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Naturalistic E-Scooter Maneuver Recognition with Federated
Contrastive Rider Interaction Learning
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Smart micromobility, particularly the electric (e)-scooters, has emerged as an important ubiquitous mobility option that
has proliferated within and across many cities in North America and Europe. Due to the fast speed (say, ∼15km/h) and
ease of maneuvering, understanding how the micromobility rider interacts with the scooter becomes essential for the e-
scooter manufacturers, e-scooter sharing operators, and rider communities in promoting riding safety and relevant policy or
regulations.

In this paper, we propose FCRIL, a novel Federated maneuver identification and Contrastive e-scooter Rider Interaction
Learning system. FCRIL aims at: (i) understanding, learning, and identifying the e-scooter rider interaction behaviors during
naturalistic riding (NR) experience (without constraints on the data collection settings); and (ii) providing a novel federated
maneuver learning model training and contrastive identification design for our proposed rider interaction learning (RIL).
Towards the prototype and case studies of FCRIL, we have harvested an NR behavior dataset based on the inertial measurement
units (IMUs), e.g., accelerometer and gyroscope, from the ubiquitous smartphones/embedded IoT devices attached to the
e-scooters. Based on the harvested IMU sensor data, we have conducted extensive data analytics to derive the relevant
rider maneuver patterns, including time series, spectrogram, and other statistical features, for the RIL model designs. We
have designed a contrastive RIL network which takes in these maneuver features with class-to-class differentiation for
comprehensive RIL and enhanced identification accuracy. Furthermore, to enhance the dynamic model training efficiency
and coping with the emerging micromobility rider data privacy concerns, we have designed a novel asynchronous federated
maneuver learning module, which asynchronously takes in multiple sets of model gradients (e.g., based on the IMU data
from the riders’ smartphones) for dynamic RIL model training and communication overhead reduction. We have conducted
extensive experimental studies with different smartphone models and stand-alone IMU sensors on the e-scooters. Our
experimental results have demonstrated the accuracy and effectiveness of FCRIL in learning and recognizing the e-scooter
rider maneuvers.
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1 INTRODUCTION
Thanks to the recent progress in the internet of things (IoT), electric motors, and batteries, as well as the growing
needs for a clean mobility platform in response to climate changes [36], smart micromobility systems, represented
by electric (e)-scooter, has become an increasingly popular means of the first-/last-mile commutes as well as
recreational travel for a growing number of smart cities. According to the market survey, the global electric
scooters’ market size, estimated at USD $20.78 billion in 2021, is expected to expand at a compound annual
growth rate (CAGR) of 7.8% from 2022 to 2030 [2]. In addition, there is a rising trend in promoting and expanding
the dockless e-scooter sharing in many metropolitan cities in North America and Europe [4]. For example, the
New York City (NYC) Department of Transportation in the U.S. will double their dockless e-scooter sharing fleet
from 3,000 to 6,000 scooters in 2022 [5].

As a growing fleet of e-scooters (private-owned or shared) is expanding within and across cities, the accompany-
ing concerns and pressing needs from the e-scooter manufacturers (such as Razor, Segway, and SuperPedestrian)
as well as the dockless e-scooter sharing service operators (for instance, Bird and Lime) lie in understanding,
learning, and recognizing the e-scooter riders’ maneuver behaviors (e.g., left turn, right turn, and acceleration). We
term this problem as the rider interaction learning (RIL) in this study. According to the U.S. Consumer Product
Safety Commission (CSC) report [13], the number of accidents related to the e-scooters and other micromobility
platforms has increased by 70% during 2017–2020, i.e., from 34,000 to 57,800 cases, due to various mechanical,
electrical, and human factors. In the face of this challenge, accurate and effective RIL designs can benefit the
above-mentioned major e-scooter manufacturers and sharing service operators in: (i) developing safety measures
and improving interaction designs upon the manufactured and deployed scooters (e.g., handlebars, brake han-
dles, and electric motor designs); (ii) reducing conflicts and collision risks in the urban roads (with motorized
vehicles), sidewalks (with pedestrians), and bike/scooters lanes (with pedaled bikes and other scooters); and (iii)
understanding the potentially aggressive maneuvers and promoting safe riding conducts or policies within and
across the rider communities (as illustrated in Fig. 1).
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Fig. 1. Motivations of the e-scooter rider interaction learning (RIL) and its potential ubiquitous computing applications.

Motivated by the above needs, we will conduct a novel pilot study that focuses on the inertial measurement
units (IMUs), e.g., accelerometers and gyroscopes, that are ubiquitously available in existing smartphones and
embedded/IoT devices (such as an embedded/stand-alone IMU sensor, or wearable devices like smartwatches).
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Compared with the Global Position System (GPS) [12] and camera-based approaches [41], our prototype studies
focus on the IMU sensors that can provide more ubiquitous and less privacy-intrusive understandings of the
scooter riding behaviors under complex urban environments (for instance, GPS signals may be blocked or
weakened by the city buildings and other built urban infrastructures, and the camera-based approaches may
be prone to low-light situations). Since many e-scooters are emerging as highly-integrated and smart personal
mobility systems (PMSs) with a myriad of on-board sensors, communication, and computing capabilities available,
our pilot studies here will pave new directions for the e-scooter (and other micromobility systems) manufacturers
and sharing system operators to re-imagine the interaction designs of e-scooters and promote safer, more
convenient, and more entertaining riding experience. In fact, many e-scooter manufacturers and sharing service
operators have started to consider expanding the sensing, computing, and communication capabilities of the
e-scooters for enhanced riding experience, promoted rider safety, and better fleet management [1, 3].

