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Observability-Enhancement Boresight Calibration of
Camera-IMU System: Theory and Experiments

Xiwen Yang†, Ziheng Cheng† and Shaoming He*

Abstract—Airborne target tracking with vision sensors is one
of the indispensable and critical components in unmanned aerial
vehicles (UAVs). It is critical to calibrate the misalignment angles
between the onboard camera and Inertial Measurement Unit
(IMU) to improve the accuracy of target tracking. In this paper,
the observability of boresight misalignment angle estimation
using a cooperative target is first analyzed. Based on the observ-
ability Gramian, an optimization criterion for maximizing the
degree of observability is determined, and the optimal geometries
between the UAV and the target are derived. Taking the physical
constraints of the UAV into consideration, an online trajectory
optimization approach for a UAV with a vision sensor is proposed
to achieve in-flight calibration of the misalignment angles. Both
numerical simulations and experiments are conducted to validate
the proposed method.

Index Terms—Boresight calibration, Camera-IMU system, Ob-
servability analysis, Configuration optimization

I. INTRODUCTION

Autonomous target tracking is an essential task for UAVs in
a wide variety of applications, including surveillance [1], en-
vironment monitoring [2], traffic management [3], and search
and rescue [4]. Thanks to the progress in computer vision,
image-based airborne target tracking methods have achieved
an exceptional level of performance on real-world small-scale
UAVs in recent years [5], [6]. These methods heavily rely
on accurate integration of the onboard IMU and the camera
measurements since the bearing information extracted from
the received image is with respect to the UAV body frame
[7], yet most works explicitly assume that the gimbal/camera
frame and the UAV body frame are perfectly aligned and
collocated [8]–[11]. However, there inevitably exists boresight
misalignment angle between these two frames due to improper
installations. This misalignment error is shown to significantly
degrade the tracking performance if not properly calibrated,
and hence boresight calibration of a camera-IMU system
becomes a fundamental requirement for vision-based airborne
target tracking.

The calibration of sensor bias, such as additive and mul-
tiplicative errors, has been widely studied in existing target
tracking works [12]–[14]. With the assumption that the altitude
of the target is known a priori, the horizontal position of the
target and an additive constant bias in the aircraft heading
angle are jointly estimated using linear regression method
[15]. The two-dimensional target tracking problem with a

Xiwen Yang, Ziheng Cheng and Shaoming He are with the School of
Aerospace Engineering, Beijing Institute of Technology, Beijing 100081,
China
†These authors contributed equally.
*Corresponding Author. Email: shaoming.he@bit.edu.cn

sensor bias in bearing measurements is studied in [16], and
the angle bias is also jointly estimated with the position of
a stationary target using Kalman filter (KF). By combining
the sensor registration and track-to-track fusion process in
multi-target tracking, the influence of additive biases in bearing
measurements is mitigated under the condition that at least one
target is visible to both of the two radars [17]. Augmenting the
navigation and gimbal biases in the system states, the authors
in [18] proposed a decentralized algorithm to estimate the
unknown target state and the sensor biases in an integrated
manner using extended information filter (EIF). The result
shows that with a target-centered trajectory, the biases in UAV
attitude and camera gimbal cannot be jointly estimated due to
poor system observability. For the multi-sensor multi-target
tracking scenarios considered in [19], the range and azimuth
measurements are modeled to be corrupted by both scaling and
offset biases, which are estimated from pseudo-measurements
calculated by the target state estimates in local trackers.
However, these sensor models only considered additive and/or
multiplicative errors, which are not suitable for boresight
misalignment angle estimation.

Unlike sensor biases, the calibration of boresight misalign-
ment angles involves estimating the rotational relationship
between camera and IMU frames. This relationship cannot be
modeled as either offset or scaling biases in the sensor output.
The boresight or the physical mounting angle calibration prob-
lem in integrated camera-IMU systems has been frequently
investigated in the field of airborne mapping and navigation
[20]–[24]. A conventional solution to this problem is to first
collect images from a calibration site with a certain number of
well-distributed known ground control points (GCPs), and then
determine the boresight matrix using the bundle adjustment
approach [20], [25], [26]. The authors in [24] calibrated
the lever arms and boresight misalignment of an integrated
navigation system in a standard test field with over 200 GCPs.
In [27], the methods based on GCPs and tie features for
boresight calibration between the hyper-spectral scanner and
navigation system on a UAV platform were proposed. The
deficiency of this conventional calibration method lies in that
it is impractical to implement a GCP network in some inac-
cessible field environments. Therefore, investigating boresight
calibration methods without GCPs is more meaningful in terms
of real applications. In [28] and [29], the misalignment angles
between the camera and IMU are estimated by combining
adjustment between the images and point clouds generated
by an extra onboard LIDAR system, which is inapplicable
for small-scale UAVs due to limited computational power.
The authors in [30]–[33] determined the IMU-camera extrinsic
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parameters and the biases of IMU components in the vision-
aided inertial navigation systems (VINS) by augmenting the
navigation state vector. The primary issue associated with
existing boresight calibration methods is that they fail to
analyze the degree of observability of the problem at hand.
Generally, the quality of sensor calibration is proportional
to the degree of system observability, and therefore actively
optimizing the system observability is the key enabler to
realize in-flight boresight calibration.

Driven by the aforementioned challenges, the purpose of
this paper is to present a simple yet efficient boresight cal-
ibration approach for the integrated camera-IMU systems.
Based on the observability Gramian, we first analyze the
observability of boresight estimation using a cooperative target
with rigorous mathematical derivations. The UAV-target con-
figuration is then optimized by maximizing the determinant
of the observability Gramian and some special cases are
presented to provide better insights of the optimal relative
geometry. An online two-dimensional UAV trajectory opti-
mization approach with physical constraints is proposed to
complete the calibration process. Since the target position in
body frame is determined by both the attitude and position of
the UAV, the dynamic model of a quadrotor is employed and a
multi-step optimization strategy is applied in the development
of the trajectory planning approach. Numerical simulations
and in-door experiments are finally conducted to evaluate the
performance of the proposed algorithm.

The contributions of this paper are two folds. On one hand,
it is found that the degree of observability in misalignment
angle calibration is related to the relative positions of the
cooperative target in the UAV body frame. This reveals that
the calibration performance is determined by both the attitude
and position of the UAV, and is the key foundation to find an
observability-enhancement optimal UAV-target configuration
in the body frame. Up to the best of our knowledge, this
problem has not been analyzed before in the literature. On
the other hand, a trajectory optimization approach for in-
flight camera-IMU calibration is proposed with both numerical
and experimental validations. Compared to the non-optimized
UAV trajectories, the experimental results clearly show that
the calibration performance is improved by the proposed
approach.

The remainder of this paper is organized as follows. Sec.
II provides some preliminaries and formulates the problem.
Sec. III analyzes the observability of the boresight calibration
system. The optimal UAV-target configuration is then given
in Sec. IV through numerical studies. In Sec. V, the online
trajectory optimization method for observability-enhancement
calibration is presented, followed by the simulation and ex-
periment results in Sec. VI. Finally, the pertinent conclusions
are drawn in Sec. VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section illustrates the geometric relationship between
the UAV and the cooperative target considering camera-IMU
misalignment. Then, the observability Gramian is briefly re-
viewed to facilitate the following analysis and the problem
formulation of this work is also stated.

