, and
non-linear. The Faros 180 also integrates an accelerometer that samples 3D acceleration
data at a sampling frequency of 100 Hz.

2.6. Microsoft Azure Kinect Cameras

During the exercise part of the protocol, the subjects were recorded using two Microsoft
Azure Kinect cameras. This camera combines a 12 MP RGB camera, an infrared emitter
and receiver, a 7-microphone array, and an IMU sensor. The camera uses time-of-flight
technology to create depth images with a 1 MP resolution (1024× 1024 px). The core feature
of this Kinect camera and its predecessors is the available skeleton tracking algorithm,
which can track up to 32 landmarks of users in 3D space. As investigated in the study
by Ryselis et al. [20], markerless skeleton tracking on monocular camera systems has
problems detecting complicated poses that deviate from standard poses. This problem
also occurs in functional movements, such as the squat exercise. Therefore, their study
investigated a three-camera Kinect system that fused kinematic data from all cameras and
was tested during a functional sport protocol. They analyzed limb length, which is the
distance between two adjacent joints. Limb length should stay constant as bones are rigid.
The authors assessed the intra-session variability of normalized limb lengths obtained
from the camera system using the intraclass correlation coefficient (ICC). They defined
an intra-session as a single session divided into two parts of equal lengths. The authors
obtained a test–retest reliability of ICC = 0.892. Another study by Kotsifaki et al. [21]
investigated the reliability of a dual Kinect camera system using the predecessor, Microsoft
Kinect v2. They evaluated the single-leg squat using a gold-standard marker-based MoCap
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system. This study found that agreement improved using a dual Kinect system instead of a
single camera. The authors found high agreement in the peak angles during the single-leg
squat, with an ICC(2, k) of 0.665 ≤ ICC ≤ 0.932. Moreover, the SEM ranged between
2.5 ≤ SEM ≤ 4.1 degrees. In a previous study, we evaluated the pose-tracking accuracy of
the Microsoft Kinect v2 and Azure Kinect to a Vicon gold-standard MoCap system during
treadmill walking [22]. The results indicated that the skeleton tracking algorithms deliver
similar pose tracking errors, while Azure Kinect provides better foot and ankle markers
accuracy. Therefore, we have used multiple Azure Kinect cameras to improve the skeleton
tracking quality, similar to the study presented by Xing et al. [23]. The Kinect cameras were
placed at an approximately 45 degrees angle each. Figure 4 shows two simultaneously
captured depth images. Both cameras captured data at 30 Hz.

(a) Depth map from the left camera (b) Depth map from the right camera
Figure 4. Two simultaneously captured depth maps from the left and right Azure Kinect cameras
showing a subject performing the squat exercise on the Flywheel.

The Microsoft Azure Kinect offers an easy-to-use temporal synchronization of multiple
devices via hardware using a 3.5 mm audio cable. It allows for two different configurations,
the star and daisy chain. We have defined one camera as the master and the other as a
subordinate device and connected both using the appropriate wiring on the sync ports. Data
were recorded using the Microsoft Azure Kinect recorder tool, which saved the incoming
RGB and depth camera streams in the Matroska file format (.mkv). After the recording,
the skeleton data was extracted using the Microsoft Azure Kinect Body Tracking SDK
version 1.1.2, the latest version at the time of writing. Due to data protection regulations,
we only share 2D and 3D joint positions and 3D joint orientations.

2.7. Protocol Definition

The protocol of this study is shown in Figure 5 and took approx. 90 min. As a first step,
lactate measurements were taken from the earlobe (EKF Diagnostics, Cardiff, UK). This
was followed by five minutes of rest, i.e., watching a relaxing video. Then a second blood
sample was taken from the earlobe. Afterwards, the participants performed a warm-up set
for two minutes. Then, the target repetition time was determined by asking the participants
to perform a few repetitions as fast as possible. Ninety percent of the mean duration of
the repetitions were set as target time for each repetition during the protocol. The fatigue
protocol consisted of four series, each followed by a break of 180 s to allow for adequate
rest during the exercise. All series consisted of three sets that took about 35 s each. Breaks
of 60 s were included after each series’s first and second set, while the 180 s series break
was included after each series’s third and last set. Each set contained 12 squats on the
Flywheel training machine. After every set, subjects reported their current RPE rating.
After the fatigue protocol, blood lactate was measured a last time. A significant increase in
blood lactate indicates intense exercise, as the body can no longer process all the lactate
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consumed [24]. Then subjects rested for 20 min, during which ECG data was measured to
confirm the return of the heart parameters to baseline. Finally, 15 min after the last squat,
subjects reported their session RPE.