Towards a ubiquitous riding behavioral analysis and RIL system, this prototype study aims at understanding
and addressing the following two important technical challenges:
(1) Complex rider maneuvers during naturalistic riding experience and interactions with the neigh-

boring environments: Our studies focus on the settings of naturalistic riding (NR), i.e., deriving insights
from the e-scooter rider behaviors during everyday trips by recording mobility patterns of the rider and
the e-scooter without experimental control. The goal of such an NR design is to gain insights into how the
e-scooter maneuver behaviors during commutes and recreational rides can be reflected by learning the
IMU sensor time series. The collected NR data that are closely related to the real-world riding conditions
will help shed light upon the e-scooter rider behaviors in response to the complex urban environments.
However, based on our extensive data analytics, we have observed from the NR data that the complex
rider maneuvers under various road conditions, spatio-temporal contexts, and sensor settings may lead to
complex rider maneuver and behavior patterns, degrading the performance of conventional data processing
and feature learning. How to enable a pervasive and adaptive RIL model design is essential for identifying
the rider maneuvers during the NR studies.

(2) Absence of decentralized and efficient RIL designs for emerging smart e-scooter designs: While
e-scooter rider NR data collection may meet the practical needs of effective RIL from the e-scooter manu-
facturers, sharing service operators, and rider communities, another concern arises regarding how we can
provide data privacy-preserving designs, particularly for RIL. There remains an important industrial need
as well as research gap on the federated maneuver learning for the emerging smart e-scooter rider data
collection and RIL process, and how the inclusion of such a mechanism will impact and interact with the
RIL remains largely unexplored. Realizing a federated maneuver learning will meet the demands of many
micromobility manufacturers and shared service operators who would like to gain a more comprehensive
understanding of the riders’ behaviors. These stakeholders can further enhance the micromobility vehicle
(i.e., e-scooters) safety designs and enforce potential precautionary methods (i.e., risk alarming) to the
riders. However, the related sensitive interaction and mobility data should be kept locally on the client side.
Furthermore, due to the highly dynamic maneuverability and mobility of the e-scooters and their riders in
complex urban environments with dynamic wireless communication connectivities, how to realize the
scalable and efficient RIL, particularly when the synchronized RIL model training may not be available, is
worth further exploration.

To overcome the above challenges, we propose and pilot FCRIL, a novel Federated maneuver identification
system with Contrastive e-scooter Rider Interaction Learning. To achieve FCRIL, we have made the following
three important technical contributions:
(1) E-Scooter Rider Maneuver Interaction Identification with Contrastive Learning: Towards piloting

this system, we have conducted extensive real-world NR data collection for rider maneuver records (such
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as left/right turn, acceleration/deceleration) during commutes and recreational rides on our university
campus, and derived the model designs for RIL studies. To handle the complex rider maneuvers, we
have derived multiple important rider maneuver feature designs based on the harvested IMU sensor data,
including the time series, spectrogram, and other statistical features, to comprehensively characterize the
rider interactions when maneuvering the e-scooter. To further differentiate different rider maneuvers for
enhanced identification accuracy, we have designed a rider interaction embedding learning (RIEL) module
based on a supervised contrastive loss function. Specifically, based on supervised contrastive learning,
for each rider maneuver class (e.g., left or right turns), the RIEL module forms the distinguishable rider
interaction embeddings, i.e., the encoded features of the rider interactions and behaviors, by differentiating
them against the other rider maneuver classes to derive the essential RIL features. We further feed the
differentiated rider interaction embeddings to the rider interaction learning and maneuver recognition
(RILMR) module, wherewe have designed the residual layers to yield accurate and generalizable identification
results.

(2) Asynchronous Federated Rider Maneuver Learning: Towards efficient RIL model training with
privacy-preserving implications, we have further designed a scalable asynchronous federated maneuver
learning (AFML) mechanism for FCRIL. Specifically, our AFML mechanism will make use of the computing
capability that is emerging on smart e-scooters (with smartphones or other on-board computing devices),
by distributing the FCRIL training process across them [3]. Our AFML can provide an asynchronous and
decentralized RIL model training mechanism. This way, the RIL training process does not need to be
simultaneous among the smart e-scooters (say, in the e-scooter sharing service systems), enhancing the
scalability of the FCRIL system (e.g., with about 38% faster convergence than the existing synchronized
federated learning designs [34]). This way, our RIL model’s performance will be more robust towards the
varying mobility, computing constraints, and communication delay of the smart e-scooters in the complex
urban environments.

(3) Extensive E-Scooter Naturalistic Riding Data Analytics and Experimental Studies:We have con-
ducted extensive experimental studies with FCRIL based on a total of 2,800 rider maneuver records collected
with the commercial off-the-shelf e-scooters, four different models of smartphones (iPhone 13 Pro, iPhone
13 Mini, iPhone 12 Mini, and iPhone 7 Plus), and stand-alone IMU sensors (installed on the e-scooters),
with various real-world case studies (e.g., road conditions, sensor placement positions, model sensitivity
studies, and convergence analysis) and performance evaluations. With the NR data collected from our
campus (the college town environment at the University of Connecticut), our experimental studies have
corroborated the effectiveness and accuracy (10.95% accuracy improvements on average compared with
the baseline approaches) of FCRIL in identifying the rider maneuvers from the NR data, with important
efficiency improvement and privacy-preserving implications.