A. Geometry of Vision-Based Target Localization

The geometry of target localization using UAV platform
with a gimbaled camera is illustrated in Fig. 1, where On −
XnYnZn and O−XbYbZb represent the local north-east-down
(NED) frame and the body frame of the UAV, respectively.
The notations Pt = [xtn, y

t
n, z

t
n]
T and Pu = [xun, y

u
n, z

u
n]
T

are the position vectors of the target and UAV in the inertial
coordinate, respectively. The coordinates of the cooperative
target in UAV body frame are given byxbyb

zb

 = Cbn

xtn − xunytn − yun
ztn − zun

 (1)

where Cbn is the rotation matrix from the local NED frame to
the body frame, given by

Cbn =

 CψCθ SψCθ −Sθ
CψSθSφ − SψCφ SψSθSφ + CψCφ CθSφ
CψSθCφ + SψSφ SψSθCφ − CψSφ CθCφ

 (2)

with φ, θ, ψ representing the roll, pitch, and yaw angles of the
UAV, C(·) and S(·) representing cos(·) and sin(·), respectively.
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Fig. 1. Geometry of vision-based target localization using UAV platform

In Fig. 1, u and v are the pixel coordinates of the cooperative
target T in the focal plane, which can be obtained from the
gimbaled camera. Denote the camera reference frame as O−
XcYcZc, whose origin is translated to that of the body frame.
Based on a simple pinhole camera model, the target position
vector in camera frame can be readily obtained asxcyc

zc

 =
‖Pt −Pu‖√
u2 + v2 + f2

fu
v

 (3)

where f is the focal length of the camera.
Let α and β represent the azimuth and elevation angles of

the camera relative to the gimbal base frame, i.e., O−XgYgZg
in Fig. 1. Then, the following equation holds,xgyg

zg

 = Cgc

xcyc
zc

 (4)

where Cgc is the rotatin matrix from the camera frame to the
gimbal base frame as

Cgc =

C(α)C(β) −S(α) C(α)S(β)
S(α)S(β) C(α) S(α)S(β)
−S(β) 0 C(β)

 (5)
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From Eqs. (1) and (4), we obtain the coordinate of the
cooperative target in the UAV body frame and the gimbal base
frame. However, the body frame determined by the on-board
IMU sensor is usually misaligned with the gimbal base frame
due to the existence of mounting errors. Denoting the constant
misalignment angles by ex, ey , ez , the relationship between
the target position vectors in these two frames is expressed asxgyg

zg

 = Cgb

xbyb
zb

 (6)

where Cgb is the rotation matrix from body frame to gimbal
base frame, given by

Cgb = CezCey SezCey −Sey
CezSeySex − SezCex SezSeySex + CezCex CeySex
CezSeyCex + SezSex SexSeyCex − CezSex CeyCex


(7)

Assume that the misalignment errors ex, ey , ez are small
angles, Eq. (7) can be reduced to

Cgb =

 1 ez −ey
−ez 1 ex
ey −ex 1

 (8)

Combining Eqs. (6) and (8), a linear measurement function
of the misalignment angles is obtained asxg − xbyg − yb

zg − zb

 =

 0 −zb yb
zb 0 −xb
−yb xb 0

exey
ez

 (9)

B. Observability Gramian

Consider a discrete-time linear system described by equa-
tions of the form

xk+1 = Fkxk
yk = Hkxk

(10)

where xk ∈ Rn denotes the system state vector at time tk
and y ∈ Rm represents the measurement vector. The matrices
Fk and Hk stand for the system transition and measurement
model, respectively.

The observability Gramian of system (10) at time step tk is
defined as [34]

Wk = OTkOk (11)

where the observability matrix Ok is determined by

Ok =


H1

H2F1

...
HkFk−1 · · ·F1

 (12)

According to [34], system (10) is observable if and only if
Wk, or equivalently, Ok is full-rank. Therefore, the system is
observable at time k if the following condition is satisfied

det[Wk] 6= 0 (13)

C. Problem Statement

To improve the accuracy and efficiency of boresight cal-
ibration, this work aims to analyze the observability of the
misalignment angles and further actively optimize the relative
configuration of UAV and the cooperative target.

III. OBSERVABILITY ANALYSIS

Since the system observability is a key index of state esti-
mation performance, the observability of boresight calibration
problem is analyzed in this section.

A. Observability Analysis of Boresight Calibration System

Let x = [ex, ey, ez]
T be the system state vector of the

boresight calibration problem. Since the misalignment angles
are assumed to be constant, the state transition matrix Fk is
given as

Fk =

1 0 0
0 1 0
0 0 1

 (14)

From Eq. (9), the measurement matrix at time tk is given
by

Hk =

 0 −zb,k yb,k
zb,k 0 −xb,k
−yb,k xb,k 0

 (15)

where the subscript k is included in the coordinates expression
to denote time step tk.

Substituting Eqs. (14) and (15) into Eq. (11) yields the
observability Gramian of the boresight calibration system as

Wk =

k∑
i=1

HT
i Hi =



k∑
i=1

ρ2
yz,i −Iz,k −Iy,k

−Iz,k
k∑
i=1

ρ2
xz,i −Ix,k

−Iy,k −Ix,k
k∑
i=1

ρ2
xy,i


(16)

where the range-related and inertia-related terms are defined
as

ρxy,i =
√
x2
b,i + y2

b,i, ρxz,i =
√
x2
b,i + z2

b,i

ρyz,i =
√
y2
b,i + z2

b,i, Ix,k =

k∑
i=1

yb,izb,i

Iy,k =

k∑
i=1

xb,izb,i, Iz,k =

k∑
i=1

xb,iyb,i

(17)

After some tedious but straightforward algebraic manipula-
tions, it is easy to verify that det(W1) = 0, which means the
states are unobservable with only one-scan measurements. The
determinant of the observability Gramian in case of k ≥ 2 is
derived as

det(Wk)

=

k∑
i=1

ρ2
xy,i

[
k∑
i=1

ρ2
xz,i

k∑
i=1

ρ2
yz,i − (Iz,k)

2

]
− Ix,k

[
Ix,k

k∑
i=1

ρ2
yz,i
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+ Iz,kIy,k

]
− Iy,k

[
Ix,kIz,k + Iy,k

k∑
i=1

ρ2
xz,i

]

=

(
k∑
i=1

ρ2
xy,i

)2 k∑
i=1

z2
b,i +

k∑
i=1

ρ2
xy,i

(
k∑
i=1

z2
b,i

)2

+

k∑
i=1

ρ2
xy,i

k∑
i=1

x2
b,i

k∑
i=1

y2
b,i − (Iz,k)

2
k∑
i=1

ρ2
xy,i

− (Ix,k)
2

k∑
i=1

ρ2
yz,i − (Iy,k)

2
k∑
i=1

ρ2
xz,i − 2Iz,kIy,kIx,k

=

[
k∑
i=1

x2
b,i

k∑
i=1

z2
b,i

k∑
i=1

ρ2
i − (Iy,k)

2
k∑
i=1

ρ2
xz,i

]

+

[
k∑
i=1

y2
b,i

k∑
i=1

z2
b,i

k∑
i=1

ρ2
i − (Ix,k)

2
k∑
i=1

ρ2
yz,i

]

+

k∑
i=1

ρ2
xy,i

[
k∑
i=1

x2
b,i

k∑
i=1

y2
b,i − (Iz,k)

2

]
− 2Iz,kIy,kIx,k

(18)

where ρi stands for the distance between the UAV and the
cooperative target at time ti, i.e., ρi =

√
x2
b,i + y2

b,i + z2
b,i.

