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Abstract: Light detection and ranging (LiDAR) is often combined with an inertial measurement unit
(IMU) to get the LiDAR inertial odometry (LIO) for robot localization and mapping. In order to
apply LIO efficiently and non-specialistically, self-calibration LIO is a hot research topic in the related
community. Spinning LiDAR (SLiDAR), which uses an additional rotating mechanism to spin a
common LiDAR and scan the surrounding environment, achieves a large field of view (FoV) with
low cost. Unlike common LiDAR, in addition to the calibration between the IMU and the LiDAR,
the self-calibration odometer for SLiDAR must also consider the mechanism calibration between
the rotating mechanism and the LiDAR. However, existing self-calibration LIO methods require the
LiDAR to be rigidly attached to the IMU and do not take the mechanism calibration into account,
which cannot be applied to the SLiDAR. In this paper, we propose firstly a novel self-calibration
odometry scheme for SLiDAR, named the online multiple calibration inertial odometer (OMC-SLIO)
method, which allows online estimation of multiple extrinsic parameters among the LiDAR, rotating
mechanism and IMU, as well as the odometer state. Specially, considering that the rotating and
static parts of the motor encoder inside the SLiDAR are rigidly connected to the LiDAR and IMU
respectively, we formulate the calibration within the SLiDAR as two separate sets of calibrations:
the mechanism calibration between the LiDAR and the rotating part of the motor encoder and the
sensor calibration between the static part of the motor encoder and the IMU. Based on such a SLiDAR
calibration formulation, we can construct a well-defined kinematic model from the LiDAR to the IMU
with the angular information from the motor encoder. Based on the kinematic model, a two-stage
motion compensation method is presented to eliminate the point cloud distortion resulting from
LiDAR spinning and platform motion. Furthermore, the mechanism and sensor calibration as well as
the odometer state are wrapped in a measurement model and estimated via an error-state iterative
extended Kalman filter (ESIEKF). Experimental results show that our OMC-SLIO is effective and
attains excellent performance.

Keywords: spinning LiDAR; mechanism calibration; sensor calibration; LiDAR inertial odometry;
error-state iterative extended Kalman filter

1. Introduction

Given the high reliability and accuracy of light detection and ranging (LiDAR) sen-
sors, LiDAR odometry (LO) and LiDAR simultaneous localization and mapping (SLAM)
methods have played an important role in areas such as robotics, autonomous driving,
and surveying [1–3]. However, the small field of view (FoV) and low vertical resolution
of common LiDAR make it unsuitable for specific scenarios, such as unmanned aerial
vehicles (UAVs) in indoor scenarios [4,5], autonomous ground vehicles (AGVs) in confined
spaces [6,7] or uneven terrain [8,9]. Spinning LiDAR (SLiDAR), which uses an additional
rotating mechanism to spin a common LiDAR and scan the surrounding environment,
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achieves a large FoV at a low cost [10,11]. SLiDARs are widely used in the sensing part of
various autonomous robots. For instance, a quadcopter, in which a 2D LiDAR is rotated by
the rotor downdraft, can produce a point cloud map [12]. By continuously nodding [11] or
spinning a 2D LiDAR [9], the mobile robots can model the surrounding or rough terrain. A
2D turntable equipped with 3D LIDAR, binocular vision and an infrared camera can obtain
detailed unstructured terrain information for a hexapod wheel-legged robot [8].

By incorporating an inertial measurement unit (IMU), LiDAR inertial odometry (LIO)
can present a better performance for localization and mapping in motion [13]. To make the
implementation of LIO efficient and non-professional, self-calibration LIO methods have
become a hot research topic in the related community [14–17]. Unlike the self-calibration
odometer for common LiDAR that only considers the calibration between the IMU and
the LIDAR, the self-calibration odometer for SLiDAR has to additionally consider the
calibration between the rotating mechanism and the LIDAR due to the manufacturing and
installation deviation, rotational wear and the nature of thermal expansion and contraction
of the rotating mechanism [18]. Therefore, existing self-calibration LIO methods, whether
filter-based [14,15] or optimization-based [16,17], do not take the mechanism calibration
into account and require the LiDAR to be rigidly attached to the IMU, which cannot be
implemented for SLiDAR. In addition, existing mechanism calibration methods, regarding
the calibration between the rotating mechanism and the LIDAR, are offline and have
very complex implementation principles that hinder their integration to self-calibration
LIO [19–21].

To address the above issues, we propose firstly a novel self-calibration odometry
scheme for SLiDAR, named the online multiple calibration spinning LiDAR inertial odome-
ter (OMC-SLIO) method, which allows online estimation of multiple extrinsic parameters
among the LiDAR, rotating mechanism and IMU, as well as the odometer state. Con-
sidering the rotating and static parts of the motor encoder inside the SLiDAR are rigidly
connected to the LiDAR and IMU, respectively, we formulate the self-calibration within the
SLiDAR as two independent sets of calibrations: the mechanism calibration between the
LiDAR and the rotating part of the motor encoder and the sensor calibration between the
static part of the motor encoder and the IMU. Thus, we construct a well-defined kinematic
model from the LiDAR to the IMU with the angular information of the motor encoder.
Based on the constructed kinematic model, a two-stage motion compensation method is
presented to remove point cloud rotation and motion distortion simultaneously. Finally, we
wrap the mechanism calibration, sensor calibration and the odometer state in a measure-
ment model and perform online estimation based on the ESIEKF framework. Experimental
results show that our OMC-SLIO is effective and attains excellent performance.

