
Citation: Chen, C.; Ma, Y.; Lv, J.;

Zhao, X.; Li, L.; Liu, Y.; Gao, W.

OL-SLAM: A Robust and Versatile

System of Object Localization and

SLAM. Sensors 2023, 23, 801. https://

doi.org/10.3390/s23020801

Academic Editor: Anastasios

Doulamis

Received: 21 October 2022

Revised: 26 December 2022

Accepted: 26 December 2022

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

OL-SLAM: A Robust and Versatile System of Object
Localization and SLAM
Chao Chen 1,† , Yukai Ma 1,† , Jiajun Lv 1, Xiangrui Zhao 1 , Laijian Li 1, Yong Liu1,* and Wang Gao 2,*

1 Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
2 Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory,

Beijing 100191, China
* Correspondence: yongliu@iipc.zju.edu.cn (Y.L.); gaowang@iipc.zju.edu.cn (W.G.)
† These authors contributed equally to this work.

Abstract: This paper proposes a real-time, versatile Simultaneous Localization and Mapping (SLAM)
and object localization system, which fuses measurements from LiDAR, camera, Inertial Measurement
Unit (IMU), and Global Positioning System (GPS). Our system can locate itself in an unknown
environment and build a scene map based on which we can also track and obtain the global location of
objects of interest. Precisely, our SLAM subsystem consists of the following four parts: LiDAR-inertial
odometry, Visual-inertial odometry, GPS-inertial odometry, and global pose graph optimization. The
target-tracking and positioning subsystem is developed based on YOLOv4. Benefiting from the use
of GPS sensor in the SLAM system, we can obtain the global positioning information of the target;
therefore, it can be highly useful in military operations, rescue and disaster relief, and other scenarios.

Keywords: SLAM; multi-sensor fusion; object tracking and localization

1. Introduction

For autonomous unmanned systems, SLAM technology can observe the surrounding
stationary environment and build a 3D map of the environment through sensors such
as cameras and LiDARs installed on the robot [1]. For dynamic scenes, SLAM-based 4D
reconstruction technology can reconstruct 4D (3D+time) dynamic scenes with rigid moving
objects [2–4]. However, the complexity of the actual scene means the SLAM system, with
only positioning and mapping functions, is unable to meet the needs of many scenarios
such as military operations, emergency rescue, and disaster relief. Besides, autonomous
unmanned systems are often required to obtain positioning and environmental maps at the
same time. It is necessary to develop an intelligent multifunctional perception system with
self-positioning, mapping, target tracking, and positioning functions to search for objects
of interest within the field of view and obtain the target location.

In order to improve the state estimation accuracy of SLAM systems, a large number of
multi-sensor fusion methods have been used, such as the fusion of camera and IMU [5–8],
LiDAR and IMU [9–11], and a combination of all of them [12–14]. The sensors used in
these methods can be divided into local pose estimation sensors such as camera and IMU
and global pose estimation sensors such as GPS and magnetometer. However, they all
have their advantages and disadvantages, so the single use of a certain type of sensor
limits the SLAM system in practical application [15–17]. The short-term results are more
credible for local pose estimation sensors, but they have two shortcomings. One is that
their pose estimation results do not have a global coordinate system, so the method is not
reusable. The second is that when the system runs for a long time, there will be an inevitable
cumulative drift. Although the loop closure detection method can correct the accumulated
error in the SLAM system, problems such as difficult matching, a large amount of data,
and limited application scenarios still exist. The frequency of global pose estimation sensors
is not high, so they cannot provide much continuous observation information. Furthermore,

Sensors 2023, 23, 801. https://doi.org/10.3390/s23020801 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020801
https://doi.org/10.3390/s23020801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6137-8889
https://orcid.org/0000-0001-8135-9012
https://orcid.org/0000-0002-0129-1933
https://doi.org/10.3390/s23020801
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020801?type=check_update&version=1

Sensors 2023, 23, 801 2 of 19

their measurement noise is relatively large; therefore, they cannot be directly used for pose
estimation. However, they have global observation coordinates and are not affected by
time accumulation. Therefore, fusing different sensors is an important method to enhance
pose estimation accuracy.

For targeting, YOLOv4 [18] provides a high-speed and accurate target detection
network model. The optical flow method and Kalman filtering are often used for target
tracking. In terms of application, J.A. [19] proposes an automatic expert system, based
on image segmentation procedures, that assists in safe landing through recognition and
the relative orientation of the UAV and platform. Dr. Krishna [20] specified detection and
tracking algorithms in terms of extracting the features of images and videos for security
and scrutiny applications. We tend to fuse other sensors such as LiDAR or Radar to locate
the target because monocular cameras lack depth information. Yifang [21] proposes the
use of RADAR and Infrared sensor (IR) information for tracking and estimating target
state dynamics. To project image-based object detection results and LiDAR-SLAM results
onto a 3D probability map, Gong et al. [22] combine visual and range information into a
frustum-based probabilistic framework.

For the above reasons, this paper proposes an online positioning, mapping, and target-
tracking and location system based on camera, IMU, solid-state LiDAR, and GPS. Specifi-
cally, our SLAM system consists of the following four parts: a LiDAR-inertial subsystem
(LIS), Visual-inertial subsystem (VIS), GPS-inertial subsystem (GIS), and global pose graph
optimization (PGO). The LIS and VIS are tightly coupled, and there exists loose coupling
between them. The combination of them can improve the accuracy and robustness of the
whole system. Finally, the LIS and VIS results are sent to the PGO system for global pose
graph optimization to eliminate accumulated drifts. Due to our distributed structure design
of tightly coupled internal and loose coupled external subsystems, our system dramatically
improved its robustness even in cases where one of the subsystems fails. In addition,
a LiDAR–Camera fusion localization method is proposed based on conventional target
detection and tracking. The global position of the target is obtained in real-time based on
our SLAM.

To test the effectiveness of our system, we built the necessary sensor equipment
and collected many scene-rich datasets, including high-altitude UAV aerial photography
datasets, ground vehicle datasets, and ground handheld datasets. Considering that there
are relatively few datasets that include the sensors we use, we open source all collected
datasets for other researchers to use. Finally, we conduct extensive experiments on our
dataset to test our system. Experiments show that our system can perform the expected
function well with good accuracy and robustness.