Rearranging terms in Eq. (18) yields

det(Wk)

=

k∑
i=1

ρ2
xz,i

[
k∑
i=1

x2
b,i

k∑
i=1

z2
b,i − (Iy,k)

2

]
+

k∑
i=1

ρ2
yz,i

[
k∑
i=1

y2
b,i

×
k∑
i=1

z2
b,i − (Ix,k)

2

]
+

k∑
i=1

ρ2
xy,i

[
k∑
i=1

x2
b,i

k∑
i=1

y2
b,i − (Iz,k)

2

]

+ 2

k∑
i=1

x2
b,i

k∑
i=1

y2
b,i

k∑
i=1

z2
b,i − 2Iz,kIy,kIx,k (19)

Notice that one can easily verify that

k∑
i=1

x2
b,i

k∑
i=1

y2
b,i−

(
k∑
i=1

xb,iyb,i

)2

=
∑

1≤i<j≤k

(xb,iyb,j − xb,jyb,i)2

(20)

Therefore, Eq. (19) is equivalent to the following form

det(Wk)

=

k∑
i=1

ρ2
xz,i

∑
1≤i<j≤k

c2xz,ij +

k∑
i=1

ρ2
yz,i

∑
1≤i<j≤k

c2yz,ij +

k∑
i=1

ρ2
xy,i

×
∑

1≤i<j≤k

c2xy,ij + 2

k∑
i=1

x2
b,i

k∑
i=1

y2
b,i

k∑
i=1

z2
b,i − 2Iz,kIy,kIx,k︸ ︷︷ ︸

Mk

(21)

where the cross-product terms are defined as

cxy,ij = xb,iyb,j − xb,jyb,i, cxz,ij = xb,izb,j − xb,jzb,i,
cyz,ij = yb,izb,j − yb,jzb,i

(22)

Denote the latter part of Eq. (21) as Mk. In case of k = 2,
we have Eq. (23) shown at the beginning of next page.

Hence, we have

det(W2)

=
(
x2
b,1 + x2

b,2 + z2
b,1 + z2

b,2

)
c2xz,12 + (y2

b,1 + y2
b,2 + z2

b,1

+ z2
b,2)c2yz,12 +

(
x2
b,1 + x2

b,2 + y2
b,1 + y2

b,2

)
c2xy,12 +M2

=

2∑
i=1

(
x2
b,i + y2

b,i + z2
b,i

) (
c2xy,12 + c2xz,12 + c2yz,12

)
=

2∑
i=1

ρ2
i ‖ Pb,1 ×Pb,2‖2

(24)

where Pb,i = [xb,i, yb,i, zb,i]
T represents the position vector

of the target in the UAV body frame at time ti.
If k ≥ 3, Mk can be rewritten as Eq. (25). Then, det(Wk)

is derived as Eq. (26). Combing Eqs. (24) and (26) yields Eq.
(27).

Proposition 1. The boresight calibration system is unobserv-
able if the target position vectors projected into the UAV body
frame at sampling time instants t1, t2, · · · , tk are collinear.

Proof. We prove Proposition 1 by an intuitive geometric
interpretation of Eq. (27). As depicted in Fig. 2, the term
‖ Pb,i×Pb,j‖ represents the area of the parallelogram formed
by vectors Pb,i and Pb,j , while the absolute value of the mixed
product (Pb,i×Pb,j)·Pb,m gives the volume of parallelepiped
constructed by the three vectors involved.

If the vectors Pb,1,Pb,2, · · · ,Pb,k are collinear with each
other, it is obvious that Eq. (27) equals zero since the areas
of parallelograms and the volumes of the parallelepipeds
formed by these vectors are zero. This means the system is
unobservable under this condition.

IV. OPTIMIZATION OF UAV-TARGET CONFIGURATION

Note that the check on the rank of observability Gramian
only gives an answer to the binary problem of whether the
system is observable or not. In order to determine the optimal
set of observations and improve the estimation performance,
this section determines an optimization criterion to measure
the degree of observability of the boresight calibration system.
Further, the optimal geometries and numerical results in some
special cases are analyzed.

A. Selection of Optimality Metric

According to [35], matrix measures of the observability
Gramian can reflect the quality of system observability. How-
ever, finding the optimal relative geometry requires a scalar
metric. The most common scalable function of a matrix in-
clude the trace, the smallest eigenvalue and the determinant of
the matrix. From Eq. (16), the trace of observability Gramian
Wk is given by

tr(Wk) =

k∑
i=1

(
ρ2
xy,i + ρ2

xz,i + ρ2
yz,i

)
= 2

k∑
i=1

ρ2
i (28)

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2022.3229652

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 06,2023 at 09:38:44 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 5

M2 =2
(
x2
b,1 + x2

b,2

) (
y2
b,1 + y2

b,2

) (
z2
b,1 + z2

b,2

)
− 2(xb,1yb,1 + xb,2yb,2)(xb,1zb,1 + xb,2zb,2)(yb,1zb,1 + yb,2zb,2)

=(xb,1yb,2zb,1 − xb,2yb,1zb,1)2 + (xb,1yb,2zb,1 − xb,1yb,1zb,2)2 + (xb,2yb,1zb,1 − xb,1yb,1zb,2)2

+ (xb,2yb,2zb,1 − xb,2yb,1zb,2)2 + (xb,2yb,2zb,1 − xb,1yb,2zb,2)2 + (xb,1yb,2zb,2 − xb,2yb,1zb,2)2

=
(
z2
b,1 + z2

b,2

)
c2xy,12 +

(
y2
b,1 + y2

b,2

)
c2xz,12 +

(
x2
b,1 + x2

b,2

)
c2yz,12

(23)

Mk =
∑

1≤i<j≤k

[(
z2
b,i + z2

b,j

)
c2xy,ij +

(
y2
b,i + y2

b,j

)
c2xz,ij +

(
x2
b,i + x2

b,j

)
c2yz,ij

]
+

∑
1≤i<j<m≤k

[
(xb,iyb,jzb,m − xb,myb,izb,j)2

+ (xb,myb,izb,j − xb,jyb,mzb,i)2 + (xb,jyb,mzb,i − xb,iyb,jzb,m)2 + (xb,myb,jzb,i − xb,iyb,mzb,j)2

+ (xb,iyb,mzb,j − xb,jyb,izb,m)2 + (xb,jyb,izb,m − xb,myb,jzb,i)2
]

(25)

det(Wk) =

k∑
i=1

ρ2
xz,i

∑
1≤i<j≤k

c2xz,ij +

k∑
i=1

ρ2
yz,i

∑
1≤i<j≤k

c2yz,ij +

k∑
i=1

ρ2
xy,i

∑
1≤i<j≤k

c2xy,ij +Mk

=
∑

1≤i<j≤k

[ k∑
l=1

ρ2
l −

k∑
l=1,l 6=i,j

z2
b,l

 c2xy,ij +

 k∑
l=1

ρ2
l −

k∑
l=1,l 6=i,j

y2
b,l

 c2xz,ij

+

 k∑
l=1

ρ2
l −

k∑
l=1,l 6=i,j

x2
b,l

 c2yz,ij

]
+

∑
1≤i<j<m≤k

[
(xb,iyb,jzb,m − xb,myb,izb,j)2

+ (xb,myb,izb,j − xb,jyb,mzb,i)2 + (xb,jyb,mzb,i − xb,iyb,jzb,m)2 + (xb,myb,jzb,i − xb,iyb,mzb,j)2