The remainder of this paper is organized as follows. Section 2 discusses related works.
Section 3 formulates the problem. Section 4 introduces the proposed OMC-SLIO method in
detail. In Section 5, experimental results are presented. We analyze the reason in Section 6.
Finally, Section 7 summarizes the work of this paper.

2. Related Works

There are plenty of works regarding diverse calibrations among IMUs, cameras and
LiDAR, and here we focus on the extrinsic calibration between LiDAR and the IMU and
the mechanism calibration of SLiDAR.

2.1. Extrinsic Calibration between LiDAR and IMU

There are some tailored offline calibration methods for the LiDAR-IMU system.
Ref. [22] uses pre-integration over upsampled IMU measurements derived from a Gaussian
process (GP) to remove motion distortion and then combines the factors of IMU pre-
integration and LiDAR point-to-plane distances to calibrate extrinsic parameters. A fusion
method, in which the ICP and ISPKF are respectively used to determine the unknown trans-
formation and estimate the time delay between the LiDAR and IMU, is presented in [23].
Without any artificial targets or specific facilities, Ref. [24] proposes a multi-feature-based
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field calibration method for LiDAR-IMU systems that combines point/sphere, line/cylinder
and planar features to reduce labor intensity. To associate laser points with stable envi-
ronmental objects, Ref. [25] adopts a continuous-time IMU trajectory, modeled using GP
regression, and segments a point map as structured planes to calibrate LiDAR and an
IMU with on-manifold batch optimization. Ref. [26] adopts the B-spline over IMU mea-
surements to formulate a continuous-time trajectory for fusing high-rate scanning points
as [25], and uses the point-to-surfel constraint to calibrate parameters. Based on an EKF
framework, Ref. [27] utilizes a discrete-time IMU state propagation model to compensate
for motion distortion and proposes a motion-based constraint to refine the estimated states.
Based on [26,27], Ref. [28] combines Hausdorff distance between the local trajectories
and hand-eye calibration to solve the initial spatiotemporal relationship. Then, the IMU
pre-integration and the point, line and plane features of the point cloud are wrapped into
the objective function. Ref. [29] proposes an informative path planner to find the admissible
path for ensuring accurate calibration. However, these offline calibration methods require
that the IMU is rigidly attached to LiDAR and cannot be met by SLiDAR.

Regarding online extrinsic calibration in LIO, related works are around the tightly-
coupled scheme based on a filter or a nonlinear optimization. Both LINS [14] and FAST-
LIO [15] design an error-state iterated Kalman filter (ESIKF) to fuse the IMU and LiDAR.
LINS estimates the relative pose between two consecutive local frames for updating the
global pose estimate. FAST-LIO nevertheless adopts a scan-to-submap registration with an
efficient Kalman gain computation. Besides filter-based methods, nonlinear optimization
has been prevailing recently due to its better accuracy. LIOM [16] tightly couples LiDAR
and IMU by jointly minimizing their costs in a local fixed-size window and adds an extra
rotation constraint to further refine estimation. LIO-SAM [17] also formulates LIO as a
factor graph which is akin to LIOM but adopts a keyframe strategy for performing real-time
estimation. Although these methods can estimate the extrinsic parameter between the
LiDAR and IMU, they also require that the IMU is rigidly attached to LiDAR and does not
take mechanism calibration into account.

2.2. Mechanism Calibration of SLiDAR

As for the mechanism calibration of SLiDAR, some traditional calibration methods
require ad-hoc tools [19,30,31] or regular calibrated scenes [18,32]. There has also been a lot
of effort made to relieve calibration in targetless scenes [20,21,33–37].

For calibration in a more general scene, a point-point constraint scheme is utilized [33–35].
Based on the random sample consensus (RANSAC) method, Refs. [18,32] extract planes
from the whole scene points to construct point-plane constraints for more accurate cali-
bration. Some methods break the calibrated scene into small regions for extracting trivial
planes. Refs. [36,37] search for their neighbor points within a suitable radius with the
down-sampling scene point cloud. Refs. [20,21] divide the scene into small grids. In each
small region, Ref. [20] adopts principal component analysis (PCA) to choose the planes for
building point-plane constraints. With the estimated approximated probabilities, Ref. [21]
pre-selects the valuable grids to extract planes based on RANSAC. The above methods for
SLiDAR mechanism calibration are offline, and their complex principle cannot be directly
applied for real-time self-calibration SLIO. In addition, they do not resolve the sensor
calibration.

Different from the work in Sections 2.1 and 2.2, our method can aggregate both
the mechanism and sensor extrinsic parameters as well as the odometry state into the
ESIEKF framework to realize the online multiple extrinsic calibrations and SLiDAR inertial
odometry.

3. Problem Formulation

Considering that the rotation and static parts of the encoder are rigidly attached to
the LiDAR and IMU, respectively, we can formulate the multiple calibrations inside the
SLiDAR platform as two independent sets of calibrations; one is between the LiDAR and
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the rotating part of the encoder (it exactly corresponds to the rotating mechanism and
is therefore named mechanism calibration), and the other is between the static part of
encoder and the IMU (named sensor calibration). To illustrate the formulation of multiple
calibrations, the internal coordinate relation for SLiDAR is shown in Figure 1.
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The subscripts of L, S, B and I respectively denote the LiDAR, the rotation part of
the encoder, the static part of the encoder and the IMU. The corresponding coordination
systems are denoted as FL, FS, FB and FI . In addition, the global frame is denoted as FG.
A scanning LiDAR point in FL, FS, FB, FI and FG is respectively denoted as Lp, Sp, Bp,
Ip and Gp.