The main contributions of this paper are as follows:

1. We propose a high-precision, high-robust multi-sensor fusion online SLAM system;
2. We propose an online target-tracking and localization system based on SLAM results

to meet the needs of various natural complex scenes;
3. We collect relevant datasets using our equipment and make the datasets available for

other researchers to use.

2. Method

Here, we first introduce the block diagram of our system and then introduce our
SLAM subsystem and target-tracking and localization subsystem in detail, respectively.
Specifically, we first introduce our three subsystems, namely VIS, LIS, and GIS. Then, we
describe how to alleviate cumulative drift using global pose graph optimization. Finally,
we introduce the object tracking and localization subsystem and demonstrate how to use
SLAM system results to obtain the global position of the object.

2.1. The Overview of Our System

An overview of our system is shown in Figure 1, which includes a multi-sensor
fusion SLAM system and an object tracking and location subsystem. The SLAM system

Sensors 2023, 23, 801 3 of 19

is divided into the following three parts: data preprocessing, three internal subsystems
running in parallel, and the final pose-graph optimization. The data preprocessing step
preprocesses the input image, IMU, and LiDAR data, including image feature extraction,
IMU pre-integration, and LiDAR plane-feature extraction. Then, it will send the results to
the three subsystems, i.e., VIS, LIS, and GIS. There is an interaction between the VIS and LIS
subsystems. That is, they both provide each other with the current estimated state, which
can improve the accuracy and robustness of the whole system. Specifically, for VIS, we refer
to the practice of sliding-window-based nonlinear optimization in VINS-Mono [6]. Since
the depth of visual feature points of VIS usually has a large uncertainty, inspired by [12],
we register the LiDAR point cloud to the image to assist image depth extraction, which
significantly improves the accuracy of VIS for feature point depth estimation. For LIS,
the large number of LiDAR point clouds leads to significant challenges in the computing
performance, so we refer to the approach of ES-IEKF in FAST-LIO2 [10] and use the fast
Kalman filter algorithm to accelerate the calculation. For GIS, we use the IMU data for
state propagation and the GPS observation data to correct the IMU results to obtain a
high-frequency GPS signal equal to the IMU frequency. Finally, we fuse the results of VIS,
LIS, and GIS for pose graph optimization to correct the cumulative drift.

Slide Window OptimizationPnP Reprojection
Error

LiDAR Input
10HZ

Plane-featue
Extration

Compsent
Dedistortion

Point-to-plane
Residual Error-state Iterated Kalman Filter

PredictPredict
IMU Input

200HZ
Pre-

integration

Camera Input
20HZ

Feature
Tracker

Depth
Registration

GNSS Input
4HZ Error-state Kalman Filter

Data Pre-process 3 sub-system PGO

Pose G
raph O

ptim
ization

Object Tracking and Location

Point Cloud

System
 O

utput

Point Cloud

Pose

Figure 1. The overview of our system.

Target tracking and localization rely on local point cloud maps and poses of keyframes
provided by the SLAM system. First, we detect targets on the image, and track them
between consecutive frames using a Kalman filter. Subsequently, we filter the point clouds
that fall in the detection frame based on the external parameters of the camera and LiDAR,
using Euclidean clustering to filter the portion of the closest target as the target point cloud.
Laser points may not occupy the ground target within the camera’s field of view because
the laser point cloud becomes sparse with increasing distance. Therefore, we consider using
a local point cloud map instead of a single frame of laser points as our input to compensate
for the sparsity of the laser point cloud. Finally, the real-time global position of the tracked
target is calculated based on the key poses.

Sensors 2023, 23, 801 4 of 19

2.2. Visual Inertial Subsystem

The pipeline of VIS is similar to VINS-Mono [6], and the system block diagram is
shown in Figure 1. For VIS, we define the world coordinate system as {W}, and the state
variables of the IMU coordinate system are represented in {W} as

xi =
[

RW
bi

pW
bi

vW
bi

bωi bai

]T
, (1)

where RW
bi
∈ SO(3) is the rotation matrix, pW

bi
∈ R3 is the position, vW

bi
is the velocity, bωi

and bai are the IMU biases. The IMU motion model is as follows:

pW
bk+1

= pW
bk
+ vW

bk
∆tk

+
∫∫

t∈[tk ,tk+1]

(
RW

t (at − bat − na)− gW
)

dt2,

vW
bk+1

= vW
bk
+
∫

t∈[tk ,tk+1]

(
RW

t (at − bat − na)− gW
)

dt,

qW
bk+1

= qW
bk
⊗
∫

t∈[tk ,tk+1]

1
2

Ω(ωt − bωt − nω)q
bk
t dt,

(2)

where

Ω(ω) =

[
−bωc× ω

−ωT 0

]
, bωc× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

,

qW
bk

is the quaternion represent of RW
t , at is the acceleration reading from IMU, na is the

acceleration noise of IMU, ωt is the angular velocity reading from IMU, nω is the angular
velocity noise of IMU, ∆tk is the duration between the time interval [tk, tk+1].

For the input image, VIS first detects the Fast-corner [23] and then uses the KLT
algorithm [24] for optical flow tracking. Since the inverse depth of visual features optimized
by VIS has great uncertainty, we accumulate the LiDAR point clouds of recent frames
and then project them onto the image to assist depth estimation. Specifically, as shown
in Figure 2, we use the transformation between LiDAR and camera coordinate system
TC

L = [RC
L | pC

L] to project the LiDAR point cloud onto the camera image. Then we find the
nearest three projected LiDAR points on the image plane for a visual feature by searching a
two-dimensional K-D tree. At last, we use these three points to fit a plane and back-project
the visual feature onto this plane as its 3D point, which is shown in Figure 3. It can be
seen that for most visual feature points, we can accurately estimate their corresponding 3D
points. It is very beneficial in improving the accuracy of the VIS.

LiDAR depth point

LiDAR depth point project on image

Visual feature point on image

Visual feature depth point estiamtation

Figure 2. Visual feature depth registratoin with LiDAR points.

Sensors 2023, 23, 801 5 of 19

(a) (b)

Figure 3. (a) The visual features on the image. (b) The estimated 3D points of visual feature. It’s clear
that lots of visual features can get accurate estimates of their 3D points.

