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Abstract: Intelligent lower-limb prostheses aims to make amputees walk more comfortably and
symmetrically which requires the dynamic altering of gait parameters such as walking speed. Some
solutions have been proposed such as direct integration and machine learning methods. The former
updates walking speed once after an entire gait cycle and the latter collects large amounts of gait
data which are unfriendly to lower-limb amputees. Only by using an inertial measurement unit
(IMU) placed on the thigh, this paper proposes a novel online walking speed estimation method to
determine the walking speed rapidly and accurately in real-time. A step frequency estimator based
on the phase variable and a stride estimator based on the inverted pendulum model is designed to
determine the walking speed together. The proposed method is evaluated on a public open-source
dataset and the gait data were collected in the lab to verify the effectiveness for able-bodied and
prosthetic wearers. The experiment results show that the walking speed estimator offers higher
accuracy (RMSE of the able-bodied dataset: 0.051 ± 0.016 m/s, RMSE of the prosthetic wearers‘
dataset: 0.036 ± 0.021 m/s) than the previous works with a real-time frequency of 100 Hz. The results
also show that the proposed method has good performances both in static speeds and dynamic speed
tracking without much data collection before being applied.

Keywords: walking speed estimation; step frequency; stride; gait data; gait phase; root mean
square error

1. Introduction

Lower-limb losses have become a growing global problem. Traffic accidents, wars,
sports injuries, burns, complications from diabetes or tumors, and forced amputation are
the common reasons for lower-limb losses [1]. In order to help lower-limb amputees restore
mobility and return to normal life, scientists have conducted a lot of studies, especially
on lower-limb prostheses which are good replacements for amputated parts. At present,
most commercially available lower-limb prostheses are passive, because they are relatively
cheap, simple in structure and convenient for clinical application. However, walking with
passive prostheses will consume 20% to 30% more energy than healthy individuals [2];
the asymmetries between the passive prosthesis and the sound leg will cause back pain,
osteoarthritis and osteoporosis [3]; the walking speed may be 10% to 65% slower [1];
mobility in different terrains is limited. Therefore, an intelligent lower-limb prosthesis is
worthy of study due to its powerful potential in walking speed selection and adaptation to
different terrains.

Scientific researchers have made great progress in intelligent lower-limb prostheses
recently including gait planning and control strategies. The common control framework of
intelligent lower-limb prostheses is a hierarchical framework. The framework proposed
in [4] includes a high-level controller, mid-level controller and low-level controller. The
high-level controller focuses on human intention recognition including locomotion mode
classification, gait parameter determination, and gait phase determination. The mid-level
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controller receives the locomotion mode, gait parameters and gait phase and then computes
the desired joint torques. Therefore, the gait parameters and gait phase are always related
to the joint trajectory generation and controllers. Ref. [5] computes the gait phase by thigh
motion; Ref. [6] uses dynamic movement primitives (DMPs) to represent joint motion
trajectories and the amplitude parameters of DMPs are the functions of walking speed;
Ref. [7] introduces a predictive model that represents gait kinematics as a continuous
function of gait cycle percentage, speed, and incline; Ref. [8] applies finite state impedance
control (FSIC) which sets different impedance parameters during different gait phases
to simulate human joints’ impedance characteristic. To achieve better locomotion mode
conversion and dynamic motion, the fast and accurate determination of gait parameters
such as walking speed are necessary.

To estimate walking speed, wearable sensors such as inertial measurement units
(IMUs) are used in previous works. For now, the walking speed estimation methods can
be classified into three kinds: Direct integration method, kinematic model building and
machine learning methods. Ref. [9] installs the IMUs on the lower limb and estimates the
walking speed by the direct integration method. The potential integral drift problem can
be addressed by real-time velocity correction. Ref. [10] applies wearable accelerometers
on the wrist and proposes a virtual inverted pendulum model to estimate the walking
speed. Ref. [11] develops subject-dependent and independent machine-learning models
to determine walking speed. However, methods based on direct integration or kinematic
model building only estimate the walking speed once after an entire gait cycle. As for
machine learning methods, collecting large amounts of data on lower-limb amputees
is unfriendly and the trained regression models or neural networks are not adaptive to
amputees’ daily gait changes.