+ (xb,iyb,mzb,j − xb,jyb,izb,m)2 + (xb,jyb,izb,m − xb,myb,jzb,i)2
]

=

k∑
l=1

ρ2
l

∑
1≤i<j≤k

(c2xy,ij + c2xz,ij + c2yz,ij) +
∑

1≤i<j<m≤k

[
(xb,iyb,jzb,m − xb,myb,izb,j)2

+ (xb,myb,izb,j − xb,jyb,mzb,i)2 + (xb,jyb,mzb,i − xb,iyb,jzb,m)2 + (xb,myb,jzb,i − xb,iyb,mzb,j)2

+ (xb,iyb,mzb,j − xb,jyb,izb,m)2 + (xb,jyb,izb,m − xb,myb,jzb,i)2 −
(
z2
b,ic

2
xy,jm + y2

b,ic
2
xz,jm + x2

b,ic
2
yz,jm

)
−
(
z2
b,jc

2
xy,im + y2

b,jc
2
xz,im + x2

b,jc
2
yz,im

)
−
(
z2
b,mc

2
xy,ij + y2

b,mc
2
xz,ij + x2

b,mc
2
yz,ij

) ]
=

k∑
l=1

ρ2
l

∑
1≤i<j≤k

(c2xy,ij + c2xz,ij + c2yz,ij)−
∑

1≤i<j<m≤k

(xb,mcyz,ij − yb,mcxz,ij + zb,mcxy,ij)
2

=

k∑
i=1

ρ2
i

∑
1≤i<j≤k

‖ Pb,i ×Pb,j‖2 −
∑

1≤i<j<m≤k

[(Pb,i ×Pb,j) ·Pb,m]2

(26)

which reveals that maximizing the trace of Wk tends to
increase the range between the UAV and the cooperative
target. Obviously, this is not a proper objective function for
configuration optimization since the angular information is
ignored. This means a set of collinear relative position vectors
can also yield a large value of tr(Wk), resulting in an
unobservable estimation.

Since the determinant contains information of all elements
of a matrix and represents the observability of all dimensions
equally, the determinant of Wk is chosen over the smallest
eigenvalue to serve as the optimization criterion. Therefore,
the UAV-target configuration optimization problem can be
described as

max det(Wk) (29)

B. Optimal Geometry of Special Cases

From Eq. (27), the value of det(Wk) is determined by the
relative geometry of the target position vectors projected in the
UAV body frame. Leveraging the geometrical interpretation of
det(Wk), several propositions can be given to provide better
insights into the relative geometry optimization problem. In the
following propositions, we use γij ∈ [0, π] to denote the angle
between vectors Pb,i and Pb,j , i.e., the two target position
vectors in the UAV body frame.

Proposition 2. If k = 2 and the distances between the UAV
and the cooperative target at time instant t1 and t2, i.e., ρ1

and ρ2, are given, the optimal UAV-target geometry is given
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det(Wk) =



k∑
i=1

ρ2
i ‖ Pb,1 ×Pb,2‖2 , k = 2

k∑
i=1

ρ2
i

∑
1≤i<j≤k

‖ Pb,i ×Pb,j‖2 −
∑

1≤i<j<m≤k

[(Pb,i ×Pb,j) ·Pb,m]2 , k ≥ 3

(27)

γij

Pb,j

Pb,i

(a) Parallelogram formed by Pb,i and Pb,j

γikγij

Pb,i

Pb,kPb,j

γjk

(b) Parallelepiped formed by Pb,i, Pb,j and Pb,m
Fig. 2. Geometric interpretations on the terms of observability Gramian.

by

γ12 =
π

2
(30)

Proof. Based on the definition of cross-product, the determi-
nant of Wk with k = 2 can be rewritten as

det(W2) =
(
ρ2

1 + ρ2
2

)
ρ2

1ρ
2
2 sin2 γ12 (31)

It is clear that if the values of ρ1 and ρ2 are fixed, the
maximum value of det(W2) is achieved when γ12 = π

2 . The
corresponding configuration is depicted in Fig. 3, where the
hollow circle stands for the origin of UAV body frame, and
the black circles for the positions of the cooperative target in
the UAV body frame.

Fig. 3. Optimal configuration when
k = 2.

Fig. 4. Optimal configuration when
k = 3.

Proposition 3. If there are three sets of observations, i.e.,
k = 3, and the distance between the UAV and the cooperative
target is a constant, i.e., ρ1 = ρ2 = ρ3 = ρ, the optimal UAV-
target configuration should satisfy the following condition (see
Fig. 4)

γ12 =
π

2
, γ13 =

π

2
, γ23 =

π

2
(32)

Proof. According to [36], the volume of the parallelepiped
constructed by vectors Pb,i, Pb,j and Pb,m can be expressed
by the length of the vectors and three angles between them as

vol(P(Pb,i,Pb,j ,Pb,m)) =‖ Pb,i‖ ‖ Pb,j‖ ‖ Pb,m‖·√
1 + 2 cos γij cos γim cos γjm − cos2 γij − cos2 γim − cos2 γjm

(33)

Substituting Eq. (33) and the formula for the area of a
parallelogram into Eq. (27) in case of k = 3, we have

det(W3)

=(ρ2
1 + ρ2

2 + ρ2
3)(ρ2

1ρ
2
2 sin2 γ12 + ρ2

1ρ
2
3 sin2 γ13 + ρ2

2ρ
2
3

× sin2 γ23)− ρ2
1ρ

2
2ρ

2
3(1− cos2 γ12 − cos2 γ13 − cos2 γ23

+ 2 cos γ12 cos γ13 cos γ23)

=ρ2
1ρ

2
2(ρ2

1 + ρ2
2) sin2 γ12 + ρ2

1ρ
2
3(ρ2

1 + ρ2
3) sin2 γ13 + ρ2

2ρ
2
3

× (ρ2
2 + ρ2

3) sin2 γ23 − 2ρ2
1ρ

2
2ρ

2
3 cos γ12 cos γ13 cos γ23

+ 2ρ2
1ρ

2
2ρ

2
3

(34)

When ρ1 = ρ2 = ρ3 = ρ, Eq. (34) can be reduced to

det(W3) =2ρ6(sin2 γ12 + sin2 γ13 + sin2 γ23

− cos γ12 cos γ13 cos γ23 + 1)
(35)

Denote J as a function of the three relative angles as

J = sin2 γ12 +sin2 γ13 +sin2 γ23−cos γ12 cos γ13 cos γ23 +1
(36)

Since the distance ρ is a constant, maximizing the value of
J yields the same result as optimizing det(W3). Note that the
value of the angles between three vectors are constrained by
each other. Taking γ23 as an example, its range can be easily
determined by geometric relationship when γ12 and γ13 are
given. As is depicted in Fig. 5, the extreme value of γ23 is
reached when the three vectors are coplanar. The minimum
value is obtained when vectors V2 and V3 are on the same
side of V1, while the maximum is achieved when V2 and V3
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are placed on the different side. If the values of γ12 and γ13

are both smaller than π
2 (see Fig. 5 (a)), the range of γ23 is

given by
|γ12 − γ13| < γ23 < |γ12 + γ13| (37)

If one of the values of γ12 and γ13 is smaller than π
2 , and

the other one is larger than π
2 , the range of γ23 is

|γ12 − γ13| ≤ γ23 ≤ min(|γ12 + γ13|, 2π− |γ12 + γ13|) (38)