Contributions to UbiComp: Our model designs, system prototyping, and experiment insights will benefit
the UbiComp communities in the following two perspectives: (1) understanding the e-scooter rider interactions
in the naturalistic riding (e.g., commutes and recreational rides) using ubiquitous IMU sensors; and (2) enhancing
privacy-preserving mobility data collection designs for ubiquitous interaction learning. Our RIL framework
can serve as an important building block to enable other important riding safety and experience enhancement
measures for the micromobility vehicle designs (e.g., improving human-scooter interactions through redesign of
handlebars and brake handles). Furthermore, FCRIL will help enable privacy-preserving model training for the
individual riders and enhance the deployability of RIL in the real-world scenarios (such as the e-scooter sharing
services).
To the best of our knowledge, this is the first work on analyzing, learning, and understanding the e-scooter

rider interactions and maneuver behaviors in the NR settings, with efficiency and data privacy preserving
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implications. Despite our current focus on RIL with the IMU sensors, our model insights and system prototype
can be beneficial for and extensible to other mobility system interaction designs (such as bike riders [26] and
motorized vehicle drivers [43, 44]) and other sensing modalities (e.g., integrating with GPS and other wireless
sensing techniques [26]) to advance understandings of the rider maneuvers and enable the advancedmicromobility
rider assistance systems.
The rest of the paper is organized as follows. We first review the related work in Sec. 2. Then, we overview

our system framework, data analysis, and problem formulation in Sec. 3. Afterwards, we present the details of
our core model designs towards contrastive rider interaction learning with maneuver recognition in Sec. 4. We
present our experimental studies and provide deployment discussion in Secs. 5 and 6, respectively. We finally
conclude in Sec. 7.

2 RELATED WORK
We briefly go through the related work in the following two categories.
• Ubiquitous Computing for Micromobility: Thanks to the advances of IoTs and ubiquitous computing,

how to characterize and learn the interactions of the human riders with the smart micromobility vehicles (e.g.,
e-scooters) starts to gain more attention due to the riding safety concerns [10] and operation planning [19] needs.
Towards understanding the macroscopic interactions, He et al. [20] investigated the e-scooter rider interactions
with the urban environments, such as the points-of-interest. He et al. [19] studied the e-scooter rider mobility
interactions with the dynamically reconfigured distributions. To further capture the spatio-temporal interaction
patterns, Merlin et al. [35] proposed a segment-level origin-destination demand prediction for the e-scooter
sharing service, and Xu et al. [52] introduced a framework for real-time prediction of e-scooter demands. Further
microscopic interactions of the micromobility riders and the pedestrians have been studied in [6]. Jin et al. designed
a smartphone-based assistive tool to enhance cyclist safety based on acoustic ranging [26]. Ling et al. studied the
cyclist behaviors at the signalized intersections [32]. Ding et al. [14] studied geo-referenced egocentric video
data harvested from the handlebar cameras of cyclists to learn and capture cyclists’ behaviors.

Despite the aforementioned micromobility studies, how the riders interact with the scooters and how to identify
the complex interactions from the rider maneuver behavior sensing data remains largely unexplored. Our pilot
studies with the proposed FCRIL fill the important gap, and provide a novel rider interaction learning (RIL) system
design with the novel contrastive recognition [47] and scalable federated maneuver learning mechanisms. We note
that our work focuses on microscopic rider interaction learning and maneuver identification, which is orthogonal
to the transportation mode detection approaches that leverage conventional machine learning [25, 55] and deep
learning [24, 51] techniques to detect the metro/bus/car/bike use. However, with the increasing popularity of
e-scooter in urban mobility networks, our work can be further integrated with the transportation mode detection
frameworks [24, 31, 46, 51, 55], expanding the sensing capability of the mobile apps for recommending mobility
options.
• Federated Learning for Human Activity Recognition:With the proliferation of mobile sensors and IoTs,

federated learning [29, 38, 53] has emerged as an important machine learning training mechanism that enables
model training while keeping the sensor data close to each of the individual users, thus ensuring that the data
for training and inference does not leave the client’s (user’s) own device (e.g., their smartphones). This design
benefits privacy preservation and helps reduce communication overhead when training and applying the human
activity recognition model [42]. Ouyang et al. [38] studied a similarity-aware federated learning system that can
provide high model accuracy and low communication overhead for human activity recognition applications.
Tu et al. [48] proposed a dynamic layer-sharing scheme that learns the behavioral similarity among clients’
model weights to form the sharing structure and merges their models accordingly in an iterative, bottom-up, and
layer-wise manner.
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Fig. 2. Overview of FCRIL framework: (1) Data Processing; (2) Feature Extraction; and (3) Rider Interaction Learning.