This paper designs a phase-based step frequency estimator and a user-dependent
stride estimator to estimate walking speed fast and accurately. Compared to direct in-
tegration methods, the proposed method can continuously estimate the walking speed
in real-time. Compared to the machine learning methods, the proposed method has no
need to collect large amounts of data under different speeds which are friendly to the
lower-limb amputees. The novel contributions of this paper are listed below: (1) Based on
the phase method [12], the real-time estimation of walking speed is achieved with better
accuracy; (2) the proposed method is proved to be effective both in prosthetic wearers and
the able-bodied; (3) only one wearable sensor (an IMU placed on the thigh) is used which
is accordant with the concept of a lightweight prosthesis; (4) the proposed method shows
good performance for static speeds and dynamic speed tracking; (5) the stride estimator
can calculate the stride symmetry in real time which can be input to the controller as a
performance index to be optimized.

2. Materials and Methods

Walking speed is the product of step frequency and stride, so the online estimation of
walking speed v(t) is decomposed into the real-time estimation of step frequency fstep(t)
and stride lstep(t). The focus of this section is to demonstrate the step frequency estimator
and stride estimator in detail.

v(t) = fstep(t) ∗ lstep(t) (1)

2.1. Phase-Based Step Frequency Estimator

Ref. [12] proves that the gait phase can be obtained by thigh motion and Ref. [13]
proves that the thigh motion can represent the gait cycle by using a motion capture system.
Therefore, an IMU is placed on the right thigh to obtain the thigh angle and thigh angular
velocity in the sagittal plane. The gait phase is obtained through data process and filtering
which are introduced below.
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2.1.1. Gait Phase Variable of Thigh Motion

The gait phase variable is used to represent a complete gait cycle. Here, we intend to
compute the gait phase variable by the motion of the right thigh. The sagittal data of the
right thigh IMU are collected and the sample period of IMU is ts. The measured thigh angle
and thigh angular velocity are marked as qt and

.
qt. The gait phase variable is defined as

ϕ(t) = atan2[
.
qt(t), qt(t)] + π (2)

The phase scatter diagram is shown in Figure 1 with blue points and the gait phase
variable of each point is its polar angle. In order to make the phase variable change
continuously on [0, 2π], it is necessary to translate the phase diagram so that it wraps the
origin. At the same time, the angle and angular velocity of the right thigh are normalized,
respectively, to make the trajectory of the phase diagram closer to a circle [12]. Translation
and normalization formulas are as follows

qt_tn(t) = αx(t)[qt(t) + βx(t)]γ.
qt_tn(t) = αy(t)[

.
qt(t) + βy(t)]γ

(3)

where γ = 180 is the scaling factor, α is the normalization coefficient and β is the trans-
lation coefficient. α and β are calculated in real-time according to Equation (4) during
walking. qt_tn and

.
qt_tn are the thigh angle and thigh angular velocity after translation and

normalization.

αx(t) = 1
|max[qt(t)]−min[qt(t)]| ,

αy(t) = 1
|max[

.
qt(t)]−min[

.
qt(t)]|

,
βx(t) =

−|max[qt(t)]+min[qt(t)]|
2 ,

βy(t) =
−|max[

.
qt(t)]+min[

.
qt(t)]|

2 .
(4)
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Figure 1. Phase scatter diagrams of thigh motion and the pentagram represents the origin.

The maximum and minimum values in Equation (4) are calculated in real-time from
the data of the previous gait cycle. The phase scatter diagrams before and after processing
are shown in Figure 1. After processing, the phase diagram is close to a circle centered on
the origin.

The processed gait phase variable is computed as

ϕtn(t) = atan 2[
.
qt_tn(t), qt_tn(t)] + π (5)

ϕtn(t) is the blue dotted line shown in Figure 2. In each gait cycle, the linearity between
ϕtn(t) and time is poor, mainly due to the noises in the measured thigh angle and angular
velocity. Here, Kalman filtering is applied to fuse data to remove noise and improve data
accuracy. ϕtn(t) and

.
ϕtn(t) are the states which are input into the Kalman filtering equation.