In the back-end sliding window optimization, the camera pose and the depth of feature
points will be optimized as state variables. Unlike the almost completely independent
design of LIS and VIS in [12], we use the current state value xL predicted by LIS as the initial
state of VIS. The factor is added to the back-end optimization process of VIS, as shown in
Figure 4. It is well known that the robustness and accuracy of LIS are higher than VIS, so
this design can improve the performance of VIS, thereby making a more accurate estimate
of the initial pose for the next LIS.

M
arginalization

k

k

k+1

k+1

k+2

k+2

k+3

Visual Landmarks

Sliding window Optimization

Co-visiable Constrain

Camera KeyFrame Pose

LiDAR Prior Pose

IMU Preintegration Constrain

Figure 4. The factor graph of our visual inertial subsystem.

2.3. LiDAR Inertial Subsystem

Our LIS is modified from [10]. Specifically, as shown in Figure 1, we use Iterate
Kalman Filter based on error-state to fuse IMU and LiDAR observations. Benefiting from
the improvement of Kalman Gain K in [10], this algorithm can run in real-time without
causing excessive computational burden with the increase in LiDAR observation points.
The iteratively optimized Kalman filter algorithm has been proved by [25] to have the same
results as the least squares algorithm using Gauss-Newton, so our LIS also guarantees the
accuracy of the algorithm.

When receiving a scan from LiDAR, we first extract the plane feature points and then
use the poses obtained from inertial integration to remove the motion distortion of the point
cloud. We use the IMU state propagation Equation (2) to obtain an up-to-date estimate
of the current LiDAR pose. However, unlike [10], thanks to the existence of our VIS, we
can continue to use IMU data to estimate the current LiDAR pose based on the latest pose
estimated by VIS. This method can improve the accuracy of our LIS.

After obtaining the pose estimation of current scan, we need to calculate the distance
from the extracted plane feature points to the fitted plane, which is same as in [10]. However,
in practical applications, the LIS has a significant drift in height, i.e., the z axis. So we
add a ground constraint to solve this problem and can flexibly choose whether to use this
constraint for different scenes. Our ground detection algorithm is simple but effective.

Sensors 2023, 23, 801 6 of 19

Expressly, we assume that the ground is an almost horizontal plane, which is almost always
satisfied indoors and holds outdoors in the vast majority of cases. Then we accumulate the
last few frames of LiDAR point clouds in the LiDAR coordinate system {L}. We assume that
the distance h between LiDAR installation height and the ground is unchanged. For cars
and handheld devices, this assumption is generally valid. Then we filter out all point
clouds whose height is in [h− δ, h + δ], and ground points are almost included. As shown
in Figure 5 shows the ground point cloud detected by our algorithm. It can be seen that
our algorithm can detect the ground well.

(a) (b)

Figure 5. (a) The visual image view. (b) The ground point clouds(white) detected by our LiDAR
inertial subsystem. It’s clear that the ground point clouds can be segmented successfully.

Then we use the RANSAC algorithm to fit ground plane in these point clouds and get
the equation of the ground equation in {L}. We can get

(xL
d − pL

d) · n
L
d = 0, (3)

where xL
d is point on ground plane, pL

d is point on the plane and nL
d is the plane normal vector

in the {L}. Since world coordinate system {W} is aligned with gravity g = [0, 0,−g]T , we
can easily get the actual ground equation in our world coordinates as

(xW
t − pW

t) · nW
t = 0, (4)

where pW
t = [0, 0,−h0] and nW

t = [0, 0, 1]T , and h0 is the distance from the origin of our
{W} coordinate system to the ground.

In the same way, we use the current LiDAR pose TW
L to convert this actual ground

equation into the current frame LiDAR coordinate system {L}. We can get

(xL
t − pL

t) · nL
t = 0. (5)

Next, we define the detected plane [nL
d ; pL

d], the real plane [nL
t ; pL

t], and the error
between them is added to the optimization of LIS to alleviate the z axis drift. First we use a
rotation matrix R ∈ SO(3) to rotate nL

t to x axis, that is[
1 0 0

]>
= RnL

t . (6)

Then we use this rotation matrix to rotate nL
d , that is[

xL
d′ yL

d′ zL
d′
]>

= RnL
d . (7)

We define the variables to measure the orientation error between the detected ground
equation and the actual ground equation as

Sensors 2023, 23, 801 7 of 19

α = arctan
yL

d′

xL
d′

, β = arctan
zL

d′√
xL

d′
2
+ yL

d′
2

. (8)

Define the variables to measure the translation error of these two planes as

γ = pL
t · nL

t − pL
d · n

L
d . (9)

We define e = [α, β, γ]T as the final ground residual, which can well constrain the
error of our system in the directions of roll, pitch, and z. This improvement on the final LIS
can be seen in our later experiments.

2.4. GPS Inertial Subsystem

We add a GPS-inertial subsystem to better prepare for back-end pose graph optimiza-
tion. In this subsystem, we use the Error-state Kalman Filter to integrate the state obtained
by IMU and the state of GPS observations. This fusion can obtain a high-frequency pose
output at IMU frequency. The reason for this design is that the frequency of GPS data is
relatively low, and it cannot accurately time matched with the output of the VIS or LIS [9,15]
both use the assumption of uniform motion to interpolate GPS data. However, in the case
of high-speed and non-uniform motion, this assumption will cause the interpolation results
to contain large noise, which reduces the accuracy of back-end pose graph optimization.
Specifically, we use Equation (2) to predict the IMU state and define the error of the state x
prediction as

δx =
[

δRW
b δpW

b δvW
b δbω δba

]>. (10)

For GPS data, it is defined in WGS84 coordinate system. Same as [15], we first convert
the data to ENU coordinate system as our state. Assuming that the position of our GPS
sensor in the IMU coordinate system {b} is pb

GPS, then we can get GPS data to observe the
origin of IMU coordinate system pW

GPS as

pW
GPS = pW

b + RW
b pb

GPS. (11)

Using Equation (11) we can get the Jacobian matrix of GPS observations for the error
state δx as

xGPS =
[

I 0 −RW
b bp

b
GPSc× 0 0

]>. (12)

Referring to the error-state Kalman filter equation in [26], we can get the result of the
fusion of GPS and IMU, which is more accurate than the interpolation of GPS data using
the assumption of uniform motion.