In addition to expanding the human activity recognition, how to further enhance the scalability and efficiency
of federated learning is attracting much attention recently. Lee et al. [28] improved the ring-based federated
learning method to reduce its high variance and increase its scalability. Reisizadeh et al. [40] introduced a
federated averaging method that only periodically averages on the server side to improve the scalability of their
algorithm.
While various federated learning aggregation algorithms have been studied in the context of human activity

recognition, how the federated learning mechanism impacts or scalably interacts with the e-scooter rider
interaction learning (RIL), particularly under highly mobile, dynamic, and urban naturalistic riding settings,
remains largely unexplored. Our studies here on RIL fill these essential research gaps, and will benefit the smart
e-scooter manufacturers and sharing service operators in designing their future NR data collection and RILmodel
training mechanisms.

3 SYSTEM OVERVIEW, DATA ANALYSIS, AND PROBLEM FORMULATION
We first overview the system framework in Sec. 3.1. Then we show the dataset preparation and problem definition
of RIL in Sec. 3.2.

3.1 System Overview
Fig. 2 provides the overview of the information flow of our FCRIL framework, which consists of the following
three major phases:

(1) Data Preprocessing: As discussed in Sec. 1, our FCRIL study focuses on the rider behavior data generated
from the IMUs to perform RIL, i.e., accelerometer (denoted by a) and gyroscope (denoted by g) in our prototype
studies. In this prototype study, we focus on two typical IMU data collection cases: (a) using the IMU of the
rider’s smartphone attached to the e-scooter handlebar, and (b) using a stand-alone IMU sensor node that can be
attached or installed on the e-scooter (e.g., emulating the rider maneuver analysis with the smart PMSs).

We note that the data generated by the accelerometer and gyroscope are time series or sequence values along
the ¤𝑥 , ¤𝑦, and ¤𝑧 axes. We respectively denote them by a ¤𝑥 , a ¤𝑦 , a ¤𝑧 , g ¤𝑥 , g ¤𝑦 , and g ¤𝑧 , where { ¤𝑥, ¤𝑦, ¤𝑧} represent the sensing
device’s coordinate system. To ensure consistency in the model training, we align the coordinate system of the
smartphone or the stand-alone IMU sensor, { ¤𝑥, ¤𝑦, ¤𝑧}, to that of the e-scooter, denoted as {𝑥,𝑦, 𝑧}. We perform the
coordinate alignment by calculating the rotation matrices using the magnetometer readings of the smartphone or
the stand-alone IMU sensor.
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Furthermore, since the generated data by the sensors can be very noisy while the rider maneuvers the e-scooter,
we filter the IMU time series data based on the moving average method. Then, we segment the data using the
sliding window (e.g., 10s in our study) and label each segment with the corresponding rider maneuver class based
on the ground-truth information provided in the recorded video frames and GPS coordinates (for the purpose
of our prototype studies only). We note that these more privacy-sensitive videos/GPS trajectories will not be
collected (or will be regulated [50]) in the real-world e-scooter deployment, and our prototype core model designs
do not take them into account. Finally, we normalize the values of each segment and pad them with zero values
to generate equal-length segments for later feature extraction.

(2) Feature Extraction: After the data preprocessing stage, we take into account and extract a total of three
sets of features as follows to serve as the inputs to our model (detailed in Sec. 3.2), i.e., time series features, denoted
as T, of the maneuvers, the spectrogram features, denoted as D, based on the discrete wavelet transform (DWT)
function [21] on T, and the other statistical features, denoted as S, that are retrieved from T.

SmartphonesSmartphone

IMU SensorIMU Sensor

(a) Sensor Placement (b) Data Collection

E-Scooter

Fig. 3. Our e-scooter setup and data collection
for FCRIL prototype development.

(3) E-Scooter Rider Interaction Learning and Maneuver
Recognition: Given the extracted features from (2), the inputs to
our FCRIL, i.e., {T,D, S}, are first processed by the Rider Interaction
Embedding Learning (RIEL) module in Sec. 4.2 based on a novel
supervised contrastive learning loss function [27] to generate more
distinguishable maneuver embeddings. Then, FCRIL feeds the re-
sulting embeddings to the Rider Interaction Learning and Maneuver
Recognition (RILMR) module in Sec. 4.3 to further generate the prob-
ability scores of each rider maneuver class for RIL. Furthermore,
we have designed a scalable Asynchronous Federated Maneuver
Learning (AFML) algorithm to handle dynamic rider mobility data
collection in the complex urban environments (Sec. 4.4).

3.2 RIL Data Preparation and Problem Definition
Data Collection: We illustrate our data collection setup in Fig. 3(a) and (b). In this prototype study, we mounted
and tested four different kinds of smartphones, i.e., iPhone 13 mini, iPhone 13 Pro, iPhone 12 mini, and iPhone
7 Plus, on the e-scooter’s handles to harvest the smartphone IMU data (sampling rate: 40Hz) during daily
commutes/recreational rides (to record the naturalistic riding experience) on our university campus.We also attach
and install a stand-alone or embedded TDK MPU9250 IMU sensor on the e-scooter to harvest the accelerometer
and gyroscope readings, as illustrated in Fig. 3(a). We have also harvested the video frames using the smartphone
rear-facing cameras as well as smartphone GPS traces for our NR status reviews and rider maneuver ground-truth
labeling purposes only (see Figs. 4(a) and (d)). We have followed the local regulations and riding ethics (e.g.,
wearing a scooter helmet, avoiding rush hours with pedestrian crowds) during the e-scooter riding and the data
collection.
Given the harvested IMU and other sensor data, we have labeled a total of 7 different rider maneuvers: short

left turn (SLT), short right turn (SRT), long left turn (LLT), long right turn (LRT), straight (S) ride, acceleration
(AC), and deceleration (DC). We have performed the data augmentation and obtained a total of 2,800 records of
e-scooter rider maneuvers (400 maneuver records per class), out of which 2,380 are from the smartphones’ IMUs,
and 420 are from the stand-alone IMU sensor installed on the e-scooters.