1. PRE-TEST

2. Fatigue Blocks (4 Series)

3. POST-TEST

1.1. Blood Baseline A
1.2.  5m Rest ECG
1.3.  Blood Baseline B

3.1.  @0m post: Blood Changes
3.2.  @15m post: Session RPE
3.3.  @20m post: Recovery ECG

12 Reps
30s Break (RPE)
12 Reps
30s Break (RPE)
12 Reps

3 Minutes Break (RPE)

2.1.  2 Min Warmup
2.2.  Maximum Speed Test

Figure 5. Protocol definition of the entire study, including the pre- and post-test and the fatigue
protocol consisting of four series with three sets and twelve repetitions.

3. Data

This section describes the dataset’s structure and presents various data processing
methods.

3.1. Dataset Structure

The dataset is organized in a subject-centered structure, as shown in Figure 6. The root
level of each subject folder contains meta files with subject-specific information, which is
explained in the following paragraph. Each sensor modality (MoCap, IMU, ECG) is stored
in a respective folder. The IMU and ECG data are available in two versions: the truncated
and untruncated version. The truncated version does not contain data from the resting
phases. For the IMU and ECG data, the recorded sensor timestamps are relative to the
recording time, i.e., starting from the second zero. We further provide preprocessed HRV
and MoCap data, as explained in Sections 3.2 and 3.3, respectively.

• anthro.json: contains anthropometric data and subject information, such as age, weight,
height, lactate values, session RPE, and repetition time from the max speed test.

• rpe.json: contains RPE values for each set.
• kmeter.json: contains Flywheel data, such as peak speed, average power, power con-

centric, power eccentric, force, and range for each repetition.
• time_selection.json: contains manually selected timestamps for the start and end of the

entire fatigue protocol as well as for each set
• truncate_info.json: This file contains information regarding additional cropping of the

selection from time_selection.json using an automated process to remove even more
sensor data not observed during a squat movement
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dataset

subject_01

imu

CHEST.csv

LUMBAR SPINE.csv

TIBIA_LEFT.csv

TIBIA_RIGHT.csv

THIGH_LEFT.csv

THIGH_RIGHT.csv

TRUNCATED_CHEST.csv
. . .

faros

ecg.edf

ecg_hrv.txt

ecg_hrv_30-1.txt

FAROS.csv

TRUNCATED_ecg_hrv.csv
. . .

azure

master_01

positions_3d.csv

orientations_3d.csv

positions_2d.csv

. . .

azure_1.csv
. . .

flywheel

exxentric.csv

kmeter.json

anthro.json

rpe.json

time_selection.json

rpe.json

. . .

Figure 6. Dataset structure. Each subject has its own folder with subfolders for different data modalities.
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3.2. ECG Data Processing

The Faros 180 sensor saves the ECG data in the European Data Format (EDF). The
sensor’s accelerometer data is stored in a comma-separated value (CSV) file. It is hard
to interpret raw ECG signals directly. We have calculated HRV parameters using the
proprietary Kubios Premium [25] software to gain more insights. Kubios calculates many
HRV parameters for a recording in time windows of adjustable lengths. Table 3 shows the
set of available HRV parameters. The minimum window length of the Kubios software is
30 s. Larger windows contain more information. However, a set of twelve squats in the
protocol usually took around 35 s, with the heart starting recovery to baseline immediately
after. Therefore, we chose a short window size to minimize the effects of other repetitions
or breaks on the measured data. The Kubios report files are stored in .txt format and are
machine readable after skipping the header information.

Table 3. List of Kubios HRV export parameters in the three different domains.