.
ϕtn(t) is computed as

.
ϕtn(t) =

ϕtn(t)− ϕtn(t− ts)

ts
(6)
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Kalman filtering equation consists of a prediction equation and a correction equation.
The system state equation and observation equation are shown in Equation (7). Equation (8)
is the covariance prediction equation and Equation (9) is the correction equation.

xk|k−1 =

[
ϕtn(t)
ϕ̇tn(t)

]
= Axk−1 =

[
1 ts
0 1

][
ϕtn(t− ts)
ϕ̇tn(t− ts)

]
zk = Hxk =

[
1 0
0 1

]
xk

(7)

Pk|k−1 = APk−1|k−1AT + Q (8)

Kk = Pk|k−1HT(HPk|k−1HT + R)
−1

xk|k = xk|k−1 + Kk(zk −Hxk|k−1)

Pk|k = (I− KkH)Pk|k−1

(9)

where x is the state, A is the state transition matrix, z is the observation vector, H is the
observation matrix, P is the covariance matrix of the state, Q is the covariance matrix of
the process noise, Kk is the Kalman gain, R is the measured covariance matrix, and I is
the two-dimensional identity matrix. A good filtering effect has been achieved when the
values of Q and R are

Q =

[
0.01 0.08
0.08 0.01

]
, R =

[
1200 400
400 1200

]
(10)

The gait phase variable after filtering is shown in Figure 2a. It is found that there is
little delay and better linearity after Kalman filtering. The filtered gait phase variable is
recorded as ϕtn(t).
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2.1.2. Real-Time Step Frequency Computation

To make the phase variable of two adjacent gait cycles continuous (calculation of slope
requires continuous curve), the continuous gait phase variable ϕcon is computed through
Equation (11).

ϕcon(t) = 2π ∗ Gt(t) + ϕtn(t) (11)

where Gt is the number of gait cycles that have been passed up to time t. The continuous
gait phase variable ϕcon is a continuous and monotonically increasing gait phase variable
during walking as shown in Figure 2b. The purple point represents the current time t and
the green point represents the time t′. The interval ti = t − t′ = 1 s is given in advance. Two
points are connected by a solid line segment and the dotted line is horizontal. The angle
between the two lines is marked as θ.
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The continuous gait phase variable is increased by 2π radians after one gait cycle
TG(t). So, the slope of the continuous gait phase variable in real-time is

tan[θ(t)] =
2π

TG(t)
(12)

The real-time step frequency can be estimated by

fstep(t) =
1

TG(t)
=

tan[θ(t)]
2π

=
ϕcon(t)− ϕcon(t− ti)

2π(t− ti)
(13)

2.2. Stride Estimator Based on Inverted Pendulum Model

As shown in Figure 3, a simple inverted pendulum model is built. The rotation angle
of the inverted pendulum from the right heel strike to the right foot-flat is θ IP

1 and the
rotation angle of the inverted pendulum from right foot-flat to right toe off is θ IP

2 . When
the right leg stands vertically, the right thigh angle in the sagittal plane is 0◦; when the right
leg swings forward, the right thigh angle in the sagittal plane increases.
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θ IP
1 and θ IP

2 can be calculated by Equation (14).

θ IP
1 = |max[qt(t)]|, θ IP

2 = |min[qt(t)]| (14)

The length of the inverted pendulum is marked as lIP which is consistent with the
leg length when the human leg is straightened. The stride is the moving distance of the
subject’s center of mass (COM) during one gait cycle which can be computed as

lstep = 2lIP[sin(θ IP
1 ) + sin(θ IP

2 )] (15)

So, we can figure out the online walking speed according to Equations (1), (13) and (15)

v(t) =
lIP[ϕcon(t)− ϕcon(t− ti)] · [sin(θ IP

1 ) + sin(θ IP
2 )]

π(t− ti)
(16)

3. Results
3.1. Data Acquisition
3.1.1. AB (the Able-Bodied) Dataset

The AB dataset comes from the publicly available open-source dataset which is col-
lected by Aaron Young’s team [14]. The AB dataset contains the motion data of 11 able-
bodied subjects (AB06–AB16). Among those subjects, there are eight males and three
females, aged from 19 to 24 years old, and their heights range from 1.52 m to 1.80 m. Each
subject completes eight level walking trials on the treadmill (Figure 4) with different speeds
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(0.5 m/s, 1.3 m/s, 1.7 m/s and 0.9 m/s). The data of the right thigh IMU are recorded with
a sampling frequency of 200 Hz.
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3.1.2. PW (Prosthetic Wearer) Dataset

During PW dataset collection, the subjects are required to wear the intelligent lower-
limb prosthesis shown in Figure 5a (a lower-limb prosthesis designed for able-bodied
subjects, in which the knee and ankle are active joints that provide power in the sagittal
plane) and walk steadily on the treadmill with a slope of 0◦ (Figure 5b). The prosthesis
includes three embedded mechanical sensors: two joint encoders to measure the kinematics
of the knee and ankle and one IMU placed on the thigh. All sensor data are collected at
100 Hz. The subjects are required to complete six static speed trials and the walking speeds
range from 1.5 km/h to 4.0 km/h with an interval of 0.5 km/h. Time stamps, data of IMU,
real-time treadmill speed and joint angles are recorded to form the PW dataset.
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3.2. Dynamic Speed Tracking Validation

RMSE and time delay are calculated to test the estimation accuracy and determine the
response time during speed changes, respectively. The interval ti has an effect on these
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two performances. Based on the AB dataset, the dynamic speed tracking performances
across different values of the interval ti are shown in Figure 6.
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Figure 6. Experimental results based on the AB dataset. (a) Speed tracking results. (b) Step frequency
estimation of AB06. (c) Stride estimation of AB06.