Data Preprocessing: For ease of our experimental studies and model designs, we align the coordinate system
of the smartphones/sensor devices to that of the e-scooter. Let { ¤𝑥, ¤𝑦, ¤𝑧} and {𝑥,𝑦, 𝑧} be the coordinate system of
the IMU device (e.g., the smartphone) and the e-scooter, respectively. Furthermore, we let 𝛽 ¤𝑥 , 𝛽 ¤𝑦 , and 𝛽 ¤𝑧 be the
rotation angles of the smartphone/IMU device along each of 𝑥 , 𝑦, and 𝑧 axes of the e-scooter coordinate system.
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We first calculate the rotation matrices E ¤𝑥 , E ¤𝑦 , and E ¤𝑧 as shown in Eq. (2). Then, to perform coordinate
alignment, we multiply each of the IMU sensor readings with the rotation matrix that is given by

E = E ¤𝑧 · E ¤𝑦 · E ¤𝑥 , (1)

where

E ¤𝑥 =


cos(𝛽 ¤𝑥 ) − sin(𝛽 ¤𝑥 ) 0
sin(𝛽 ¤𝑥 ) cos(𝛽 ¤𝑥 ) 0)

0 0 1

 , E ¤𝑦 =


cos(𝛽 ¤𝑦) 0 sin(𝛽 ¤𝑦)

0 1 0
− sin(𝛽 ¤𝑦) 0 cos(𝛽 ¤𝑦)

 , and E ¤𝑧 =

1 0 0
0 cos(𝛽 ¤𝑧) − sin(𝛽 ¤𝑧)
0 sin(𝛽 ¤𝑧) cos(𝛽 ¤𝑧)

 , (2)

to convert them into the readings in the e-scooter coordinate system.
Afterwards, we filter the data using the moving average method to remove the noise caused by the imprecision

of the IMU sensors and those due to the complex road conditions. Next, we apply a sliding window of size𝑊 to
divide each trip into multiple segments. Then, we use the ground-truth maneuver information (e.g., the recorded
video frames) to label each trip segment with a rider maneuver class (e.g., right turn). Finally, we perform min-max
normalization to convert the sensor values into [-1,1] range, and pad each segment with zero values to ensure
equal-length segments for ease of RIL model learning. We note that the padded zeros do not affect the prediction
results (similar to other machine learning tasks), and the IMU sensors generally do not generate long sequences
of zeros in practice.

Feature Extraction & Visualization: After the preprocessing (including the coordinate alignment) stage, we
further derive the following three different RIL features to handle the maneuver recognition.
(1) Time Series Features: We first input the 𝑖-th segment in the dataset as the time series features for a rider

maneuver 𝑖 . We denote the total set of the time series features as T = {t1, . . . , t𝑁 }, t𝑖 ∈ R𝑊 ×6, where𝑊 is the
length of the time series, 𝑁 is the total number of the rider maneuvers, and we have a total of six axes from
the accelerometer and gyroscope sensors, i.e., a𝑥 , a𝑦 , a𝑧 , g𝑥 , g𝑦 , and g𝑧 ∈ R𝑊 . We illustrate examples of the
time series features of different maneuver classes for the gyroscope sensor along the z-axis, g𝑧 , as illustrated
in Fig. 4(b). Furthermore, Figs. 4(a) and (d) show the GPS traces of the maneuvers and frames of the recorded
ground-truth videos, which we use solely for the rider maneuver labeling process.

(2) Spectrogram Features: Time series features directly derived from the IMU sensors do not necessarily provide
satisfactory patterns for differentiating and recognizing e-scooter maneuvers. Therefore, we further derive the
spectrogram features of the 𝑖-th maneuver, d𝑖 , by applying the discrete wavelet transform (DWT) based on the
Symlet wavelet function [16] upon the harvested time series features of the 𝑖-th maneuver, t𝑖 . Specifically, we
apply the Symlet wavelet function [16] on each of the 6 axes of the accelerometer and gyroscope sensors separately
in the time series features, t𝑖 , and stack the results to get the spectrogram features d𝑖 ∈ R𝑊 ×6.