2.5. Pose Graph Optimization

After all three subsystems complete their estimation tasks, their results are sent to
the final pose graph optimization system for processing. In the pose graph optimization
system, we select keyframes for the input of VIS and LIS and use iSAM2 [27] to optimize
the pose graph. Precisely, we will count the pose changes between the latest keyframes
in the relative pose map of the current input frame. If the rotation or translation part of
the pose transformation exceeds the threshold we set, then we will use it as an optimized
keyframe. Thanks to our GIS, it uses GPS and IMU to perform Error-state Kalman Filter to
get high-frequency GPS observations, which makes a GPS observation constraint almost
available for each keyframe. However, the GPS signal usually has a large error when
occluded, which reflected in our GIS system is the output covariance PGPS is relatively
large. We filter the results of PGPS < θP to add to pose graph. As shown in Figure 6, it is
the block diagram of pose graph optimization system.

Sensors 2023, 23, 801 8 of 19

k-1k-2 k k+1 k+2

k-2 k+2k-1 k k+1

GPS global Constraint

Non KeyFrame from VIS

Non KeyFrame from LIS

Relative Pose Constraint

GPS data from GIS

KeyFrame from LIS

KeyFrame from VIS

Figure 6. The block diagram of pose graph optimization.

2.6. Targets Detection and Tracking

We use YOLOv4 to detect the targets and track them with the optical flow method and
Kalman filter. We first use the optical flow method to eliminate the deviation of the pixel
coordinates caused by the camera movement of targets and then use the Kalman filter to
predict their position.

2.6.1. L-K Optical Flow

First, the L-K optical flow assumes that the gray value of the same point in space is
constant across images; then, the weighted least squares method is used to estimate the
optical flow field, where the grayscale value of the point a = (x, y) at time t is assumed
to be I = (x, y, t), and the optical flow constraint equation can be derived based on the
following assumptions:

∇I · V a + It = 0, (13)

where ∇I = (Ix, Iy) denotes the gradient of the image at point a; and Va = (u, v) is the
optical flow at point a. Assuming that the optical flow is the same at each point in a
local neighborhood centered at point a, search for the displacement that minimizes the
matching error in this block, i.e., define Equation (14) for this neighborhood, and minimize
its function value as follows:

F(x, y) = ∑
(x,y)∈Ω

W2(x, y) [∇I · V a + It], (14)

where Ω denotes the local neighborhood of point a and W(x, y) denotes the weight function.
The optimal solution of equation Equation (14) is obtained as follows:

A = [∇I(x1),∇I(x2), · · · ,∇I(xn)],

W = diag[W(x1), W(x2), · · · , W(xn)],

b = −[It(x1), It(x2), · · · , It(xn)].

(15)

The final equation can be solved:

V =
[

ATW2 A
]−1

ATW2b. (16)

The simple L-K optical flow method cannot manage a situation where the UAV is
moving quickly at a high altitude. Moreover, it will generate significant computational
errors due to the large motion, which will not only affect the algorithm’s accuracy but also
reduce the overall computing speed. In this paper, we employ the pyramid-based L-K
optical flow method, whose principle is described as follows: First, the optical flow and
affine transformation matrices are calculated for the image of the highest layer. The result of

Sensors 2023, 23, 801 9 of 19

the calculation of the previous layer initializes the calculation of next layer. The optical flow
and affine transformation matrices are calculated based on the initialization. This process
is repeated until the original image layer is reached. The final result will be computed
depending on this coarse-to-fine filtering process.

2.6.2. Kalman Filter Update Objective

In the case of a video that needs to be tracked, the state vector can be expressed as
follows:

X =
[

cx cy w h vx vy vw vh
]
, (17)

where cx, cy are centers, w, h are the width and height of the bounding box, and vx, vy, vw, vh
are the speed of their change. Note that cx, cy are corrected in Section 2.6.1. We can predict
Xt based on Xt−1:

x′ =Fx + µ, (18)

P′ =FPF> + Q, (19)

where F is called the state transfer matrix, P is the covariance of tracking at the moment
t − 1, and Q is the noise matrix of the system. The observed and predicted values are
considered to apply to the same target if they satisfy the following two conditions:

• The current detection frame is expanded with enough overlap area with the prediction
frame;

• The Reid score is higher than a specific value.

Finally the tracker is updated with predicted (x′) and observed values, as follows (y):

y =z−Hx′, (20)

S =HP′H> + R, (21)

K =P′H>S−1, (22)

x =x′ + Ky, (23)

P =(I−KH)P′, (24)

where the observation matrix Z = [cx cy w h].

2.6.3. LiDAR Vision Fusion Targeting

To calculate the point cloud falling in the bounding box, we first calculate the pixel
coordinates of the laser point in the image as follows:[

ccam
i
1

]
=Tc

b(T
w
b)
>
[

cmap
i
1

]
, (i = 1, 2, 3, . . . , NA), (25)

pcam
i =

 ui
vi
1

 =
Icam

w′i
ccam

i =
1

w′i

 u′i
v′i
w′i

, (i = 1, 2, 3, . . . , NA), (26)

where cmap
i = [xi, yi, zi]

> is the point in the local point cloud map and NA is the amount
of point clouds, Tw

b = [Rw
b | pw

b], Tc
b = [Rc

b | pc
b], pcam

i is the pixel coordinate of the point
cloud, and Icam ∈ R3 × 3 is the intrinsic matrix of the camera.

Suppose there are n trackers in the current image. We filter the point clouds
Ccam = {ccam

i |i = 1, 2, 3, . . . , NA},Cmap = {cmap
i |i = 1, 2, 3, . . . , NA} in the occupancy

detection frame and use Euclidean clustering to classify the points in the map point cloud
(Cmap)′ into n classes. Moreover, the center of the point cloud O = {oi|i = 1, 2, 3, . . . , n} is
the target object’s location. The largest rectangle that can wrap the point cloud represents
the outline of the target.

Sensors 2023, 23, 801 10 of 19

3. Physical Experiment Analysis

Considering that there is no open dataset that can satisfy all the sensors used by our
algorithm simultaneously, we built our hardware equipment and collected a large number
of scene-rich datasets to verify our algorithm. First, we will introduce our hardware equip-
ment and the collected datasets. Then, based on the collected dataset, we experimentally
verify the improvements made in our system relative to [6,9]. Specifically, our experiments
included the improvement of VIS by registering feature depth with LiDAR and improve-
ments related to leading ground constraints into LIS. Then, we tested the improvement of
the positioning and mapping accuracy of the SLAM system by adding a GPS to pose graph
optimization on datasets of different scales.