Category Parameters

Overview Artifacts [%]

Time Domain
Mean RR [ms], SD RR [ms], Mean HR [1/min], SD HR [1/min], Min HR
[1/min], Max HR [1/min], RMSSD [ms], NN50, pNN50 [%], HRVti,
TINN [ms], Intensity (TRIMP/min), Load (TRIMP)

Frequency Domain
VLF Peak [Hz], LF peak [Hz], HF peak [Hz], VLF power [ms2], LF power
[ms2], HF Power [ms2], VLF power [log], LF power [log], HF Power [log],
VLF power [%], LF power [%], HF Power [%], LF/HF ratio, EDR [Hz]

Nonlinear Domain SD1 [ms], SD2 [ms], SD2/SD1

The HRV parameters in the time domain are derived based on the RR interval, the
temporal distance between two consecutive R peaks measured in ms. The mean RR
parameter is the mean duration of RR intervals within a given window. The heart rate is
the average number of heartbeats per minute. The Training Impulse (TRIMP) parameter
is a more complex parameter. It shows how the training load has accumulated in the
training session. It is the product of training volume in minutes and the training intensity,
modeled as the heart rate reserve information ∆HR (as shown in Equation (1)), according
to Morton et al. [26].

∆HR =
HRsample − HRrest

HRmax − HRreset
(1)

In this equation, HRsample, HRrest, and HRmax refer to the heart rate of the current
window, the resting heart rate, and the maximum heart rate. The final TRIMP parameter is
calculated as shown in Equation (2), where T refers to the training duration.

TRIMP = T · ∆HR · 0.64e1.92·∆HR (2)

3.3. Skeleton Data Processing

As mentioned in Section 2.6, we used two Microsoft Azure Kinect cameras from
two different viewpoints. Thus, the two skeletons’ time series are in two different lo-
cal 3D camera coordinate systems. Each skeleton contains measurement errors, so we
aim to fuse both skeletons to compensate for one camera’s measurement errors with the
other. Therefore, we begin by transforming both skeletons into a global coordinate system
before applying fusion methods. We solve this problem by finding a rotation R ∈ R3,3

and translation t ∈ R3, to register the left skeleton to the right skeleton. To this end, the
left and right skeletons are denoted as Rj

i , Lj
i ∈ R3 for joints j ∈ {1, . . . , 32} and times-

tamps i ∈ {1, . . . , M}. We re-order both skeletons in point sets P = {p1, . . . , pn} and
Q = {q1, . . . , qn} by flattening all joints and timestamps, with pi, qi ∈ R3. We then use the
SVD-based Kabsch algorithm to minimize the cost function given in Equation (3).
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(R, t) = arg min
R∈R3×3,t∈R3

n

∑
i=1
‖(Rpi + t)− qi‖2 (3)

The intermediate result is two overlapping skeletons that contain measurement errors
and potentially large outliers, as shown in Figure 7a. When fusing both skeletons using
a simple average filter, the final result would be affected by outliers from one of the
two skeletons. Thus, we implemented a more advanced fusion method that considers the
nature of the human movement. The assumption is that human movement is generally
smooth, so measurement errors cause higher jumps between frames. Therefore, we increase
the weights wR

i or wL
i of the respective camera if the joint has a smaller gradient between

two consecutive frames, as shown in Equation (4). In our experiments, the exponent α
further punishes the weights and is set to α = 1.4. The final result is a fused skeleton F
with joints fi calculated as shown in Equation (5).

wR
i =

1

‖Rj
i − Rj

i−1‖α
, wL

i =
1

‖Lj
i − Lj

i−1‖α
(4)

Fj
i =

wR
i Rj

i + wL
i Lj

i
wR

i + wL
i

(5)

Figure 7 shows an example of the knee joint where both cameras show large outliers
that are compensated by the other camera. Finally, a 4th order Butterworth filter was
applied to the fused skeleton data.

(a) Skeletons
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(b) Gradient-based moving average method
Figure 7. Skeleton fusion from master and subordinate device. Figure (a) shows the mapping of the
subordinate skeleton (red) to the master skeleton (green). In this frame, the knee joint of the master
skeletons shows an outlier. Thus, the fused skeleton (blue) puts more weight on the subordinate
skeleton. Figure (b) shows a fused trajectory with corrected outliers. The fused trajectory was filtered.