From Figure 6a, the proposed method has a good performance in both static speeds
and dynamic speed tracking. The average RMSE across subjects is 0.089 ± 0.014 m/s,
0.051 ± 0.016 m/s and 0.045 ± 0.012 m/s and the average time delays are 389 ms, 553 ms
and 678 ms as ti increases. According to Equations (13) and (15), the step frequency changes
and the stride stays unchanged when ti changes. Moreover, with the change in walking
speed, the stride and step frequency increase or decrease at the same time. The time delays
are smaller than one gait cycle which shows better responsiveness than traditional methods
such as direct integration methods.

During dynamic speed tracking, the RMSE decreases with the speed increasing as shown
in Figure 7a. We guess the reason is that it is difficult to keep the step frequency stable at low
speeds (from Figure 6b, AB06’s step frequency at lower speeds is more variable).
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Figure 7. (a) Speed estimation errors at different speeds based on the AB dataset; (b) Speed estimation
errors at different speeds based on the PW dataset. (c) Tracking errors of prosthetic knee angle when
subjects are equipped with the lower-limb prosthesis and walk at different speeds. The error band
represents one standard deviation.

3.3. Static Speed Tracking of PW Dataset

Based on the PW dataset, the static speed tracking performances are shown in Figure 8.
The tracking performances are pretty good when the speed is less than 3 km/h and we can
reach the same conclusion from Figure 7b that the RMSE remains almost unchanged at
lower speeds but eventually increases. The preliminary guess is that the force acting on
the knee joint at heel-strike or toe-off is greater at higher speeds which bring bigger knee
angle tracking errors as shown in Figure 7c. Therefore, the deviation between the inverted
pendulum model and the actual model increases which leads to a higher estimation error of
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walking speed. The results indicate that the control performances of intelligent prostheses
affect walking speed estimation.
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Figure 8. Experimental results based on the PW dataset.

3.4. Comparison of Previous Works

Based on the AB dataset, the RMSE across 11 subjects of the proposed walking speed
estimator is 0.051 ± 0.016 m/s. Based on the PW dataset, the RMSE across six subjects is
0.036± 0.021 m/s. The repeated-measures ANOVA (p < 0.05) is used to test the effects of
walking speed on the absolute difference between estimated and actual speed estimation error.

Previous works presented lots of methods to estimate walking speed. Sabatini placed
an IMU on the foot, and the RMSEs less than 0.05 m/s are obtained for tested speeds and
inclines varying in the intervals [3,6] km/h and [5, +15]%, respectively [9]. Boris used a
single shank embedded IMU and achieve a mean RMSE of 0.09 m/s for a level walking
mission [15]. With analysis of variance (ANOVA), Li computed the estimation errors at
different speeds and slopes [16] and Bhakta used machine learning models for both subject-
dependent and subject-independent algorithms to estimate walking speed when the speed
is lower than 0.9 m/s [11]. Table 1 reports walking speed estimation methods proposed in
recent years, as well as the sensors used, number of subjects, statistical analysis methods
and experimental results. Through comparison of the listed research works, it can be found
that the proposed method in this paper has high accuracy.

Table 1. Related papers and experimental results of walking speed estimation methods.