We set up two experiments for the target localization system on the ground and in the
air, respectively. The ground experiment mainly verifies the Ray-vision fusion’s relative
localization effect without providing the global localization error. After that, we conducted
aerial experiments while measuring the global positioning error at different distances based
on our SLAM. All experiments were performed on the same system with an Intel® Core™
i7-9700 CPU @ 3.00GHz × 8 and Nvidia GTX 1080ti.

3.1. Hardware and Dataset of Our System

The hardware of our system is shown in Figure 7, which includes a global shutter
camera, a LiVox AVIA LiDAR (FoV of 70.4◦ × 77.2◦), a GNSS-INS module, a power supply
unit, and an onboard computation platform (equipped with an Intel i5-8400 CPU and 16
GB RAM).

(a) (b)

Figure 7. (a) The front view of our hardware. (b) The back view of our hardware. The total weight of
our device is below 3 kg.

We collected various datasets with rich scenes. Specifically, we used two large-scale
datasets collected by drones at an altitude of about 100 m, which we call HZ-odom and
HZ-map. In the ground scene, we fixed the device to the electric bicycle and collected
several datasets, including two large-scale datasets, which we named ZJG-gym and ZJG-
nsh. Three medium-sized datasets, which we name ZJG-lib, YQ-odom, and YQ-map. We
also collected two hand-held datasets of small-scale scenarios on the ground and named
them CSC-build and CSC-road. The specific information of each dataset is in Table 1, which
includes the duration of the dataset, the length of the trajectory, whether they include a
return to the origin, and the difficulty level.

Sensors 2023, 23, 801 11 of 19

Table 1. Dataset detail.

Dataset Duration (s) Length (m) Loop Closure Difficulty Level

HZ-odom 280 2380 No Difficult
HZ-map 367 3068 No Difficult
ZJG-gym 612 2761 Yes Difficult
ZJG-nsh 576 1668 Yes Difficult
ZJG-lib 239 866 Yes Medium

YQ-odom 306 1718 Yes Medium
YQ-map 256 1298 Yes Medium

CSC-road 80 117 Yes Easy
CSC-build 73 86 Yes Easy

3.2. Feature Depth Registration of VIS

In this experiment, we focus on the improvement achieved by including the depth
registration of visual feature points using LiDAR point cloud in our VIS system. Since our
VIS system is adapted from VINS-Mono [6], we mainly compare the results of our VIS
system for depth registration of visual feature points with [6]. During the experiment, our
LIS subsystem only runs the point cloud preprocessing part. It does not use its running
results to add priors to VIS. The block diagram of our VIS in the experiment is shown in
Figure 8.

IMU Input
200HZ

Pre-
integration

Camera
Input
20HZ

Feature
Tracker

Depth
Registration

LiDAR
Input
10HZ

Plane-
featue

Extration

Camera KeyFrame Pose

M
arginalization

Compsent
dedistortion

Point Cloud

PnP Reprojection
Error

k+3 k+2 k+1 k

Visual Landmarks

Sliding window Optimization

Co-visiable Constrain IMU Preintegration Constrain

Figure 8. The block diagram of our VIS experiment.

We conducted experiments on YQ-map ground dataset. In this dataset, the vehicle
runs at a constant speed most of the time; therefore, the IMU is close to degenerating.
Moreover, the vehicle has many 90° turns, which means the visual constraints of the
VIO may easily fail, and this feature can lead to scale drift problems. For fairness of
the experiment, we turned off the loop closure detection thread of VINS-Mono and only
compared the accuracy of the odometry. Furthermore, we set VINS-Mono and our VIS
system to be identical in terms of front-end feature extraction, back-end sliding-window
keyframes, and optimization time. Since the YQ-map dataset returns to the origin, we
use the distance from the endpoint to the start point to judge the accuracy. The result is
shown in Figure 9. Due to the depth registration of visual feature points, we can see that
our system has better scale consistency and higher accuracy than VINS-Mono. This result
is easy to explain: our VIS outperforms VINS-Mono due to the extra scale gained by adding
LiDAR point clouds to the depth registration of visual feature points.

In addition, to test the improvement of the absolute accuracy of VIS by performing
depth registration, we also conduct experiments on large-scale dataset ZJG-gym and use
GPS trajectories as ground truth. The comparison results of our VIS and VINS-Mono are
shown in Figure 10. We can see that our VIS and GPS trajectories are in better alignment.
We use the root mean square error (RMSE) results to measure the result accuracy. The RMSE
of our VIS is 5.03 m, while VINS-Mono is 7.92 m.

Sensors 2023, 23, 801 12 of 19

Figure 9. The result of our VIS and VINS-Mono on YQ-map dataset. It goes back to origin.

(a)

(b)

Figure 10. (a) The trajectory alignment of our VIS and GPS on ZJG-gym dataset. (b) The trajectory
alignment of VINS-Mono and GPS on ZJG-gym dataset. It is clear that our VIS has a better result.

3.3. Ground Constraint of Our LIS

In this experiment, we focus on the improvement by adding ground constraints to
our LIS subsystem. Since our LIS system is adapted from FAST-LIO2 [10], we mainly
compare the results of our LIS system with ground constraints and [10]. Specifically, in the
experiments, we run our LIS alone without VIS’s prediction.

We conducted our experiments on ZJG-lib dataset, which has many horizontal grounds.
Specifically, our LIS system uses the same parameter configuration as FAST-LIO2, including
the point cloud downsampling density, the number of iterative Kalman filtering, etc. Then

Sensors 2023, 23, 801 13 of 19

in the experiment, we focus on the z axis drift. The result is shown in Figure 11. From the
figure, we can see that due to the ground constraints we added, our LIS system has almost
no drift in the height direction, while FAST-LIO2 shows a significant drift in height. This
result is easy to explain. For ZJG-lib dataset, the LiDAR installation location is close to the
ground with a height of 0.8 m. Therefore, the incident angle of the LiDAR scanning distant
ground points is small, which reduces the accuracy of the point cloud scanned by LiDAR
and increases the drift in altitude of FAST-LIO2.