Obviously, FB and FI are rigidly attached to the static part of the SLiDAR platform,
and FL and FS are rigidly attached to the rotation part of the SLiDAR platform. The X
coordinates of FS and FB are collinear, FS and FB will be exactly coincident, while the
spinning angle ϕ of the encoder is 0 rad. The relative pose ITB between FB and FI is the
sensor calibration denoting the relative pose from the encoder to the IMU, and the relative
pose STL between FL and FS is the mechanism calibration denoting the relative pose from
LiDAR to the mounting point of the rotation mechanism. As a result, ITB and STL are the
interested multiple extrinsic parameters that we need to be estimated online in LIO.

In addition, as our SLiDAR system is unidirectional, mechanism calibration parameters
along the spinning direction cannot be estimated due to unobservability [20]. Furthermore,
the range bias of LiDAR might be several centimeters, which is much larger than the
mechanism bias, so the translation parts of mechanism extrinsic parameters cannot be
estimated in a non-specific scene [9]. Given the above reasons, we simplify mechanism
calibration as only two rotational parameters SωL

(
ωy, ωz

)
in practice, in which both the

rotational parameter in X coordination and all the translational parameters are set as zero.
It should be noted that we still use STL to act as mechanism calibration later for clarity.

4. Method
4.1. Overall Pipeline

For SLiDAR, the overlap between the consecutive LiDAR scanning frame is minor
due to the rapid LiDAR rotation; we therefore adopt a scan-to-submap match approach to
ensure enough associations. Meanwhile, built upon an efficient ESIEKF framework [38],
we aggregate both mechanism and sensor calibrations as well as odometry poses into one
measurement model to pursue real-time performance. The overall pipeline of the proposed
OMC-SLIO is shown in Figure 2, which mainly contains four parts: preprocessing, global
transformation, ESIEKF and global mapping. The two-stage motion compensation acts as
part of the global transformation.
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In preprocessing, the planar points are extracted from LiDAR scanning points, the
spinning angles are obtained from the encoder, and the IMU states are propagated upon
every IMU measurement. In global transformation, extracted planar points are projected to
global space via successive transformations consisting of mechanism calibration, motion
compensation, sensor calibration and IMU global poses. Specifically, motion compensation
covers two kinds of distortions from LiDAR spinning and platform moving. The global
planar points are used to associate the global planes in the submap of global mapping. Then,
the residuals derived from point-to-plane constraints are passed into ESIEKF to update
states. If converged, global mapping and odometry output will be updated, otherwise,
global transformation and feature association will be executed again with updated states.

In the following, we will introduce more details on preprocessing, global transforma-
tion and ESIEKF; readers can refer to related works for details of global mapping [39].

4.2. Preprocessing

The frequencies of the data received from the LiDAR, encoder and IMU are different;
for instance, the LiDAR is 10Hz and both the encoder and IMU are 200 Hz in our SLiDAR
platform. Thus, before preprocessing, the raw encoder spinning angle, IMU angular rate
and IMU acceleration will be temporarily stored in the respective buffers, until receiving
one frame of the LiDAR scanning points is completed.

For the raw LiDAR scanning points, the planar points will first be extracted as in
LOAM [40], and the extracted planar points will then be projected to the global space.
Both the raw spinning angle and IMU data are first utilized in the two-stage motion
compensation as introduced in Section 4.3.1. In addition, each angular rate and acceleration
of IMU data in the buffer will be propagated to predict the ego-motion states; the detail of
state propagation will be introduced in Section 4.4.2.

Note that as the timestamp of the latest rotation angle may be earlier than the times-
tamp at the end of the current LiDAR scan, this will result in some backward points not
being able to be interpolated to correspond to the rotation angle. Therefore, we utilize the
accumulated spinning angle measurements to estimate the current spinning rate in the
preprocessing. Denote ωN−1

ϕ and ωN
ϕ as the last and current spinning rate, respectively,

ωN
ϕ =

ωN−1
ϕ SN−1

t + ϕN

SN−1
t + ∆ϕ

, SN−1
t = ∑i=N−1

i=1 ϕi, (1)



Sensors 2023, 23, 248 6 of 18

where ∆ϕ is the measurement period, SN−1
t is the sum of the last N − 1 measured spinning

angles, and ϕN is the latest spinning angle. Based on the estimated spinning rate and the
time difference, each point in the tail of LiDAR scanning can be integrated into an accurate
spinning angle.

4.3. Global Transformation

For associating planar features in the submap, we need to project the raw point Lp in
the LiDAR frame into the global point Gp with global transformation. In addition, due to
the LiDAR’s continuous spinning and the platform’s moving, all the points received in a
scanning period are not in the identity coordination, and thus, we need to transform all the
points to the end-time of scanning via motion compensation. According to the coordinate
relation of SLiDAR as shown in Figure 1 and considering the motion compensation, the
global transformation of SLiDAR contains five consecutive transformations: extrinsic
mechanism parameter, LiDAR spinning compensation, platform moving compensation,
extrinsic sensor parameter and global IMU pose.