Authors N Subject Sensors Method Statistical Analysis RMSE (m/s)

Sabatini [9] 5 AB a foot IMU Direct integration method Standard
regression tool 0.05

Boris [16] 9 TF IMU installed on shank Kinematic model Not mentioned 0.09

Li [15] 8 AB IMU installed on shank Direct integration method
combined with kinematic model ANOVA (p < 0.05) 0.07

Bhakta [11] 6 TF IMU on the thigh Machine learning models including
LR, XGBoost and NN (<0.9 m/s)

ANOVA (p < 0.05)
and Bonferroni

post-hoc correction

DEP: 0.014 ± 0.001
IND: 0.070 ± 0.007

This paper 11 AB
6 PW IMU on the thigh Phased-based method

combined with kinematic model ANOVA (p < 0.05) AB: 0.051 ± 0.016
PW:0.036 ± 0.021

TF: subjects with transfemoral amputation; AB: the able-bodied subjects; PW: the able-bodied subjects who equip
with a lower-limb prosthesis; LR: linear regression; NN: neural network; DEP: subject dependent algorithms;
IND: subject independent algorithms.
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4. Discussion

Our study explores the method to estimate two gait parameters of stride and step
frequency whose product is exactly the walking speed. Compared to prior literature, this
paper achieves higher accuracy. It can be seen that our method contributes to speed switch,
gait analysis and more aspects in the discussion below.

4.1. Speed Switch

The desired angles of the knee and ankle which are input into the prosthesis controller
are obtained from the natural walking of the able-bodied subjects without wearing a
prosthesis on the treadmill. From Figure 9, it is known that the desired angles of the knee
and ankle vary with the walking speeds. Therefore, the accuracy estimation of walking
speed is helpful to choose the right desired trajectories during the speed switch while there
are lots of studies that introduce walking speed into gait planners. For example, ref. [17]
uses discrete Fourier transform (DFT) to characterize the desired periodic joint trajectories
as functions of the gait phase across the entire stride and extends the control method to
different walking speeds; ref. [18] uses the real-time walking speed and gait phase as the
inputs into the Gaussian process (GP) functions to specify the desired trajectories and
feed-forward torques for the knee and ankle.
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Figure 9. The desired angles of knee (a) and ankle (b) at different speeds.

If the real-time walking speed is not obtained or misestimated, the wrong desired
trajectories will be input into the prosthesis controller which will lead to the reduction
in the stride symmetry (for simplicity, stride symmetry is defined as the stride difference
between the sound leg and the prosthesis leg). As shown in Figure 10a, the stride of the
prosthetic leg and the sound leg is closest under a speed of 3 km/h.
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Figure 10. (a) The results of stride estimator at different speeds. In this experiment, the desired
trajectories which is input to prosthesis controller are collected under the speed of 3 km/h. (b) The
results of step frequency estimator at different speeds.



Appl. Sci. 2023, 13, 1893 10 of 11

To sum up, the accurate estimation of walking speed which is achieved in this paper
can contribute to the speed switch during walking by adjusting the desired trajectories of the
lower-limb joints, making the gait of the prosthetic wearer more natural and symmetrical.

4.2. Gait Analysis

Under different speeds, the step frequency of one able-bodied subject with or without
a prosthesis is measured as shown in Figure 10b. It is found that when the subject walks
with a prosthesis the step frequency is higher. Because of the instability the prosthesis
brings, the subject accelerates the frequency of adjusting the gait to increase the dynamic
stability. However, when the speed is 4 km/h, the step frequencies of both are almost the
same because the strides of both are near to upper limit.

The strides of the prosthetic wearer’s sound leg and prosthetic leg are measured as
shown in Figure 10a. The figure shows that the stride of the sound leg is smaller than the
prosthetic leg under the same speed. We guess that because the subject trusts his sound leg
more, he shortens the stride of the sound leg to increase its support time. The difference
between the two strides also may come from the mechanical design.

From the above discussion, gait analysis can help make comments and compare
the performance of a prosthesis. Moreover, walking speed is used to evaluate impaired
mobility [19] and assess the physical condition [20] of amputees.

5. Conclusions

Based on the gait phase and kinematic model, which is commonly used in intel-
ligent lower-limb prostheses, a method to estimate walking speed online is proposed.
This paper innovatively designs a step frequency estimator and a stride estimator to esti-
mate the walking speed and only one wearable sensor is used. The experimental results
based on a dataset of able-bodied (RMSE: 0.051 ± 0.016 m/s) and prosthetic wearers
(RMSE: 0.036 ± 0.021 m/s) show the proposed method is competitive and suitable for
static speed estimation and dynamic speed tracking.

In the future, the real-time lower-limb joints’ angles will be considered to correct the
inverted pendulum model so as to improve the stride estimation accuracy at high speeds;
the stride symmetry can be applied in the control framework as a real-time performance
index; moreover, the proposed walking speed estimation method will be extended and
tested under different terrains such as ramps and stairs.

Author Contributions: Conceptualization, Y.L. and H.A.; methodology, Y.L. and H.A.; software, Y.L.;
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