Figure 11. (a) The map result of FAST-LIO2 on ZJG-lib dataset. (b) The map result of our LIS with
ground constraint on ZJG-lib dataset. (c) The path result of FAST-LIO2 and our LIS. It is clear that
due to the ground constraint, our LIS has less drift than FAST-LIO2.

3.4. Pose Graph Optimization of Our System

In this experiment, we focus on the improvement of our entire SLAM system due to
the addition of global pose graph optimization. To demonstrate the cumulative trajectory
drift suppression that occurs when incorporating a GPS, we conducted experiments on
large-scale datasets in the air and on the ground. Specifically, we used multiple large-scale
datasets to examine the improvement of our system by fusing GPS data.

First, we conduct experiments on an aerial dataset with HZ-map dataset, in which
the drone carries equipment to collect data at an altitude of 100 m. Because of the poor
weather conditions when collecting the data, the aircraft in the air is highly unstable, so
this dataset presents a considerable limitation in terms of the accuracy and robustness of
the SLAM system. Here, we compare the localization and mapping of our system with
VINS-Mono and FAST-LIO2 systems, and the results are shown in Figure 12. Since our
system fuses GPS data, there is better consistency in positioning and mapping results in
large-scale scenes. However, due to the turbulence of the drone at a high altitude in this
dataset, VINS-Mono fails and does not provide meaningful results.

In order to better test the accuracy and robustness of our algorithm, we also conducted
experiments on many other datasets and used the GPS trajectory as the ground truth. We
show the root mean square error (RMSE) results in Table 2 and some trajectory results
in Figure 13. The compared algorithms are the separate VIO system VINS-Mono [6],
the separate LIO system FAST-LIO2 [10], and the state-of-the-art LIVO systems R2LIVE [13]
and R3LIVE [28], which are most similar to our system. It is clear that our system achieves
the best accuracy and the most robust performance. Interestingly, after R2LIVE [13] and
R3LIVE [28] are integrated with cameras, some data sequences have a lower precision than
FAST-LIO2 [10]. This is expected because incorporating visual information in situations
that are not conducive to camera work may reduce accuracy. Therefore, visual information
is usually incorporated in LIO systems mainly to increase the robustness of the whole
system. In addition, R2LIVE [13] and R3LIVE [28] failed on both HZ-map and HZ-Odom
datasets, which are run in harsh high-altitude environments. Their two subsystems, VIO
and LIO, are tightly coupled. Once a subsystem state is incorrectly estimated, it will have

Sensors 2023, 23, 801 14 of 19

a devastating impact on the entire system. Because our VIO and LIO subsystems are
loosely coupled, the collapse of one subsystem will not affect the regular operation of the
whole system.

(a) (b) (c)

Figure 12. (a) The image view of our HZ-map dataset. (b) The trajectory of GNSS, FAST-LIO2 and
our system. VINS-Mono failed due to the aggressive motion. (c) The map built by our system aligned
with Google Earth. As a result of the GNSS fusion in our system, we obtain a highly accurate result.

Table 2. RMSE translation error w.r.t GPS.

Algorithm HZ-Map HZ-Odom YQ-Map YQ-Odom ZJG-Gym ZJG-Nsh ZJG-Lib CSC-Road CSC-Build

VINS-Mono [6] Failed Failed 50.23 2.34 7.92 6.38 39.00 0.57 0.66
FAST-LIO2 [10] 15.20 0.96 1.80 1.34 3.30 1.88 3.22 0.35 0.43

R2LIVE [13] Failed Failed 1.70 12.18 3.36 1.95 3.46 0.26 0.37
R3LIVE [28] Failed Failed 1.68 1.37 2.95 2.04 3.78 0.28 0.34

Ours 0.72 0.55 0.75 0.75 2.94 0.97 1.60 0.24 0.29

(a) (b) (c)

Figure 13. (a) The trajectory results on ZJG-nsh dataset. (b) The trajectory results on YQ-map dataset.
(c) The trajectory results on YQ-odom dataset.

3.5. Robustness Evaluation of SLAM System

First, we evaluate the robustness of our system when subject to severe motion. HZ-
map is a dataset of drones flying in the air. During automatic flight, the plane experiences
sudden stops, turns, and other actions. As shown in Figure 14, the plane has a large number
of drastic pitch and yaw angle changes. It can also be seen from the previous experiments
that VINS-Mono, R2LIVE, and R3LIVE all failed. Our VIS subsystem also failed. However,
the other two subsystems still usually work, which showes the excellent robustness of our
system.

Sensors 2023, 23, 801 15 of 19

Figure 14. The Euler Angles of HZ-map dataset, which has an aggressive motion.

Then, we tested the performance of our system when the sensor failed on YQ-map
dataset. As shown in Figure 15a, we selected three locations uniformly throughout the
trajectory and disabled the camera, LiDAR, and GPS to detect the impact on the system.
The experimental results are shown in Figure 15b. When one or two sensors fail, our system
can operate normally and obtain relatively accurate trajectory results. Running only the
VIO system leads to poor trajectory results only when both the GPS and LiDAR fail. This
experiment proves that our system has good robustness.

(a) (b)

Figure 15. (a) Three locations throughout the trajectory to disable the camera, LiDAR, and GPS.
(b) The trajectory result of our system when one or more sensors are closed.

3.6. LiDAR-Vision Fusion Relative Localization

One person was arranged in an open outdoor scene as the target to be located in
the experiment. The person holds RTK, as shown in Figure 7, facing a dynamic target
walking arbitrarily within 10–40 m of the device’s field of view (as shown in Figure 16). We
randomly select some locations as checkpoints and use the laser to measure the distance
between the target and the sensor module to compare with the localization results and
evaluate the relative localization accuracy of the algorithm. The experimental results are
shown in Table 3.

Sensors 2023, 23, 801 16 of 19

(a) (b)

Figure 16. Two test screenshots are shown. (a) The results of image detection and tracking. The target
is marked with a green box, and the point cloud in (b) is also marked with a green box to indicate the
spatial position relative to the perception module.

Table 3. Relative Positioning error.