Denote Lk−1 as the end of the last LiDAR scanning and Lk as the end of current LiDAR
scanning. Assume Si pi is the point in the frame FS, which is projected from the original
Li pi in FL with the extrinsic mechanism parameter STL,

Si pi =
STL

Li pi. (2)

Furthermore, denote Sk pi as the point of end time Lk in the frame of the rotation
part of the encoder FS and TX(ϕs) as LiDAR spinning distortion compensation with the
corresponding angle ϕs (derived in Section 4.3.1.1),

Sk pi = TX(ϕs)
Si pi (3)

Then, denote Bi pi as the point in the frame of the static part of the encoder FB and
TX(ϕa) as the transformation that projects Sk pi into the frame FB with ϕa angle (derived in
Section Removing LiDAR Spinning Distortion of 4.3.1),

Bi pi = TX(ϕa)
Sk pi (4)

Furthermore, assume that Bk pi is the point of end time Lk in the frame FB and kTi is
the distortion compensation of platform moving,

Bk pi =
kTi

Bi pi. (5)

Finally, denote GR I and Gp I as the attitude and position of the IMU in the global frame
respectively, the corresponding global point Gi pi is

Gi pi =
GR I

ITB
Bk pi +

Gp I . (6)

In the following, we will derive the details of the two-stage motion compensation,
LiDAR spinning compensation and platform moving compensation, respectively.

4.3.1. The Two-Stage Motion Compensation

Different from the common LiDAR odometry, which only resolves the moving dis-
tortion, SLiDAR will incur the extra LiDAR spinning distortion. Based on the coordinate
relation of SLiDAR in Figure 1, the bottom-up process of the two-stage motion compen-
sation, which removes the LiDAR spinning distortion and platform moving distortion in
turn, is shown in Figure 3.
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4.3.1.1. Removing LiDAR Spinning Distortion

First, we interpolate the measured spinning angles to get the corresponding spinning
angle of the LiDAR point, then rotate the point to the frame FB with the relative angle
difference.

Assume the sample period of the spinning angle is ∆γ, the end time of current scanning
is ρk, the sample time for Si p i is ρi, and the spinning rate ωϕ is constant during a sample
period ∆γ. In Figure 3, ρi ∈ [γh−1, γh], in which γh−1 and γh are the adjacent time of
spinning angle measurement. Denote the measured spinning angles at the time γh−1 and
γh are ϕh−1 and ϕh, respectively. With the linear interpolation, the spinning angle at the
time ρi is

ϕi =
γh − ρi

∆γ
ϕh−1 +

ρi − γh−1
∆γ

ϕh (7)

If ρi is larger than the latest time γh, we can utilize the estimated spinning rate ωϕ in
time γh to predict the spinning angle corresponding to ρi,

ϕi = ϕh−1 + (ρi − γh−1)ωϕ (8)

Since LiDAR spinning is only along the X-axis, so

TX(ϕs) = TX(ϕi − ϕk) = [RX(ϕi − ϕk), 0] (9)

Similarly, we can get the spinning angle ϕk corresponding to ρk. Denote the measured
spinning angle corresponding to the frame FB is ϕ0, we can derive

TX(ϕa) = TX(ϕk − ϕ0) = [RX(ϕk − ϕ0), 0] (10)

Notably, RX(ϕ) in both formulations (9) and (10) is defined as:

RX(ϕ) =

1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

 (11)

From formulations (3), (4), (9) and (10), we can get

Bi pi = TX(ϕa)TX(ϕs)
Si pi = RX(ϕk − ϕ0)RX(ϕi − ϕk)

Si pi = RX(ϕi − ϕ0)
Si pi (12)

which means that we can group TX(ϕs) and TX(ϕa) as encapsulated LiDAR spinning
distortion compensation.
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4.3.1.2. Removing Platform Moving Distortion

Regarding platform moving compensation, the back-propagation of IMU measure-
ments is employed to get the related pose for each point, and the point is then transformed
to the scanning end-time with its corresponding related pose [15]. Different from the
existing LIO methods which regard the point projected by motion compensation as the
raw point for the measurement model, since the moving distortion transformation kTi
is the middle parameter in the global transformation for SLiDAR, we need to record the
corresponding kTi for raw point Li pi as part of the measurement model.

Performing the forward propagation on IMU inputs (in Section 4.4.2), we can get a
predicted IMU pose chain until the time at the LiDAR scanning end Lk, in which we denote
G
I x̂ Ik as the predicted state. Assume the time ρi of point Bi pi located in IMU time interval,
that is ρi ∈

[
tj−1, tj

]
, as shown in Figure 3. By querying the predicted IMU pose chain,

we can get the IMU pose G
I x̂ Ij at time tj. Then, performing the back-propagation from the

initial IMU state G
I x̂ Ij , we can derive the corresponding IMU state G

I x̌ Ii for Bi pi with the
time interval tj − ρi. As for the implementation detail of back-propagation, the interested
reader can refer to [15].