For the case of Fig. 5 (c), i.e., both γ12 and γ13 are larger
than π

2 , γ23 is constrained by

|γ12 − γ13| < γ23 < 2π − |γ12 + γ13| (39)

Taking the three angles γ12, γ13 and γ23 as the optimization
variables, i.e.,

Γ = [γ12, γ13, γ23]T (40)

and combining Eqs. (37)-(39), the configuration optimization
problem with three observations is formulated as

max
Γ

J (41)

subject to

|γ12 − γ13| ≤ γ23 ≤ min(γ12 + γ13, 2π − (γ12 + γ13)) (42)

Since it is difficult to solve the above optimization problem
analytically, numerical search method is employed to find the
solution. In Fig. 6, the value of J is depicted as a function of
γ12, γ13 and γ23, and the slices are taken at γ12 = π

4 ,
π
2 ,

3π
4 ,

γ13 = π
2 and γ23 = π

2 to visualize the change of J . The
feasible region of the optimization problem, described by Eq.
(42), turns out to be a regular tetrahedron as demonstrated in
Fig. 7. From Figs. 6 and 7, it can be observed that det(W3)
equals to zero at the vertices of the feasible region, which
corresponds to the cases that the three relative position vectors
are collinear. This is consistent with Proposition 1 drawn from
the geometrical interpretation. In Fig. 6, one can also note that
the points in the central region yields larger value of the objec-
tive function compared to those in the marginal region. Since
the central area of the definition domain, where the maximum
value of J is achieved, satisfies the constraints in Eq. (42), the
solution to the three-scan configuration optimization problem
is the same as that of the unconstrained problem (41). It is
clear from Fig. 6 that the maximum value is attained at the
point (π2 ,

π
2 ,

π
2 ). The corresponding contour plot at γ12 = π

2 ,
γ13 = π

2 and γ23 = π
2 are given in Fig. 8, and the area inside

the black rectangle represents the feasible region. Therefore,
the optimal configuration with three observations satisfies

γ12 =
π

2
, γ13 =

π

2
, γ23 =

π

2
(43)

which corresponds to the geometry depicted in Fig. 4.

When the number of observations is larger than 3, i.e.,
k ≥ 4, and ρ1 = ρ2 = · · · = ρk = ρ, the optimization results
of UAV-target configurations through exhaustive numerical
search are given directly in Fig. 9, where the origin of the UAV
body frame is at (0, 0, 0) and the unit vectors represent the
relative target positions. The results reveal that there are three

kinds of configurations that yield the largest value of det(W4).
The corresponding angles between the four relative position
vectors are summarized in Table I. It can be noted from the
relative angles in Table I that Configuration (1) puts the four
target positions at the vertices of a regular tetrahedron centered
on the UAV. Comparing to Configuration (1), Configuration
(2) flips one of the relative target positions around the UAV,
which results in the same value of the area-related and volume-
related terms in det(Wk) . The third configuration describes
a rectangular pyramid whose upper vertex locates at the UAV
and the separation angles of the vectors share the same value
as Configurations (1) and (2).

TABLE I
OPTIMAL GEOMETRY FOR k = 4

Configuration Relative Angles
(1) 109.5◦, 109.5◦, 109.5◦, 109.5◦, 109.5◦, 109.5◦

(2) 70.5◦, 70.5◦, 70.5◦, 109.5◦, 109.5◦5, 109.5◦

(3) 70.5◦, 70.5◦, 70.5◦, 70.5◦, 109.5◦, 109.5◦

In case of k = 5, there are several different configurations
that yield the maximum value of det(W5), thus only typical
ones are depicted in Fig. 10 to provide some insight about the
problem.

The optimal configurations with small value of k suggest
that the UAV tends to enforce the cooperative target distribute
around it in the body frame as dispersive as possible. For
offline boresight calibration, the above optimization results
can be utilized to determine the relative geometry between
the UAV and the cooperative target during data collection
process. However, adjusting the measurement positions and
attitudes of the UAV offline with human efforts is time-
consuming. In practical applications, the gimbaled camera
and UAV platform are usually packaged separately during
transportation for safety, and thus the calibration process is
required to be conducted efficiently during the flight before
the target localization task is triggered. For this reason, the
next section develops a configuration optimization method
considering the vehicle dynamics for automatic camera-IMU
calibration.

V. CONFIGURATION OPTIMIZATION FOR BORESIGHT
CALIBRATION WITH VEHICLE MOTION CONSTRAINTS

In order to obtain the boresight calibration angles accurately
and efficiently during a flight, this section proposes a config-
uration optimization algorithm considering the UAV motion
constraints. The dynamic model of a quadrotor is introduced
first to facilitate the development of the optimization algo-
rithm.

A. UAV Dynamics Model

The dynamics of a quadrotor is formulated as

Ṗu = V

V̇ = a

a =
(
Cbn
)T F

m
+ G

(44)
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γ12

γ13

V1

V2

V3

V′3

(a) 0 < γ12 <
π
2
, 0 < γ13 <

π
2

γ12

γ13

V1

V2

V3

V′3

(b) 0 < γ12 <
π
2
, π

2
< γ13 < π

γ12

γ13

V1

V2

V3

V′3

(c) π
2
< γ12 < π, π

2
< γ13 < π

Fig. 5. Geometric relationship of the angles between three vectors.

Fig. 6. The value of J as a function of γ12, γ13 and γ23.

Fig. 7. Feasible region of the constrained optimization problem.

where V and a = [ax, ay, az]T denote the velocity and
acceleration of the UAV in the inertial frame, respectively.
The vector G = [0, 0, g]T is the acceleration of gravity with
g ≈ 9.81m/s2 and m is the mass of the UAV. The symbol
F = [0, 0,−FT ]T represents the thrust provided by rotors in
the UAV body frame with FT being the magnitude of the

thrust.
In this paper, the UAV is assumed to move at a constant

altitude. Therefore, the vertical acceleration of the UAV equals
zero, i.e., az = 0. Accordingly, the horizontal accelerations
can be expressed by the attitude angles as

ax = −g sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)

cos(φ) cos(θ)

ay = −g cos(φ) sin(ψ) sin(θ)− cos(ψ) sin(φ)

cos(φ) cos(θ)

(45)

B. Configuration Optimization During Flight

As derived in Sec. III, the observability of the boresight
calibration system is determined by the target position in
the body frame, i.e., [xb, yb, zb]

T . Thus both the position
and attitude of the UAV can affect the system observability.
According to Eqs. (44) and (45), the UAV position is obtained
by the double integration of the inertial acceleration, which is
determined by the attitude angles. Hence, the attitude at time
tk will affect the UAV position at time tk+2, which further
influences the degree of observability at time tk+2. Therefore,
a multi-step look-ahead optimization problem is constructed to
avoid myopic performance in the UAV motion planning. Let
Tp be the length of planning horizon and given the current
attitude information, we take the attitude angles of the UAV
from time tk+1 to tk+Tp as the optimization variables, i.e.,

Θk =[φk+1, θk+1, ψk+1,

φk+2, θk+2, ψk+2, . . . , φk+Tp
, θk+TP

, ψk+Tp
]T

(46)

and the determinant of the observability Gramian at tk+Tp
is

employed as the objective function at time tk, i.e.,

J
k

= det(Wk+Tp
) (47)

Considering the physical limits of the UAV, the configura-
tion optimization problem at time tk can be formulated as

Θ∗k = arg max
Θk

{J
k
} (48)
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(c) γ23 = π
2

Fig. 8. Contour plot of J at γ12 = π
2

, γ13 = π
2

and γ23 = π
2

.