From the illustration of Fig. 4(c), we can observe more complex patterns within the rider maneuvers have been
captured. For instance, we can observe that the spectrogram features of the long left turn (LLT) and short left
turn (SLT) demonstrate more dissimilarities from accelerometer and gyroscope aspects, and therefore help to
differentiate the two rider maneuver classes for enhanced identification accuracy. We note that the advantage of
using DWT over other wavelet function transforms lies in its joint consideration of both frequency and time
domain information, thus yielding accurate RIL results for FCRIL. We denote the total set of the spectrogram
features by D = {d1, . . . , d𝑁 }, d𝑖 ∈ R𝑊 ×6.
(3) Statistical Features: To generate the statistical features of the 𝑖-th maneuver, s𝑖 , we apply 𝑟 statistical

functions on each of the 6 axes of the accelerometer and gyroscope sensors to produce 𝑟 × 6 features. We denote
the set of the statistical features by S = {s1, . . . , s𝑁 }, s𝑖 ∈ R𝑟×6. In our prototype studies, we take into account
𝑟 = 3 statistical functions, i.e., minimum, maximum, and average of each of the 6 sensor axes in time series
features, t𝑖 . Therefore, we obtain the statistical features of 𝑖-th rider maneuver as a 3 × 6 = 18 dimensional vector,
i.e., s𝑖 ∈ R18.
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Fig. 4. Visualizations of the rider’s (a) GPS trajectories; (b) time series; (c) spectrogram; and (d) ground-truth videos.

Problem Definition of FCRIL: Given the time series features, denoted as T, spectrogram features, denoted as
D, and statistical features, denoted as S, of the rider maneuver interactions, the problem of FCRIL is to learn a
function that maps the input rider maneuver features towards the corresponding rider maneuver class.

4 CONTRASTIVE RIDER INTERACTION LEARNING WITH MANEUVER RECOGNITION
We first overview the core model designs in Sec. 4.1. Then we detail the module designs of the rider interaction
embedding learning in Sec. 4.2, and the rider interaction learning and maneuver recognition in Sec. 4.3. We
further present the asynchronous federated learning designs in Sec. 4.4.

4.1 Core Model Overview
We overview the core model architecture of FCRIL in Fig. 5, which consists of the following three important
modules.
(i) Rider Interaction Embedding Learning (RIEL): We first train the Rider Interaction Embedding Learning

(RIEL in Sec. 4.2) module based on a novel supervised contrastive loss function design. Specifically, given the
time series features t𝑖 , spectrogram features d𝑖 , and statistical features, s𝑖 of the 𝑖-th e-scooter rider maneuver
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Fig. 5. Overall network structure of FCRIL for our RIL, which consists of RIEL and RILMR.

record, RIEL first extracts temporal features from t𝑖 with an attention-based long short-term memory (LSTM)
mechanism [33], and produces the embeddingsm𝑡

𝑖 . RIEL also extracts more complex patterns from d𝑖 based on the
2D convolutional neural networks (Conv2Ds) and generates the embeddings m𝑑

𝑖 . In the meantime, RIEL processes
the statistical features based on the 1D convolutional neural networks (Conv1Ds) and outputs the embeddings
m𝑠

𝑖 . We consider the concatenation of all the embeddings m𝑖 = {m𝑡
𝑖 , m

𝑑
𝑖 , m

𝑠
𝑖 } as the final embedding of the 𝑖-th

e-scooter rider maneuver record.
(ii) Rider Interaction Learning and Maneuver Recognition (RILMR): Given the differentiated embeddings from the

RIEL module, we further classify the rider maneuvers based on the Rider Interaction Learning and Maneuver
Recognition (RILMR in Sec. 4.3) module. To ensure the modules of RIEL and RILMR do not interfere with each
other due to their different optimization settings during the training process, we train RIEL and RILMR in a
sequential manner. In other words, we first train RIEL, and then freeze its weight parameters to further refine
RILMR. RILMR further processes the output embeddings of the RIEL and generates the class probabilities for each
rider maneuver class with the Softmax function based on the cross-entropy loss function.
(iii) Asynchronous Federated Maneuver Learning (AFML): To take advantage of the computation power of the

edge on-board devices, we train FCRIL based on our proposed Asynchronous Federated Maneuver Learning (AFML
in Sec. 4.4) algorithm, where each rider’s mobile device (e.g., a smartphone or an on-board computer attached
with an e-scooter) is not required to perform the training in a synchronized procedure along with the other
e-scooter riders, thus increasing the overall scalability of the FCRIL framework in complex urban environments.

4.2 Rider Interaction Embedding Learning (RIEL)
Design Motivations: The goal of the RIEL module is to encode, generate, and associate the rider interaction
embeddings, i.e., the encoded features of rider maneuvers, for different rider maneuver classes (e.g., the left/right
turns) in order to enhance differentiation and identification accuracy. Specifically, based on the input features of
the rider behavior data (e.g., time series, spectrogram, and statistical features in our studies), we have designed
within RIEL a supervised contrastive learning loss function to produce the maneuver embeddings and encode the
features. In RIEL, our supervised contrastive learning ensures that the resulting embeddings of the same rider
maneuver class are close together within the rider interaction embedding space, while they are distant from those
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of other classes. This optimization property of our supervised contrastive loss designs is crucial for realizing
accurate RIL as traditional embedding learning methods [17, 27] may not effectively capture and generate the
embeddings to maintain accurate identification results given the complex and noisy NR data.
Contrastive Learning Feature Processing Designs: Given the time series, spectrogram, and statistical

features of the 𝑖-th e-scooter rider maneuver record, i.e., t𝑖 , d𝑖 , and s𝑖 , RIEL generates the embedding of the 𝑖-th
e-scooter rider maneuver, m𝑖 = {m𝑡

𝑖 ,m
𝑑
𝑖 ,m

𝑠
𝑖 }, via the following three steps.