3.4. Synchronization of Azure Kinect and IMU Data

As already mentioned, the ECG and Physilog IMU sensors were already temporally
synchronized. The Azure Kinect cameras only recorded data during the physical exercise.
The Kinect and ECG or IMU modalities must be temporally synchronized for sensor fusion
use cases. For this purpose, we have selected an IMU sensor at a similar location to one of
the Kinect markers, which is, e.g., the chest IMU sensor and sternum marker. We calculated
acceleration in the vertical axis of the Kinect marker. Successively, both acceleration data
can be synchronized using cross-correlation. Figure 8 shows an example set where the
Azure Kinect camera was temporally aligned with the IMU signals. We filtered the IMU
data using a 4th order Butterworth filter before applying cross-correlation.
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Figure 8. Synchronization of the Phyislog IMU sensors and the Azure Kinect camera. The signals
were synchronized using the second derivative of the Azure Kinect of the y-axis of the Pelvis joint.

4. Evaluation

In this section, we investigate the dataset by conducting an exploratory data analysis,
mainly on the Flywheel data modalities. Further, we present a prior study to predict
perceived exertion on IMU and HRV data.

4.1. Exploratory Data Analysis

We begin our dataset exploration by looking at the distribution of the RPE values
reported by the twelve subjects. Figure 9 presents the distributions of RPE values, in
Figure 9a shown as a heatmap and in Figure 9b shown as a distribution histogram. One
subject stopped the experiment due to extreme exhaustion.

1 3 5 7 9 11
Set

1
3

5
7

9
11

Su
bj

ec
t

12

14

16

18

20

(a) Heatmap of RPE values
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(b) Histogram of RPE values
Figure 9. Analysis of the collected RPE values of the subjects. Figure (a) shows a heatmap of achieved
RPE values per subject. Figure (b) presents a histogram of the mentioned RPE values.

As a next step, we analyze the Flywheel data by looking at the average power. We
take the sensor readings from the kMeter device as explained in Section 2.2. Outliers in
the kMeter data were filtered using a z-score outlier filtering with σ = 3. We compare the
collected data for each repetition to the reported RPE value of the according set. Figure 10
shows a subject’s average power (of concentric and eccentric phase) for the entire protocol
and individual sets. We calculate the Pearson’s correlation coefficient (PCC) between
the reported RPE values and all individual repetitions and the mean values of each set,
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respectively. Since we hypothesized that the performance within a set is decreasing, we
also show a linear regression for all repetitions in one set. It is evident that the average
power decreases over the entire protocol. At the same time, the RPE values increase, which
leads to a high negative correlation between RPE and the average power of PCC = −0.82.

Figure 10. Analysis of the average power of the Flywheel kMeter data for a subject where the average
power negatively correlates with the provided RPE values. The black dots represent the average
power for each repetition. The red line shows the corresponding RPE values. The local trend within
each set is shown using linear regression (background colors alternate for each set). The mean value
of each set is indicated as a red cross.

In contrast, the subject shown in Figure 11 shows no correlation between the average
power and RPE values. The power performance seems to maintain constant over the
entire protocol while the RPE values are increasing. For individual sets, the average power
sometimes increases, shown by a positive slope of the regression lines.

Figure 11. Analysis of the average power of the Flywheel kMeter data for a subject where the average
power is not correlated with the reported RPE values. The black dots represent the average power for
each repetition. The red line shows the corresponding RPE values. The local trend within each set is
shown using linear regression (background colors alternate for each set). The mean value of each set
is indicated as a red cross.

As shown in the last two Figures, the average power sometimes correlates with the
reported RPE values. We investigate the correlations between the subject’s reported RPE
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values and the other kMeter features, each the average value per set. Figure 12 shows the
correlations of all subjects and features. It shows that the average duration of repetitions is
for most subjects correlated with RPE values, i.e., the more fatigued, the slower the speed at
which the movement is executed. In contrast, the correlation of the average power is negative
for nine out of twelve subjects, i.e., the average power decreases during the protocol. However,
for the other subjects, the correlation of average power is low (PCC = 0.05) or even high
(PCC > 0.5), making it difficult to use this feature alone for prediction.
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Figure 12. Confusion matrix of PCC between individual subjects and all Flywheel kMeter features.