(a) Configuration (1) (b) Configuration (2) (c) Configuration (3)
Fig. 9. Optimal UAV-target configurations for k = 4.

(a) Configuration (1) (b) Configuration (2) (c) Configuration (3)
Fig. 10. Typical optimal UAV-target configurations for k = 5.

subject to
|φ̇l| ≤ φ̇max, |φl+1| ≤ φmax

|θ̇l| ≤ θ̇max, |θl+1| ≤ θmax

|ψ̇l| ≤ ψ̇max

, l = k, . . . , k + Tp − 1

(49)
where φ̇l, θ̇l and ψ̇l are the angular rates of the attitude, and
the subscript max denotes the maximum allowable turn rates
and attitude angles of the UAV. Due to the physical limit of a
quadrotor, the yaw rate is constrained by the maximum torque
produced around the z axis of the body frame.

Because solving the above constrained optimization prob-
lem involves finding a time history of attitude angles that max-
imizes Jk, which is a highly nonlinear function, it is unlikely

to find an analytical solution to it. In this paper, we solve
the multi-step optimization problem using CasADi toolbox
[37], which finds the solution of an nonlinear programming
problem (NLP) using the Interior-Point Method (IPM). The
optimization is conducted every Ts seconds, and the trajectory
planning is implemented in a receding-horizon manner. After
each optimization process, the first set of attitude angles in the
solution, i.e., [φ∗k+1, θ

∗
k+1, ψ

∗
k+1]T , is applied to the control

system to guide the UAV.

Remark 1. IPM is a Newton iteration-based method, and
its computational complexity is related to the dimension of
optimization vector and also the termination condition. The
IPM algorithm yields an ε-complementary solution in at most
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O(
√
n log(1/ε)) iterations, where n represents the number of

optimization variables and ε is the tolerance on dual infeasibil-
ity [38]. The objective function in this paper is nonlinear, and
thus the computation of Hessian matrix is required in each
iteration. However, the objective function is in the form of
a determinant and it is difficult to derive the computational
complexity of this step. Therefore, we assume that in each
iteration, the quasi-Newton method is used to update the opti-
mization variable and the computational complexity is O(n2)
[39]. Then the total computational complexity is approximated
by O(

√
n log(1/ε))×O(n) = O(n

3
2 log(1/ε)), which reveals

that the proposed optimization problem can be solved in a
polynomial time. To investigate the practical computational
complexity of the proposed algorithm, we have also tested its
time cost under different conditions in the following section.

VI. NUMERICAL STUDIES AND EXPERIMENTAL RESULTS

In this section, we show the simulation results of
the observability-based trajectory optimization method for
camera-IMU boresight calibration. The misalignment angles
are estimated through linear regression and the estimation
results are compared to that of the non-optimized trajectories.
We also evaluate the computational complexity and present
the experimental results of an in-door flight to validate the
proposed trajectory optimization method.

A. Simulation Setup

The simulation considers a UAV follows the optimized
trajectory and collects information of a cooperative target for
camera-IMU boresight calibration. The cooperative target is
stationary and locates at (0m, 0m, 0m). The initial position of
the UAV in the inertial frame is (−20m, 20m, 20m) and the
attitude angles are initialized as (0◦, 0◦, 0◦). The maximum
allowable roll and pitch angle of the UAV are set to be
φmax = π/6 rad and θmax = π/6 rad. The angular rates
of attitude angles are constrained by φ̇max = π/4 rad/s,
θ̇max = π/4 rad/s and ψ̇max = π/4 rad/s, respectively. Since
the installation error in the z direction is generally larger than
the other two angles, the ground truth of the misalignment
angles are set as ex = 5◦, ey = 5◦, and ez = 10◦. The
trajectory optimization process is carried out every 0.05s.

To illustrate the performance of the proposed configuration
optimization method, the misalignment angles are estimated
using the linear regression method. As stated in Sec. III,
the parameter to be estimated is given by x = [ex, ey, ez]

T .
Denote two set of measurement variables as

m1 =
[
Pu,Pt, φ, θ, ψ

]T
, m2 =

[
Pu,Pt, α, β, u, v

]T
(50)

and the actual measurements from the onboard sensors are
given by

z1 = m1 + v1, v1 ∼ (0,R1)
z2 = m2 + v2, v2 ∼ (0,R2)

(51)

where v1 and v2 are Gaussian measurement noise with
covariances R1 and R2 respectively.

We assume that R1 and R2 are diagonal matrices and thus
can be expressed as

R1 =

σ2
pI3 0 0
0 σ2

pI3 0
0 0 σ2

attI3

 ,

R2 =


σ2
pI3 0 0 0
0 σ2

pI3 0 0
0 0 σ2

losI2 0
0 0 0 σ2

pixI2


(52)

where σp = 0.3m and σatt = 2◦ are the measurement-error
standard deviations of the position and attitude angles, while
σlos = 0.5◦ and σpix = 3px are that of the gimbal angles and
pixel coordinates of the cooperative target.

Suppose the number of scans is k, the minimum variance
parameter estimate, as derived in Appendix A, is given by

x̂ =

[
k∑
i=1

Hi

(
AiR1A

T
i + BiR2B

T
i

)−1
HT
i

]−1

×
k∑
i=1

Hi

(
AiR1A

T
i + BiR2B

T
i

)−1
(fg(z2i

)− fb(z1i
))

(53)

where fb and fg are functions specified by the RHS of Eqs. (1)
and (4), respectively. Ai and Bi denote the following partial
derivatives

Ai =
∂fb
∂m1

|z1i
, Bi =

∂fg
∂m2

|z2i
(54)

B. Characteristics of Proposed Trajectory Optimization

This subsection presents the simulation results and in-
vestigates the characteristics of the proposed observability-
enhancement trajectory optimization approach. Since the pro-
posed planning method is developed based on the concept
of receding-horizon optimization, the length of the prediction
horizon, i.e., Tp, plays an important role in the planning
performance. Comparison simulations with Tp = 4, 6, 8 are
conducted to investigate the influence of the horizon length.
The trajectory optimization results of online boresight calibra-
tion is presented in Fig. 11, where the first row corresponds to
the UAV trajectories in the inertial frame. It can be observed
that the trajectory becomes smoother with larger value of
Tp. The corresponding time histories of attitude angles are
shown in Fig. 12. In Fig. 12, the magnitudes of attitude
angles are smaller when the horizon length becomes larger.
These two observations reveal that the myopic problem can be
alleviated with longer planning horizon, which is the typical
characteristic of the receding-horizon based method.

Since the objective function, i.e., the determinant of the
observability Gramian, is determined by the target position
vectors in the UAV body frame, the relative trajectories of
the cooperative target are depicted in the second row of
Fig. 11. The UAV locates at the origin of its body frame
and relative positions of the target are calculated using Eq.
(1). The determinant of observability Gramian matrices with
different value of Tp are provided in Fig. 13 for comparison.
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(a) UAV trajectory with Tp = 4 (b) UAV trajectory with Tp = 6 (c) UAV trajectory with Tp = 8

(d) Relative trajectory with Tp = 4 (e) Relative trajectory with Tp = 6 (f) Relative trajectory with Tp = 8

Fig. 11. Comparison of optimized trajectories with Tp = 4, 6, 8.