(1) Time Series Features T. RIEL processes the time series features t𝑖 ∈ R𝑊 ×6 with𝑏1 consecutive long short-term
memory (LSTM) layers with 𝑙1 units to capture the temporal dependencies, i.e.,

H𝑡
𝑖 ,C

𝑡
𝑖 = LSTM𝑏1

(
LSTM𝑏1−1 (. . . (LSTM1 (t𝑖 )))

)
, (3)

and produces the hidden states, denoted as H𝑡
𝑖 ∈ R𝑊 ×𝑙1 , as well as the cell states, denoted as C𝑡

𝑖 ∈ R𝑙1 , that encode
the long-term memory information, and𝑊 is the length of the input time series. Then, with a trainable weight
matrix Q ∈ R𝑙1×𝑙1 , RIEL learns the similarity of the hidden states, H𝑡

𝑖 , and the cell states, C𝑡
𝑖 , as the attention

scores. Let𝐴𝑖 [ 𝑗] be the attention score for the 𝑗-th element in the 𝑖-th time series, t𝑖 . Then, we form the attention
scores for the time series features, denoted as A𝑡

𝑖 , i.e.,

A𝑡
𝑖 = [𝐴𝑖 [1], 𝐴𝑖 [2], . . . , 𝐴𝑖 [𝑊 ]] ≜ H𝑡

𝑖 · Q · Ct
i, (4)

where each attention score 𝐴𝑖 [ 𝑗] will be normalized and processed by a Softmax function, i.e.,

𝐴𝑖 [ 𝑗] = Softmax (𝐴𝑖 [ 𝑗]) ≜
exp (𝐴𝑖 [ 𝑗])∑𝑊

𝑘=1 exp (𝐴𝑖 [𝑘])
. (5)

We note that, unlike the prior studies [8, 45], our RIEL module does not leverage the non-linear activation
functions to find the attention scores (e.g., Tanh or Sigmoid). This way, we can mitigate the potentially noisy
activation that may impact the learning quality of rider interaction embeddings. Next, we multiply the output of
the LSTM layers, H𝑡

𝑖 , by the attention scores, A𝑡
𝑖 , and we obtain the updated hidden states H′𝑡𝑖 ∈ R𝑊 , i.e.,

H′𝑡𝑖 = H𝑡
𝑖 ⊙ A𝑡

𝑖 . (6)

This way, the RIELmodel learns to identify and focus on the most important parts of the input time series. Next,
H′𝑡𝑖 is further processed by 𝑏4 consecutive fully connected layers (denoted as FC) with 𝑛1 neurons and the leaky
ReLU (denoted as LR) activation function, followed by a Dropout (denoted as DO) layer [15] for regularization.
Then FCRIL produces the embedding of the time series features for the 𝑖-th e-scooter rider maneuver, m𝑡

𝑖 ∈ R𝑛1 ,
i.e.,

m𝑡
𝑖 = DO(LR𝑏4 (FC𝑏4 (. . . (LR1 (FC1 (H′𝑡𝑖 )))))). (7)

(2) Spectrogram Features D. Next, given the spectrogram features of the 𝑖-th rider maneuver, d𝑖 ∈ R𝑊 ×6,
RIEL processes them with 𝑏2 consecutive 2D convolutional layers (denoted as Conv2D) with 𝑙4 filters to get
H𝑑
𝑖 ∈ R𝑙2×𝑙3×𝑙4 , where 𝑙2 and 𝑙3 are the height and width of the features after the convolutional layers, i.e.,

H𝑑
𝑖 = Conv2D𝑏2

(
Conv2D𝑏2−1 (. . . (Conv2D1 (d𝑖 )))

)
. (8)

Similarly, RIEL processes H𝑑
𝑖 using 𝑏4 consecutive FC layers with 𝑏2 neurons and the LR activation function

followed by a DO layer to produce the spectrogram features’ embedding of the 𝑖-th rider maneuver record, denoted
as m𝑑

𝑖 ∈ R𝑛2 , i.e.,
m𝑑

𝑖 = DO(LR𝑏4 (FC𝑏4 (. . . (LR1 (FC1 (H𝑑
𝑖 )))))). (9)

(3) Statistical Features S. RIEL further processes the statistical features of the 𝑖-th rider maneuver, s𝑖 , with 𝑏3
consecutive 1-D convolutional layers (denoted as Conv1D) with 𝑙6 filters and obtains H𝑠

𝑖 ∈ R𝑙5×𝑙6 , i.e.,
H𝑠
𝑖 = Conv1D𝑏3 (. . . (Conv1D1 (s𝑖 ))), (10)
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where 𝑙5 is the size of the features after the convolutional layers. The output of the 1-D convolutional layers,
H𝑠
𝑖 , is further processed by the 𝑏4 consecutive FC layers with 𝑛3 neurons to get the embedding of the statistical

features of the 𝑖-th e-scooter rider maneuver, m𝑠
𝑖 ∈ R𝑛3 , i.e.,

m𝑠
𝑖 = DO

(
LR𝑏4

(
FC𝑏4

(
LR𝑏4−1

(
FC𝑏4−1

(
. . .