We denote the back-propagated IMU poses at the time ρi as
(GŘ Ii ,

Gp̌ Ii

)
∈ G

I x̌ Ii , the

front-propagated IMU poses at the end of Lk as
(

GR̂ Ik , Gp̂ Ik

)
∈ G

I x̂ Ik and the predicted

sensor calibration as IT̂B

(
IR̂B, I t̂B

)
, respectively. As a result, projecting Bi pi to Bk pi as

Bk pi =
IR̂T

B

(
GR̂T

Ik

(
GŘ Ii

(
IR̂B

Bi pi +
I t̂B

)
+ Gp̌ Ii −

Gp̂ Ik

)
− I t̂B

)
(13)

we can derive moving distortion compensation kT i

(
kRi, kti

)
as

kRi =
IR̂T

B
GR̂T

Ik
GŘ Ii

IR̂B, (14)

kti =
IR̂T

B

(
GR̂T

Ik
GŘ Ii − I

)
I t̂B + IR̂T

B
GR̂T

Ik

(
Gp̌ Ii −

Gp̂ Ik

)
. (15)

For general IMUs, the propagated values Gp̌ Ii and Gp̂ Ik are not reliable, and the related
term Gp̌ Ii − Gp̂ Ik in formulation (15) is also usually trivial, so we ignore this term in the
initial motion compensation. In the end, estimated odometry results will be used to com-
pensate for distortion again with formulations (14) and (15) while finishing optimization.
For pursuing real-time performance, we do not update formulation (14) and (15) with
recorrect states during iterative optimization.

4.4. ESIEKF

With the ESIEKF optimization framework [38], we aggregate mechanism calibration,
sensor calibration and IMU states into one measurement model to build our OMC-SLIO.
Specifically, we will introduce the main contents of ESIEKF implementation on OMC-SLIO,
which includes the state transition model, forward propagation and ESIEKF update.

4.4.1. State Transition Model

We take the IMU frame FI as the body frame and the first body frame of FI as the
global frame FG. The true state is defined as

,
[G

I x I
IRB

ItB
SωL

]T (16)

in which IRB and ItB are respectively the rotation and linear parts of sensor calibration,
SωL =

[S
Lωy

S
Lωz

]T is the interested rotational parameter vector of mechanism calibration
as discussed in Section 3, and G

I x I denotes the IMU state. G
I x I is defined as

G
I x I ,

[GR I
Gp I

Gv I bω ba
Gg

]T (17)
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where GR I , Gp I , Gv I and Gg denote the IMU attitude, position, velocity and gravity vector
in the global frame FG, respectively, bω is the IMU gyroscope bias, and ba is the IMU
accelerometer bias. The continuous time kinematic model for state x is:

G
.

R I =
GR Ibωm − bω − nωcx, G .

p I =
Gv I , G .

v I =
GR I(am − ba − na) + Gg

.
bω = nbω,

.
ba = nba, G .

g = 0,
.

IRB = 0, I .
tB = 0, S .

ωL = 0
(18)

where ωm and am are the raw IMU measurements, nω and na are the measurement white
noise of ωm and am, and both IMU bias bω and ba are modeled as random walk and
corrupted by Gaussian noise nbω and nba. Note that here we only consider two rotation
parameters, S

Lωy and S
Lωz, of mechanism calibration STL. Denote SRL and StL as the

rotation and translation parts of STL respectively, then

SRL = Rz
(S

Lωz
)
Ry
(S

Lωy
)
, StL = 0,

Rz
(S

Lωz
)
=

 cosS
Lωz sinS

Lωz 0
−sinS

Lωz cosS
Lωz 0

0 0 1

, Ry
(S

Lωy
)
=

cosS
Lωy 0 −sinS

Lωy
0 1 0

sinS
Lωy 0 cosS

Lωy

 (19)

With the zero-order hold discretization, the discrete state transition model at the i-th
IMU measurement can be expressed as [38]:

xi+1 = xi � (∆tf(xi, ui, wi)) (20)

where � is encapsulation operation “boxplus” as defined in [41], ∆t is the IMU sample
period, and the discrete kinematics function f, input u, and process noise w are respectively
defined as:

u ,
[
ωm am

]
(21)

w ,
[
nω na nbω nba

]
. (22)

f(xi, ui, wi) =



ωmi − bωi − nωi
Gv Ii +

1
2
(GR Ii (ami − bai − nai ) +

Ggi
)
∆t

GR Ii (ami − bai − nai ) +
Ggi

nbωi
nbai

011×1

. (23)

4.4.2. Forward Propagation

Assume the optimal estimated state of the last LiDAR scanning Lk−1 at the end time
is xk−1 with covariance Pk−1, which represents the covariance of the error state defined
below:

x̃k−1 , xi+1 − xk−1 =
[
δGθ I

Gp̃ I
Gṽ I b̃ω b̃a

Gg̃ δIθB
I t̃B

Sω̃L

]T
(24)

where δGθ I = Log
(GRT

I
GR I

)
is the IMU attitude error, δIθB = Log

(IRT
B

IRB
)

is the error of
the rotation part of sensor calibration, and the rests are the standard errors like the form of
x̃ = x− x. Here, δθ vector presents the small deviation between the true and the estimated
rotations in the tangent space; it has a minimal representation of three degrees of freedom.