Recall the geometrical interpretation of Eq. (27), det(Wk) is
governed by the parallelogram area and parallelepiped volume.
From Fig. 11 (d)-(f), it can be noted that before time instant
t = 3.8s, the average angle between the two main hook faces
constructed by the relative position vectors with Tp = 4 is
smaller than that with Tp = 6 and Tp = 8. As a result,
the terms related to area and volume of geometries in Fig.
11 (d) are smaller compared to the others. However, the
corresponding determinant of Wk in Fig. 13 reaches higher
value with Tp = 4, which implies that the volume-related
terms dominate the objective function of the optimization
problem before t = 3.8s. With the increase of the number
of sampling times, the coefficient of the area-related terms
in Eq. (27), i.e.,

∑k
i=1 ρ

2
i , also increases. Thus, the value

of the determinant mainly depends on the summation of
parallelogram area. Consequently, the value of det(Wk) with
Tp = 4 is overtaken by that with longer planning horizons, as
shown in Fig. 13. For the same reason, the resulting value of
the determinant with horizon length Tp = 8 exceeds that with
Tp = 6 from time instant t = 6.3s at the price of lower value
in the initial phase.

To validate the effectiveness of the proposed trajectory
optimization method for boresight calibration, Monte-Carlo
simulations are carried out to assess the performance of mis-
alignment angle estimation. In each Monte-Carlo experiment,
the start point of the UAV is randomly sampled from a
cuboid area, i.e., x ∈ [−30m, 30m], y ∈ [−30m, 30m], z ∈
[20m, 50m]. The simulation time of each run is set as 8s.
It is assumed that the UAV is in the hovering mode at the
beginning of the calibration process, i.e., the roll and pitch
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Fig. 12. Time histories of UAV attitude angles.

angle are both set to be 0◦ initially. The initial value of the
yaw angle is randomly selected from [−π, π] at each run. The
mean and standard deviation of misalignment angle estimation
error from 100 Monte-Carlo runs with different value of Tp
are summarized in Table II. From this table, it can be noted
that the mean of estimation errors are all lower than 0.5◦. This
means that the target localization accuracy will be significantly
enhanced through boresight misalignment calibration. One can
also observe that the estimation performance can be improved
by increasing the value of Tp, which is consistent with the
simulation results of det(Wk) in Fig. 13.
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Fig. 13. Determinant of observability Gramian.

TABLE II
ESTIMATION ERROR FROM MONTE-CARLO SIMULATIONS

Estimation error
of ex(deg)

Estimation error
of ey(deg)

Estimation error
of ez(deg)

TP = 4 Mean 0.4409 0.3854 0.4377
Std 0.4764 0.4340 0.5116

TP = 6 Mean 0.3703 0.3400 0.4019
Std 0.2549 0.4203 0.3785

TP = 8 Mean 0.3049 0.3287 0.3431
Std 0.2702 0.3572 0.3951

Remark 2. Since the UAV is assumed to fly at a constant
altitude and the roll, pitch angles are constrained by the
physical limits, the variation of the z coordinate of the target in
the body frame, i.e., zb,i, is limited during the data collecting
process. As a result, if the start point of the UAV is set with
a low altitude, the value of zb,i will remain small, compared
to the horizontal coordinates xb,i and yb,i. According to Eqs.
(15) and (16), the observability of the individual misalignment
angle is influenced by the corresponding diagonal element
of Wk. Because the first two diagonal elements contains
the term z2

b,i, the estimation errors of ex and ey tend to be
relatively large if the UAV starts to move at a low altitude.
For this reason, we set the initial altitude of the UAV to be
z ∈ [20m, 50m] in the Monte-Carlo simulations.

C. Comparison with Non-optimized Trajectory

Notice that most existing sensor bias calibrations works
assume that the bias is modeled as additive and multiplicative
errors. However, the calibration of boresight misalignment in-
volves estimating the rotational relationship between the IMU
and camera frames. Hence, we compare the estimation results
generated by the proposed optimized trajectory and the non-
optimized trajectories to further demonstrate the advantage of
the proposed method. Two typical scenarios are considered
to generate the non-optimized trajectories: flyby and random
maneuver. In flyby cases, the three attitude angles of the UAV
are randomly generated initially and keep constant during the
data collection process, thus the UAV moves along a straight

line in this mode. For the random maneuver scenarios, the
attitude angles are randomly sampled from the corresponding
permissible ranges at each time instant and the waypoints are
integrated accordingly using the UAV dynamics. The opti-
mized trajectories are generated using the proposed method
with TP = 6. Monte-Carlo experiments are implemented for
100 times in each scenario. The initial conditions of the UAV
in Monte-Carlo runs are consistent with that of Sec. VI-B
and the ground truth of the boresight misalignment angles are
randomly selected from ex ∈ [−5◦, 5◦], ey ∈ [−5◦, 5◦] and
ez ∈ [−10◦, 10◦] in each trial. The comparison results in Fig.
14 shows the Mean Absolute Error (MAE) of misalignment
angles with different UAV trajectories. The figure reveals
that through attitude and trajectory optimization, the error of
misalignment estimation converges faster and achieves a lower
value compared to the non-optimized ones. The statistical de-
scriptions of the final estimation error with the three different
trajectories are summarized in Table III. It can be clearly
observed from the table that the mean and standard deviation
of misalignment angle estimation errors decrease through
the observability-enhancement trajectory optimization. This
reveals that higher accuracy of bearing-only target localization
can be guaranteed by utilizing the proposed trajectory planing
method for camera-IMU boresight calibration.
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Fig. 14. Comparison of MAE with different trajectories.

TABLE III
ESTIMATION RESULTS WITH DIFFERENT TRAJECTORIES

Estimation error
of ex(deg)

Estimation error
of ey(deg)

Estimation error
of ez(deg)

Optimized Mean 0.3365 0.2848 0.4454
Std 0.4193 0.3722 0.5116

Random Mean 1.6821 1.6459 1.8352
maneuver Std 1.8130 1.8566 1.1982

Flyby Mean 0.7051 0.6865 0.7826
Std 0.9015 0.8146 0.9261

D. Computational Complexity Analysis

In our trajectory optimization problem, the dimension of
optimization vector is determined by the prediction horizon
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length, i.e., n = 3Tp. Thus, we tested the mean execution
time of the planning process with different prediction length.
The initial position and attitude of the UAV are set to be
[−30m,−30m,−40m] and [0◦, 0◦, 0◦]. The ground truth of
the misalignment angles are [5◦, 5◦, 10◦] in all simulation runs
for fair comparison. The trajectory optimization algorithm is
conducted every 0.2s. The default value of the maximum
iteration times is set as 2000 and the termination tolerance is
10−4. The simulations are conducted in a personal computer
environment with i5-8265U and 8 GB RAM. Figure 15 shows
the mean execution time for TP -step planning. From the figure,
the planning process can be accomplished in 0.12s when the
prediction horizon is shorter than 14.
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Fig. 15. The mean execution time with different TP .

The boresight misalignment estimation error after apply-
ing the first sequence of attitude angles optimized from the
proposed method with different value of TP are summarized
in Table. IV. Unsurprisingly, it can be observed from the
table that the estimation error becomes smaller with larger
prediction horizon length at the cost of more computational
time. One can also note that with TP = 12, 14, the estimation
accuracy improves slightly compared to that with TP = 10.
The reason is that with longer planning horizon, the prediction
of the UAV and target states may deviate further from the
future truth, which results in the inaccuracy of the objective
function and influences the optimality of the attitude angles
at current time instant. Therefore, an appropriate value of TP
can be selected by balancing the computational cost and the
estimation accuracy.