In this initial exploratory data analysis, we only investigated the Flywheel modality,
as the kMeter provides physical measurements aggregated as high-level information. Our
data exploration revealed that most Flywheel parameters correlate with the reported RPE
values, either positively or negatively. However, exceptions exist where individual subjects
performed way differently from the others, e.g., the first two subjects mostly achieved
different inverted correlations for most features. It is necessary to conduct further data
analysis on the other modalities, as they can reveal more information and trends in the data.

4.2. Prediction of Subjective Exertion Using Heart Rate and IMU Data

In our previous study, published in [27], we investigated how to predict subjective
exertion using machine learning on the collected heart rate and movement signals from the
IMU sensor. We have used data from all 16 subjects. We further investigated the advantage
of the HRV by training only on IMU but also on IMU and HRV data. Successively, we have
investigated the impact of individual features. The objective of this study was only to use
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wearable sensors and not to include other modalities, such as the cameras and Flywheel
data. The motivation was to develop a wearable sensor system that can be entirely worn
and potentially work in the wild without laboratory restrictions in the future.

The collected IMU movement data was processed using a sliding window approach
with different sizes and overlaps. Furthermore, we filtered the IMU data using a 4th
order Butterworth filter with different cut-off frequencies. Successively, we calculated
statistical features for each window of IMU data, i.e., the different sensor axes and sensors.
Calculating eight statistical features, we obtain a feature vector with 6 · 6 · 8 = 288 entries
per window. Our feature set includes minimum, maximum, mean, median, root mean
square (RMS), kurtosis, skewness, and standard deviation. The HRV data were processed
using the Kubious Premium software, as explained in Section 3.2. To obtain the maximum
number of windows, we have used a 30-s sliding window configuration, the smallest
reasonable configuration for calculating HRV parameters. After processing the entire
dataset, we combined the HRV and IMU data windows by selecting the HRV window
closest in time to every IMU data window.

After processing the IMU and HRV data, multiple machine learning models were
trained, including Gradient-Boosting Regression Trees (GBRT), Support Vector Regression
(SVR) with linear and radial basis function kernels, and random forest (RF). We trained
the models for multiple epochs on the shuffled data. We evaluated the machine learning
models using leave-one-subject-out (LOSO) cross-validation to obtain a fair evaluation and
prevent the models from overfitting. Evaluation metrics were mean absolute percentage
error (MAPE), coefficient of determination (R2), mean square error (MSE), and root mean
square error (RMSE). Table 4 summarizes the results of the different models. The GBRT
model achieved the best result.

Table 4. Training results of four machine learning models predicting perceived exertion using IMU
features alone and a combination of IMU and HRV features.

MAPE (%) R2 MSE RMSE
Model IMU IMU + HRV IMU IMU+HRV IMU IMU + HRV IMU IMU + HRV

GBRT 11.83 ± 2.33 7.71± 2.62 −0.01 ± 0.12 0.48 ± 0.30 2.14 ± 0.49 1.45± 0.44 4.74 ± 1.96 2.23± 1.34
SVRL 11.17 ± 3.17 8.78 ± 3.51 −0.03 ± 0.13 0.40 ± 0.18 2.19 ± 0.59 1.71 ± 0.67 5.04 ± 2.40 3.23 ± 2.11
SVRR 11.79 ± 4.63 10.09 ± 2.68 −0.05 ± 0.26 0.22 ± 0.19 2.24 ± 0.81 1.89 ± 0.49 5.46 ± 3.61 3.72 ± 1.91
RF 11.30 ± 3.43 8.27 ± 2.60 0.08 ± 0.10 0.52± 0.06 2.09 ± 0.64 1.51 ± 0.45 4.63 ± 2.57 2.41 ± 1.33

We further investigated the feature importances by training a SVR model on both
IMU and HRV data. Table 5 shows both data modalities’ ten most important features. We
conclude that the most important feature is the TRIMP HRV feature. More details about
these findings are available in the publication Albert et al. [27].