No. x (m) y (m)
√

x2 + y2 (m) Truth (m) Error (m)

1 15.19 −1.70 15.285 15.30 0.015
2 18.63 −2.43 18.788 19.20 0.412
3 24.76 3.56 25.015 25.0 −0.015
4 25.96 −3.68 26.220 26.30 0.0.8
5 28.82 −9.97 30.496 30.50 0.004
6 35.84 −1.41 35.868 35.90 0.032
7 26.47 4.33 26.821 26.80 −0.021

mean - - - - 0.073

As seen from the results in Table 3, the proposed LiDAR-Camera fusion positioning
method in this paper has high measurement accuracy: the relative positioning error is
provided in centimeters when the target is less than 40 m away from the measurement unit.
As GPS is usually only accurate to the meter level; therefore, it is essential first to ensure
that the relative positioning accuracy is as high as possible to maintain the lowest possible
error when converting the object’s position to the world coordinate system. The following
describes the global positioning experiment for the target.

3.7. SLAM Based Global Localization

We chose to perform this experiment in the air, keeping with the system’s actual
application scenario. Again, we chose people as targets to evaluate our algorithm. As shown
in Figure 17, our UAV flies to a distance of 10 m, 30 m, 60 m, and 90 m from the target for
ground reconnaissance, while on the other hand, the target on the ground carries a GNSS
receiver that moves at least ten meters along a given trajectory. At this point, the UAV is
stationary or follows the target in motion, keeping the target in view. Once the separation
distance exceeds 60 m, it is difficult to observe the target in the image with the naked eye.
Therefore, we retrained the detection model using the Visdrone Dataset [29] and our small
air-to-ground target dataset (Table 4).

Table 4. Comparison of Visdrone and our Dataset.

Image Object Detection Scenario Images Categories Avg. Labels/Categories Resolution (m) Occlusion Labels

Visdrone [29] drone 10209 10 54.2 k 2000 × 1500 X
Ours drone 3625 2 13.1 k 1440 × 1080 X

On the other hand, the laser point cloud at high altitudes would be sparse in terms of
measuring the distance to the target. Therefore we use the local point cloud map provided
by our SLAM system for the calculation instead of the single frame. In addition, our
SLAM system also provides the UAV pose corresponding to the local point cloud, which
can be used to calculate the global positions of the targets. It is worth mentioning that
our framework locates all targets in the field of view in real time. However, to facilitate

Sensors 2023, 23, 801 17 of 19

the evaluation of the results, we only count the localization error of one of the targets
(Figure 18). The RTK conversion on our target path point to the coordinates under the
takeoff point ENU coordinate system is used as ground truth. The distance between the
localization result and its closest ground truth is used as the error to evaluate the algorithm.

Figure 17. Schematic diagram of the aerial reconnaissance experiment. The image on the left is the
actual aerial image (about 30 m apart), the red box is the target’s position, and the image on the right
indicates the relative position relationship between the UAV and the target.

Figure 18. The display image of the tracking effect. (a) shows the real-time tracking result, and after a
target is selected, the target is indicated by a red ball in (b). The green in (b) represents ground truth,
and the white color is the aircraft’s trajectory calculated by our SLAM.

We collected data using a UAV and verified our algorithm offline. The target position
was inferred in 71.5 ms in one round of the experiment.The experimental results are shown
in Table 5. Even at high altitudes where the sensors moved violently, our algorithm tracked
the target stably and maintained high positioning accuracy. Especially at medium and
long distances of 90 m, where the target occupied only a dozen pixel values, our system
maintained an error of about one meter.

Table 5. Global Positioning error.

Distance (m) Amount Min (m) Max (m) Median (m) SD (m) MAE (m)

10 (±1) 268 0.16 1.86 0.63 0.30 0.70
30 (±1) 200 0.26 3.63 0.99 0.54 1.08
60 (±2) 216 0.07 2.19 0.71 0.35 0.74
90 (±3) 158 0.02 3.91 1.09 0.59 1.11

4. Discussion Conclusions

In the case of GPS denial, UAV self-positioning and target detection technology can
play a very influential role in the military and rescue fields that require reconstructing the

Sensors 2023, 23, 801 18 of 19

target area’s ground scene quickly, obtaining the corresponding GPS position, and marking
the category and real-time position of some critical targets.

This paper proposes a robust, versatile self-localization mapping and target-tracking
localization system. Our SLAM system fuses multiple local and global sensors, including
camera, LiDAR, IMU, and GPS, and thus has the advantages of high local accuracy and no
global drift. Our SLAM system consists of three subsystems, VIS, LIS, and GIS. The three
subsystems are tightly coupled, and the subsystems are loosely coupled through infor-
mation sharing. This system architecture not only ensures the system’s accuracy but also
improves the system’s robustness. We built our experimental equipment, collected many
air and ground datasets, and conducted detailed experimental verification and analysis.
The experimental results prove that our SLAM system has higher accuracy and better
robustness than the current SOTA system. We also introduce a LiDAR-Camera Fusion
object tracking and localization algorithm. We first used the retrained YOLOv4 to detect the
target’s position on the image and used LK optical flow and the Kalman filter to track the
targets. We used LiDAR to recover the depth Information of the Target. Our target-tracking
and localization system can effectively detect the target of interest and perform global
localization of the target based on the results of the SLAM system. We conducted extensive
experiments on our collected datasets, and the results show that our system performs the
expected functions well. In the future, we will research real-time online tightly coupled
GPS data and the high-altitude detection of small targets.

Author Contributions: Methodology, C.C. and Y.M.; data curation, L.L.; writing—original draft
preparation, C.C. and Y.M.; writing—review and editing, J.L. and X.Z.; supervision, Y.L.; project
administration, W.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fink, G.; Franke, M.; Lynch, A.F.; Röbenack, K.; Godbolt, B. Visual inertial SLAM: Application to unmanned aerial vehicles.

IFAC-PapersOnLine 2017, 50, 1965–1970. [CrossRef]
2. Tang, J.; Xu, D.; Jia, K.; Zhang, L. Learning parallel dense correspondence from spatio-temporal descriptors for efficient and

robust 4d reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 20–25 June 2021; pp. 6022–6031.