TABLE IV
EXECUTION TIME AND ESTIMATION ERROR WITH DIFFERENT TP

Estimation error (deg) Execution time (s)
∆ex ∆ey ∆ez

Tp = 4 13.9363 12.5252 18.9506 0.0156
Tp = 6 11.5715 10.9989 20.8501 0.0289
Tp = 8 8.8150 7.7356 11.3089 0.0426
Tp = 10 5.4036 4.6016 9.0729 0.0742
Tp = 12 5.8427 3.4935 7.6091 0.0971
Tp = 14 4.4725 4.4795 8.6643 0.1124

As mentioned before, the computational complexity of the

iteration-based optimization problem is also influenced by the
predefined termination condition. Thus we have tested the
execution time with different value of ε. The prediction horizon
length is set to be TP = 6 and the maximum iteration times
is set as 3000 in the simulations. The mean execution time
simulation results are presented in Fig. 16, and the time cost
increases linearly with the logarithm of ε. The estimation error
after a single-step planning is given in Table. V. With lower
termination tolerance, it spends more time for the optimization
solver to achieve the desired termination condition. But the
estimation errors after implementing the optimized actions
with smaller ε become smaller in general. Thus, one can
impose a trade-off between the time cost and the performance
of the estimator.
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Fig. 16. The mean execution time with different ε.

TABLE V
EXECUTION TIME AND ESTIMATION ERROR WITH DIFFERENT ε

Estimation error (deg) Execution time (s)
∆ex ∆ey ∆ez

ε = 10−2 9.0703 12.4950 12.8779 0.0314
ε = 10−3 9.2000 9.3306 7.1543 0.0452
ε = 10−4 8.8286 8.2802 11.2697 0.0592
ε = 10−5 6.3995 4.3377 6.5261 0.0866
ε = 10−6 4.2019 5.5338 4.7021 0.0951

E. Experimental Results

The proposed trajectory optimization method is also experi-
mentally evaluated indoor aided by the VICON motion capture
system. As shown in Fig. 17, a gimbaled-camera is mounted on
a floor stand, which simulates the UAV during the experiment.
The attitudes and positions of the stand and the target can
be acquired from the VICON system. The cooperative target
locates at (2m, 3m, 0m) and the initial position of the camera
is (−2m, 3m, 1.7m). Optimized trajectory and the correspond-
ing attitude of the UAV are generated using the proposed
method with the length of planning horizon being Tp = 6s.
A straight-line trajectory with a constant roll attitude angle
φ0 = −5◦ is used for performance comparison. The optimized
and straight-line trajectories are shown in Fig. 18, where the
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actual sampling data from the VICON system are also plotted.
The estimation results of the boresight misalignment angles
with different trajectories are given in Table VI.

Gimbal base

Camera

Vicon markers

Fig. 17. Integrated camera and attitude sensor system.

TABLE VI
ESTIMATION RESULTS OF MISALIGNMENT ANGLES WITH DIFFERENT

TRAJECTORIES

Estimation
of ex(deg)

Estimation
of ey(deg)

Estimation
of ez(deg)

With optimization 3.8972 -2.1584 2.2612
Without optimization 2.5036 -0.1735 0.7746

Fig. 18. Optimal UAV trajectory employed in the experiment.

The performance of the proposed trajectory optimization
method is evaluated by an extra target localization process
since the ground truth values of the boresight misalignment
angles are not available. To ensure the observability of the
bearing-only localization, the UAV follows a semi-circular
trajectory centered on the target. The commonly-used extended
Kalman filter (EKF) is employed as the estimator and the
initial value of the states is obtained under a flat-ground
assumption, which means the distance between the UAV and
the target can be roughly calculated using the altitude of the
UAV. The comparison results of the localization error are
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Fig. 19. Comparison results of target localization error.

shown in Fig. 19. The results show that the target localization
performance can be improved by calibrating the misalignment
errors between the IMU and camera gimbal. It can also
be clearly observed that with the calibration result using
optimized trajectory, the final localization error is reduced by
nearly 25% compared to the non-optimized trajectory.

VII. CONCLUSION

To improve the performance of boresight calibration for the
integrated camera-IMU system using a cooperative target, this
paper analyzes the observability of the misalignment angles
based on observability Gramian. It is found that the degree of
observability is determined by the geometrical configuration
between the UAV and the target in the UAV body frame.
A scalar measure of observability Gramian is selected as the
optimization criterion and optimal configurations are obtained
based on numerical approach. To autonomously calibrate the
misalignment angles during a flight, we further develop an
online two-dimensional trajectory optimization method con-
sidering the UAV dynamic constraint. Extensive numerical
simulations and in-door flight experimental results show that
by actively enhancing the system observability, the accuracy
and efficiency of sensor boresight calibration process are
both improved using the proposed approach. However, since
the proposed trajectory optimization approach simultaneously
determines the desired attitude and position of the UAV at next
time instant, it cannot guarantees that the cooperative target
keeps being detected due to the occlusion of fuselage and
limited field of view (FOV) of the onboard camera. There-
fore, extra constraints should be considered in the proposed
trajectory design method according to the physical properties
of the UAVs and sensors employed in practical use.
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APPENDIX A
DERIVATION OF EQ. (53)

Note that Eqs. (1) and (4) can be expressed asxbyb
zb

 = fb(m1) = fb(z1−v1) ,

xgyg
zg

 = fg(m2) = fg(z2−v2)

(55)
Using Taylor expansion and ignoring the higher-order terms

yieldsxbyb
zb

 = fb(z1)− ∂fb
∂m1

|z1
·v1,

xgyg
zg

 = fg(z2)− ∂fg
∂m2

|z2
·v2

(56)
Substituting Eq. (56) into Eq. (6), we have

fg(z2)− fb(z1) = H̃x− ∂fb
∂m1

|z1
· v1 +

∂fg
∂m2

|z2
· v2 (57)

where H̃ is the Jacobian matrix

H̃ =

 0 −z̃b ỹb
z̃b 0 −x̃b
−ỹb x̃b 0

 (58)

with [x̃b, ỹb, z̃b]
T denoting the noise-corrupted position vector

calculated by fb(z1).
Suppose that k(≥ 2) scans of measurements are collected

at discrete time instants i = 1, 2, . . . k, a linear regression
problem about x can be established by stacking Eq. (57) asfg(z21

)− fb(z11
)

...
fg(z2k

)− fb(z1k
)

 =

H̃1

...
H̃k

x + V (59)

where V is a zero-mean noise with covariance

R = diag
({

AiR1A
T
i + BiR2B

T
i

}k
i=1

)
(60)

According to [40], the solution of Eq. (59) is given by Eq.
(53).

Note that we truncate the higher-order terms in Taylor
expansion when formulating the linear estimation problem in
Eq. (59). As can be seen in Eqs. (57) and (59), ignoring the
higher-order terms about sensor noise mainly influences the
covariance of the residual error in the least squares problem,
i.e., R, which is an adjustable parameter and can be tuned
according to the quality of sensors in practical use. Thus the
simplification is reasonable and helps to obtain an analytical
solution of the misalignment angle estimation problem by
using the weighted least squares (WLS) method, which is
time-efficient and suitable for online applications.
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