Upon each IMU input ui, forward propagation is performed to predict the state x̂i+1
by setting the process noise wi to zero, and the covariance P̂i+1 for x̃i+1 , xi+1 � x̂i+1(� is
also encapsulation operation “boxminus” as defined in [41]) is updated,

x̂i+1 = x̂i � (∆tf(x̂i, ui, 0)), x̂0 = xk−1, (25)

P̂i+1 = Fx̃P̂iFT
x̃ + FwQFT

w, P̂0 = Pk−1, (26)
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Fx̃ =
∂x̃i+1

∂x̃i

∣∣∣∣
x̃i=0,wi=0

, Fw =
∂x̃i+1

∂ wi

∣∣∣∣
x̃i=0,wi=0

(27)

where Q is the covariance of w, and the detailed derivation of Fx̃ and Fw can be found
in [38]. Note that the forward propagation is from time tk−1 (the end time of the last
LiDAR scanning Lk−1) to tk (the end time of the current LiDAR scanning Lk). Denote the
propagated state and covariance at tk as x̂k and P̂k, and the error state x̃k = xk� x̂k complies
with the prior distribution,

x̃k v N
(

0, P̂k

)
(28)

4.4.3. ESIEKF Update

Denote the current iteration of IEKF as υ, and the corresponding estimated and error
states are x̂υ

k and x̃υ
k , respectively. In addition, x̂υ

k = x̂k(if υ = 0) and xk = x̂υ
k � x̃υ

k . Define
the true planar feature point as

Lpgt
i = Lpi − Lni (29)

where Lni is the measurement noise of the LiDAR scanning point. Since Lpgt
i is a planar

point, its neighbors in the global map should be on a local plane. By projecting Lpgt
i to the

global frame with the true state xk, the measurement model can be derived as

hi
(
xk, Lni

)
= 0 =

GnT
i

((
GR I

(
IRB

(
kRiRX(ϕi − ϕ0)

SRL
(Lpi − Lni

)
+ kti

)
+ ItB

)
+ Gp I

)
− Gci

) (30)

where GR I ∈ xk, IRB ∈ xk, SRL ∈ xk, ItB ∈ xk, and Gp I ∈ xk, Gni and Gci are the normal
vector and center point of the local plane fitted in the global map.

Ignoring the measurement noise Lni, we can project extracted planar feature point Lpi
to the global frame with estimated state x̂υ

k ,

Gpυ
i = GR̂υ

Ik

(
IR̂υ

B

(
kRiRX(ϕi − ϕ0)

SR̂υ
L

Lpi +
kti

)
+ I t̂υ

B

)
+ Gp̂υ

Ik
(31)

where GR̂υ
Ik
∈ x̂υ

k , IR̂υ
B ∈ x̂υ

k , SR̂υ
L ∈ x̂υ

k , I t̂υ
B ∈ x̂υ

k and Gp̂υ
Ik
∈ x̂υ

k . Similarly, since Lpi is a
planar point, its neighbors in the global map should be on a local plane, so we can define

hi(x̂
υ
k , 0) = GnT

i

(
Gpυ

i − Gci

)
= 0 (32)

where Gni and Gci are normal vector and center point of the local plane fitted by the
neighboring points of Gpυ

i in the global map. As a result, we can define the residual as

rυ
i , hi

(
xk, Lni

)
� hi(x̂

υ
k , 0) = hi

(
x̂υ

k � x̃υ
k , Lni

)
� hi(x̂

υ
k , 0) ≈ Hυ

i x̃υ
k + Dυ

i
Lni, (33)

Hυ
i =

δhi(x̂
υ
k � x̃υ

k , 0)
δx̃υ

k

∣∣∣∣
x̃υ

k=0
, Dυ

i =
δhi
(
x̂υ

k , Lni
)

δLni

∣∣∣∣∣
Ln i=0

, (34)

where the detailed derivation for Hυ
i and Dυ

i can be referred to in [38], and the formula-
tion (33) defines a posteriori distribution for x̃k,(

Dυ
i

Lni

)∣∣∣x̃υ
k = rυ

i −Hυ
i x̃υ

k ∼ N
(
0, Ri

)
, Ri = Dυ

i RiDυ
i

T . (35)

After every iteration, the prior distribution of x̃k from the forward propagation has
been evolved as:

x̃k = xκ � x̂κ = (x̂υ
k � x̃υ

k )� x̂κ ≈ x̂υ
k � x̂κ + Jυx̃υ

k (36)

Jυ =

(
∂((x̂υ

k � x̃υ
k )� x̂κ)

∂x̃υ
k

)
x̃υ

k=0
(37)
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where the detailed derivation for Jυ can be found in [38], and x̂υ
k = x̂κ , Jυ = I while υ = 0.

From formulation (36), we can find the evolutive prior distribution for x̃υ
k is,

x̃υ
k v N

(
−Jυ−1(x̂υ

k � x̂κ), Jυ−1P̂kJυ−T
)

. (38)

Furthermore, combine the prior in formulation (38) and the posteriori distribution in
formulation (35), which leads to the maximum a-posteriori estimate (MAP) for x̃υ

k ,

min
x̃υ

k

(
|| x̂υ

k � x̂κ + Jυx̃υ
k ||2P̂k

−1/2 + ∑ ||rυ
i −Hυ

i x̃υ
k ||2R−1/2

i

)
, (39)

where ||x ||2Σ = xTΣTΣx. Substituting the linearization of the priori in the above equation
and optimizing the resultant quadratic cost leads to the standard iterated Kalman filter,

K = PHT
(

HPHT + R
)−1

, (40)

x̂υ+1
k = x̂υ

k �
(

Krυ + (I−KH)(Jυ)−1(x̂υ
k � x̂k)

)
, (41)

where H =
[
Hυ

1
T , · · · , Hυ

m
T]T , R = diag

(
R1, · · · , Rm

)
, P = (Jυ)−1P̂k(Jυ)−T , and rυ =[

rυ
1

T , · · · , rυ
m

T]T . The updated estimate x̂υ+1
k is then used to compute the residual again and

the process is repeated until convergence. After convergence, the optimal state estimation
and covariance is

xk = x̂υ+1
k , Pk = (I−KH)P. (42)