3. Kyriakaki, G.; Doulamis, A.; Doulamis, N.; and Ioannides, M.; Makantasis, K.; Protopapadakis, E.; Hadjiprocopis, A.; Wenzel, K.;
Fritsch, D.; Klein, M.; et al. 4D reconstruction of tangible cultural heritage objects from web-retrieved images. Int. J. Herit. Digit.
Era 2014, 3, 431–451. [CrossRef]

4. Mustafa, A.; Kim, H.; Guillemaut, J.; Hilton, A. Temporally coherent 4d reconstruction of complex dynamic scenes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4660–4669.

5. Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of
the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; Volume 2, p. 6.

6. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

7. Mur-Artal, R.; Tardós, J.D. Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2017, 2, 796–803. [CrossRef]
8. Liu, H.; Chen, M.; Zhang, G.; Bao, H.; Bao, Y. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial

slam. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018, pp. 1974–1982.

9. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping. In Proceedings of the 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, NV,
USA, 24 October 2020–24 January 2021; pp. 5135–5142.

10. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
[CrossRef]

http://doi.org/10.1016/j.ifacol.2017.08.162
http://dx.doi.org/10.1260/2047-4970.3.2.431
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/LRA.2017.2653359
http://dx.doi.org/10.1109/TRO.2022.3141876

Sensors 2023, 23, 801 19 of 19

11. Li, K.; Li, M.; Hanebeck, U.D. Towards high-performance solid-state-lidar-inertial odometry and mapping. IEEE Robot. Autom.
Lett. 2021, 6, 5167–5174. [CrossRef]

12. Shan, T.; Englot, B.; Ratti, C.; Rus, D. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In
Proceedings of the 2021 IEEE international conference on robotics and automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 5692–5698.

13. Lin, J.; Zheng, C.; Xu, W.; Zhang, F. R2LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and
Mapping. IEEE Robot. Autom. Lett. 2021, 6, 7469–7476. [CrossRef]

14. Zuo, X.; Geneva, P.; Lee, W.; Liu, Y.; Huang, G. Lic-fusion: Lidar-inertial-camera odometry. In Proceedings of the 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021;
pp. 5848–5854.

15. Qin, T.; Cao, S.; Pan, J.; Shen, S. A general optimization-based framework for global pose estimation with multiple sensors. arXiv
2019, arXiv:1901.03642.

16. Ahmed, H.; Ullah, I.; Khan, U.; Qureshi, M.B.; Manzoor, S.; Muhammad, N.; Shahid Khan, M.U.; Nawaz, R. Adaptive filtering on
GPS-aided MEMS-IMU for optimal estimation of ground vehicle trajectory. Sensors 2019, 19, 5357. [CrossRef] [PubMed]

17. Nazarahari, M.; Rouhani, H. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units:
Methods, lessons learned, and future challenges. Inf. Fusion 2021, 68, 67–84. [CrossRef]

18. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
19. Garcia-Pulido, J.A.; Pajares, G.; Dormido, S.; de la Cruz, J.M. Recognition of a landing platform for unmanned aerial vehicles by

using computer vision-based techniques. Expert Syst. Appl. 2017, 76, 152–165. [CrossRef]
20. Krishna, N.M.; Reddy, R.Y.; Reddy, M.S.C.; Madhav, K.P.; Sudham, G. Object Detection and Tracking Using Yolo. In Proceedings

of the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4
September 2021; pp. 1–7.

21. Shi, Y.; Qayyum, S.; Memon, S.A.; Khan, U.; Imtiaz, J.; Ullah, I.; Dancey, D.; Nawaz, R. A modified Bayesian framework for
multi-sensor target tracking with out-of-sequence-measurements. Sensors 2020, 20, 3821. [CrossRef] [PubMed]

22. Gong, Z.; Lin, H.; Zhang, D.; Luo, Z.; Zelek, J.; Chen, Y.; Nurunnabi, A.; Wang, C.; Li, J. A Frustum-based probabilistic framework
for 3D object detection by fusion of LiDAR and camera data. ISPRS J. Photogramm. Remote Sens. 2020, 159, 90–100. [CrossRef]

23. Shi, J.; et al. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 21–23 June 1994; pp. 593–600.

24. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision; Morgan Kaufmann Publishers
Inc.: San Francisco, CA, USA, 1981; Volume 81.

25. Havlík, J.; Straka, O. Performance evaluation of iterated extended Kalman filter with variable step-length. J. Phys. Conf. Ser. 2015,
659, 012022. [CrossRef]

26. Ahmadi, M.; Khayatian, A.; Karimaghaee, P. Orientation estimation by error-state extended Kalman filter in quaternion vector
space. In Proceedings of the SICE Annual Conference 2007, Takamatsu, Japan, 17–20 September 2007; pp. 60–67.

27. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the
Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

28. Lin, J.; Zhang, F. R 3 LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and
mapping package. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA,
USA, 23–27 May 2022; pp. 10672–10678.

29. Zhu, P.; Wen, L.; Du, D.; Bian, X.; Fan, H.; Hu, Q.; Ling, H. Detection and Tracking Meet Drones Challenge. IEEE Trans. Pattern
Anal. Mach. Intell. 2021. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2021.3070251
http://dx.doi.org/10.1109/LRA.2021.3095515
http://dx.doi.org/10.3390/s19245357
http://www.ncbi.nlm.nih.gov/pubmed/31817333
http://dx.doi.org/10.1016/j.inffus.2020.10.018
http://dx.doi.org/10.1016/j.eswa.2017.01.017
http://dx.doi.org/10.3390/s20143821
http://www.ncbi.nlm.nih.gov/pubmed/32659882
http://dx.doi.org/10.1016/j.isprsjprs.2019.10.015
http://dx.doi.org/10.1088/1742-6596/659/1/012022
http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.1109/TPAMI.2021.3119563
http://www.ncbi.nlm.nih.gov/pubmed/34648430

	Introduction
	Method
	The Overview of Our System
	Visual Inertial Subsystem
	LiDAR Inertial Subsystem
	GPS Inertial Subsystem
	Pose Graph Optimization
	Targets Detection and Tracking
	L-K Optical Flow
	Kalman Filter Update Objective
	LiDAR Vision Fusion Targeting

	Physical Experiment Analysis
	Hardware and Dataset of Our System
	Feature Depth Registration of VIS
	Ground Constraint of Our LIS
	Pose Graph Optimization of Our System
	Robustness Evaluation of SLAM System
	LiDAR-Vision Fusion Relative Localization
	SLAM Based Global Localization

	Discussion Conclusions
	References