This initial study has shown that it is possible to predict perceived exertion using
HRV and IMU data using conventional machine learning models. When investigating
the feature importance, the TRIMP feature was ranked as the most important feature. As
Table 4 reveals, in training the models only using IMU data alone, the results are much
worse, indicated by the R2 metric that lies between −0.05 ≤ R2 ≤ 0.08. An R2 of zero
means that a model only predicts the mean, leading the model not to be useful. Therefore,
the HRV data is necessary to improve the prediction results significantly.
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Table 5. The ten most important features identified by training a SVR regression model on the IMU
and HRV data.

Feature Modality Rank

Load (TRIMP) HRV 1
Thigh, Left GX, Max. IMU 2
Tibia, Right GX, Min. IMU 3
Tibia, Right GZ, Min. IMU 4
Tibia, Right AX, Skewness IMU 5
Thigh, Left GX, Mean IMU 6
Thigh, Left GX, Med. IMU 7
Tibia, Right GX, Max. IMU 8
Tibia, Right GZ, Max. IMU 9
Tibia, Right AZ, Min. IMU 10
Intensity (TRIMP/min) HRV 11
Thigh, Right AZ, Min. IMU 12

5. Discussion

This paper presents a dataset to predict the subjective perceived exertion, represented
as RPE values. It includes data from a homogeneous population performing squats, an
exercise involving the hip and knee extensors. We selected the Flywheel to perform the
squat exercise. Blood lactate measurements confirmed that muscle fatigue was induced
by the protocol. We recorded data using multiple sensor modalities, including IMU, ECG,
and MoCap data. This dataset contributes to the goal of RPE prediction as it provides
multi-modal data recorded in a controlled lab environment.

Although this dataset offers potential for future studies to detect fatigue, we want to
highlight possible limitations of the collected dataset. One limitation is the small sample
size. Although we recorded 16 subjects in total, only 12 subjects consented to the publication
of their data. Another limitation is differences in familiarity with the RPE scale. Not all
subjects were familiar with the Borg scale, possibly introducing a bias in the collected RPE
values. Another possible limitation is the accuracy of the MoCap data using the Kinect
camera. We used Azure Kinect, the latest generation of the Kinect camera at the time of
writing. However, the pose estimation lacks accuracy compared to marker-based motion
capture systems [28].

In this paper, we presented a preliminary exploratory data analysis of the collected
data and a conducted experiment of predicting RPE values only using IMU and HRV
data. This experiment showed that predicting RPE values with IMU and HRV is possible,
primarily due to the HRV data, especially the TRIMP feature. This implies that building
an RPE prediction model with wearable sensors could assist athletes or coaches as a
biofeedback system. However, further research is necessary to investigate additional
research questions potentially leading to new practical implications. One example is fatigue
prediction solely using the MoCap data by analyzing the posture change during the fatigue
protocol. This approach could alleviate the need for wearable systems, thus increasing
the athletes’ comfort during training. Moreover, marker placement is not necessary with
the markerless skeleton tracking of the Azure Kinect camera, thus reducing the setup
time and effort. Another research question was to investigate the combination of all
sensor data, i.e., multi-modal prediction of subjective exertion. More advanced methods,
such as CNN or time-series models, including Transformers or RNNs, could improve the
prediction accuracy. So far, we have only used conventional machine learning methods
using handcrafted statistical features on IMU and HRV data. Incorporating temporal
context could further improve prediction accuracy.

Our dataset was collected in a laboratory environment as this study is still early
research in RPE prediction. In this controlled setting, we aimed to control as many in-
dependent variables as possible by defining a narrow protocol and strictly setting the
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subject’s inclusion criteria. The knowledge gained in this study could help further research
to bring this method into productive use. However, future research is necessary for this
purpose, and the study design needs adjustments. One possibility is the inclusion of a
more heterogeneous subject population, where the fitness levels have a larger variation.
Another aspect is the inclusion of multiple exercises in the protocol. Moreover, including
patients is necessary to make the system practical in rehabilitation or at home and benefit
from automated RPE prediction. However, this requires additional and exhaustive data
collection and an improvement of the method presented here.
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