5. Experiment Results

In order to verify the proposed OMC-SLIO, we designed a SLiDAR experimental
platform, as shown in Figure 4, in which the hardware system can be divided into two parts:
the rotating part and the static part. Specifically, the rotating part consists of Velodyne
VLP-16 LiDAR, the rotating mechanism and the rotating part of a DJI GM6020 motor
(including the rotating part of the embedded encoder); the static part consists of the static
part of a DJI GM6020 motor (including the static part of the embedded encoder), a XSENS
MTi-630 IMU, a Piesia WK310CA computer (Intel Core i78565u CPU and 16 GB RAM)
and a metal square base. Note that the Velodyne VLP-16 LiDAR has been mounted on the
rotating mechanism as accurately as possible to ensure that all external parameters of the
mechanism such as S

Lωy and S
Lωz are approaching zero.
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We chose the state-of-the-art (SOTA) self-calibration methods, FAST-LIO [15] and
LIO-SAM [17], and the loosely coupled method, LOAM [40], as comparison methods. Since
the relative pose between LiDAR and an IMU is non-constant and severe point cloud
distortion results from LiDAR spinning, these comparison methods would lead to failure
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when they are directly applied for SLiDAR. Therefore, based on our constructed kinematic
model and the two-step point cloud distortion compensation method, we transformed
the original LiDAR scanning points to the space of the static part of the encoder (i.e., FB);
then, the newly formed LiDAR scanning points were fed to these comparison methods.
To distinguish the original forms of these comparison methods, we term these modified
FAST-LIO, LIO-SAM and LOAM for SLiDAR as FAST-SLIO, SLIO-SAM and SLOAM,
respectively.

Furthermore, to validate the correctness of our formulated SLiDAR calibration, we
adopted two specific offline calibration methods to estimate the mechanism external pa-
rameters [27] and sensor external parameters [21], respectively. Then, the online calibration
parameters in OMC-SLIO were replaced with the corresponding external parameters from
the above offline calibration. Again, we refer to such pre-calibrated OMC-SLIO as the
Calib-SLIO.

We conducted two sets of comparison experiments. One set of comparison experi-
ments was conducted in a lab room with a Nokov Motion Capture System (NMCS) (shown
in Figure 5), where the positioning results of the motion capture system were used as
ground truth. Another set of comparison experiments was conducted in a larger under-
ground parking to reveal the effect of external parameter self-calibration on localization
and mapping.
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5.1. Lab Room

In the lab room test, the positioning result from the NMCS is regarded as the ground
truth. The absolute translation errors (ATE) presented by MAE and RMSE and the average
processing time (APT) for each LiDAR scanning (10 Hz) are listed in Table 1. The mapping
results of the lab room using the comparison methods are shown in Figure 6. Note that we
only present the results of comparative methods that worked successfully.

In Table 1, it can be found that our OMC-SLIO, Calib-SLIO and FAST-SLIO all achieve
centimeter-level localization accuracy, while both SLOAM and SLIO-SAM fail to function
successfully. Since fast LiDAR spinning presents minor overlap between successive frame
scanning, the failure of SLOAM and SLIO-SAM stems from their basic matching based
on successive frames. Further, our OMC-SLIO, pre-calibrated Calib-SLIO and FAST-SLIO
pre-processed using our proposed method all achieve reliable localization and mapping,
indicating the effectiveness of our proposed SLiDAR calibration formulation and the two-
step motion compensation.
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Table 1. The ATE and APT of the methods in the lab room.

Method X-Y-Z Calib-SLIO SLOAM SLIO-SAM FAST-SLIO OMC-SLIO

MAE (cm)
X 2.41

Failed
4.05 3.58

Y 2.92 Failed 4.03 3.69
Z 4.87 8.59 5.19

RMSE (cm)
X 4.59

Failed
5.24 5.93

Y 4.23 Failed 5.26 5.91
Z 5.13 9.28 5.53

APT (ms) - 34.43 Failed Failed 34.72 35.49
Ground truth: From Nokov Motion Capture System.
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Specifically, our OMC-SLIO shows a significant improvement in Z-directional local-
ization, with a 40% improvement in accuracy compared to FAST-SLIO. Furthermore, the
Z-direction localization of all methods exhibited the largest MAE and RMSE values, owing
to the weaker laser beam reflection intensity from the smooth ground (as shown in Figure 6,
the green and red points indicate strong and weak laser beam reflections, respectively).
For the APT metric, the average runtime of our OMC-SLIO, Calib-SLIO and FAST-SLIO
is around 35 ms. This APT result is reliable because our OMC-SLIO, Calib-SLIO, and
FAST-SLIO are all able to achieve similar convergence in the lab room. Consistent with
quantitative results, our OMC-SLIO shows sharper mapping details than FAST-SLIO and
presents comparable mapping performance with Calib-SLIO, as shown in Figure 6.

5.2. Underground Parking

In the large underground parking, we cannot use the motion capture system and
cannot receive GPS positioning signals. Since Calib-SLIO got the best positioning accuracy
in the lab room experiments, the positioning results of Calib-SLIO were adopted as the
ground truth in the underground parking test. The absolute translation errors (ATE)
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presented via MAE and RMSE and the average processing time (APT) for each LiDAR
scanning (10 Hz) are presented in Table 2. The underground parking mapping results for
the comparison method are shown in Figure 7. Again, we only present the results for the
methods that worked successfully.

Table 2. The ATE and APT of the methods in underground parking.

Method X-Y-Z SLOAM SLIO-SAM FAST-SLIO OMC-SLIO

MAE (cm)
X

Failed
10.80 5.47

Y Failed 15.86 7.04
Z 25.29 15.19

RMSE (cm)
X

Failed
12.28 6.48

Y Failed 16.64 8.98
Z 30.19 20.36

Time (ms) - Failed Failed 67.50 49.32
Ground truth: from Calib-SLIO.
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There is no doubt that SLOAM and SLIO-SAM still fail when applied to SLiDAR.
Specifically, compared with FAST-SLIO, our OMC-SLIO has an average improvement of
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50% in positioning accuracy in the X and Y directions and 35% in the Z direction, as shown
in Table 2. Similarly, since the dark-colored floor and roof can absorb most of the laser
beam energy (as shown in Figure 7, green and red dots indicate strong and weak laser
beam reflections, respectively), both MAE and RMSE values in the Z direction in Table 2
are worse than those in the X or Y directions. Meanwhile, OMC-SLIO also has better
real-time performance than FAST-SLIO due to better estimation convergence. Since the
estimation bias of the rotation part of the extrinsic calibration will lead to more severe point
cloud bias in larger scenes, the FAST-SLIO experiments in the underground parking exhibit
more prominent localization and mapping errors than the experiments in the lab room.
Consistent with quantitative results, OMC-SLIO exhibits clearer mapping details, while
FAST-SLIO presents a distinctly blurred mapping, as shown on the right in Figure 7.

6. Discussion

In this section, we discuss why our OMC-SLIO can show better performance for
SLiDAR compared to the comparative self-calibration odometer method, as shown in the
previous experimental section.

The best positioning accuracy using Calib-SLIO verified the practicability of the cali-
bration formulation within the SLiDAR. To some extent, our OMC-SLIO can be considered
as an online version of Calib-SLIO. Our OMC-SLIO online calculates both mechanism
and sensor parameters within SLiDAR, thus achieving excellent positioning and mapping
accuracy. In the set of underground parking experiments, we used the offline estimated
extrinsic parameters of Calib-SLIO as the ground truth. Then, all the extrinsic parameters
estimated online using FAST-SLIO and OMC-SLIO were averaged and taken as the final
extrinsic parameter results. Table 3 shows the errors in the online extrinsic parameter
estimation of FAST-SLIO and OMC-SLIO.

Table 3. The error of online extrinsic parameter estimation of FAST-SLIO and OMC-SLIO.

Calibration
MAE RMSE

FAST-SLIO OMC-SLIO FAST-SLIO OMC-SLIO

Mechanism
ry (deg) - 0.056 - 0.058
rz (deg) - 0.213 - 0.222

Sensor

rx (deg) 0.269 0.151 0.303 0.172
ry (deg) 0.652 0.334 0.815 0.488
rz (deg) 0.611 0.454 0.650 0.491

tx (cm) 2.3 0.7 2.6 0.7
ty (cm) 1.8 1.3 1.9 1.4
tz (cm) 10.4 0.9 11.6 1.1

Note that FAST-SLIO estimates only the extrinsic parameters of the sensor, while our
OMC-SLIO estimates both the extrinsic parameters of the mechanism and the sensor. As
shown in Table 3, compared with FAST-SLIO, OMC-SLIO reduces the online calibration er-
rors by 43%, 44%, 26%, 72%, 27% and 91% on average for the 6 sensor extrinsic parameters,
respectively. Meanwhile, the average error of the two additional online mechanism calibra-
tion parameters of OMC-SLIO is only 0.057◦ and 0.218◦. FAST-SLIO does not consider the
correlation of the extrinsic parameters inside the SLiDAR, while our OMC-SLIO establishes
the kinematic model relationship between multiple sensors inside the SLiDAR and, on the
other hand, constructs a unified observation model with multiple extrinsic parameters and
the odometry states. Therefore, OMC-SLIO can be more reliable for SLiDAR to achieve
better localization and mapping performance.

7. Conclusions

In this paper, we propose a novel self-calibration odometry scheme for SLiDAR,
named as online multiple calibration spinning LiDAR inertial odometer (OMC-SLIO),
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which allows online estimation of multiple extrinsic parameters among the LiDAR, rotat-
ing mechanism and IMU, as well as the odometer state. To the best of our knowledge,
this is the first multi-extrinsic self-calibration LIO method for SLiDAR. By analyzing the
relationships of the internal sensors, we formulate the calibration inside the SLiDAR as
mechanism calibration and sensor calibration and build the kinematic model with the
encoder information. Further, based on the kinematic model, we present a two-stage
motion compensation to eliminate the point cloud distortion caused by LiDAR rotation
and platform motion. Finally, the two sets of extrinsic parameters and odometer state are
wrapped in a measurement model and estimated with the error-state iterative extended
Kalman filter (ESIEKF). We design a 3D SLiDAR platform and conduct experiments in a
lab room and underground parking. Experimental results show that our OMC-SLIO is
effective and attains excellent performance. Further, the extrinsic parameters comparison
test verifies that our OMC-SLIO can better estimate the multiple external parameters of
SLiDAR and shows why our OMC-SLIO can achieve higher accuracy in localization and
mapping. To maintain the consistence of the localization and mapping of our proposed
OMC-SLIO, we will introduce the pose graph optimization resulted from the multiple
frames match or the loop closure in future work.
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