(
LR1 (FC1 (H𝑠

𝑖 ))
) ) ) ) ) )

. (11)

Finally, to produce the final embedding of the 𝑖-th rider maneuver, RIEL concatenates (the Concat operation)
the three embeddings to get m𝑖 ∈ R(𝑛1+𝑛2+𝑛3 ) , i.e.,

m𝑖 = Concat(m𝑡
𝑖 ,m

𝑑
𝑖 ,m

𝑠
𝑖 ). (12)

Contrastive Learning Loss Function Design: In order to train RIEL with enhanced differentiation across
rider maneuver classes, we have designed a supervised contrastive loss function for FCRIL. We illustrate the
embedding learning process of RIEL in Fig. 6.

Iteration: 2 Iteration: nIteration: 1 Iteration: 3

Maximize Similarity 
Among Samples of 
of the Same Class

Minimize Similarity 
Among Samples of 
Different Classes

Distinguishable Rider 
Maneuver Embeddings

Rider Maneuver 
Input Features

Each Color 
Representing a Different 
Rider Maneuver Class

Fig. 6. Illustration of our supervised contrastive learning. With the iterations of learning, our RIL aims at: (i) differentiating
maneuver embeddings across different classes; (ii) ensuring similar embeddings are generated within each class.

In particular, our supervised contrastive loss function leverages the provided ground-truth maneuver labels
(e.g., left turns, right turns) to iteratively maximize the similarity of the current generated embeddings of the
rider maneuvers that belong to the same class (e.g., two left turns). Taking the rider maneuvers in red in Fig. 6
as examples, the goal of RIEL is to maximize the similarity of the generated embeddings within this maneuver
class. In the meantime, the contrastive loss function also aims to minimize the similarity of the embeddings
for rider maneuvers that belong to different classes (e.g., to make the rider maneuver embeddings in red differ
from the blue or green ones in Fig. 6). Furthermore, during the optimization, the RIL model parameters may be
“penalized” given dissimilar embeddings within the same rider maneuver class. This way, we fill the essential gap
of the existing cross-entropy loss function for the classification and improve the model adaptivity when handling
complex rider interactions.
In particular, let I be the set of all the rider maneuvers. Given the embeddings m𝑖 of the 𝑖-th maneuver, let

U(𝑖) = I \ {𝑖}, and let P(𝑖) be the set of all rider maneuvers with the same label as the 𝑖-th maneuver (i.e., the
positives). Then, the supervised contrastive loss LSC is given by:

LSC =
∑︁
𝑖∈I
LSC

𝑖 ≜
∑︁
𝑖∈I

−1
|P(𝑖) |

∑︁
𝑝∈P(𝑖 )

log
exp

(
m𝑖 ·m𝑝/𝜏

)∑
𝑎∈U(𝑖 ) exp (m𝑖 ·m𝑎/𝜏)

, (13)

where 𝜏 represents the penalty parameter. We note that lower values of 𝜏 can encourage model training and
optimization towards the negative pairs of maneuvers that are hard to differentiate. Specifically, the denominator
in Eq. (13) calculates the similarity of each rider maneuver to the others within the same rider maneuver class
based on the dot product of their corresponding embeddings. On the other hand, the nominator computes
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the similarity between each rider maneuver and the others regardless of their class. This way, minimizing the
loss function in Eq. (13) can help produce the maneuver embeddings with our desired properties for RIL, i.e.,
embeddings of different classes that can be differentiated from each other.

4.3 Rider Interaction Learning and Maneuver Recognition (RILMR)
Design Motivations: The role of the rider interaction learning and maneuver recognition (RILMR) module is to
further train a classifier given the embeddings learned by the previous RIEL and yield the recognition results of
the rider maneuvers. Inside the RILMR module, we further design the residual layers in order to overcome the
model over-fitting issues and further allow the model to determine the required complexity for this module. As
discussed in Sec. 4.1, we train the RIEL and RILMR modules in a sequential manner to ensure the optimization
processes of RIEL and RILMR do not interfere with each other.
Detailed Designs: The weights of RIEL are frozen (i.e., not updated anymore) after the training, and its

output is then connected to RILMR module for further training with the cross-entropy loss for the rider maneuver
identification. In particular, let m𝑖 ∈ R(𝑛1+𝑛2+𝑛3 ) be the output embedding of RIEL. RILMR will first process m𝑖

with the 𝑏5 consecutive FC layers with 𝑛4 neurons and the LR activation function to obtain O𝑖 ∈ R𝑛4 , i.e.,
O𝑖 = DO(LR𝑏5 (FC𝑏5 (. . . (LR1 (FC1 (m𝑖 )))))), (14)

where we adopt residual connections [56] between every two consecutive FC layers to enhance the gradient flows
in model training. Then, the RILMR module further processes O𝑖 with an additional FC layer with 𝑋 neurons
(corresponding to the number of the rider maneuver classes; 𝑋 = 7 in our studies). Let O′𝑖 be the output of the FC
layer that further processes O𝑖 , and 𝑂 ′𝑖 [ 𝑗] be its 𝑗-th element that corresponds to the 𝑗-th rider maneuver class
( 𝑗 ∈ {1, . . . , 𝑋 }), i.e.,

O′𝑖 =
[
𝑂 ′𝑖 [1], . . . ,𝑂 ′𝑖 [𝑋 ]

]
= FC (O𝑖 ) . (15)

Then, we have the Softmax function on each element 𝑂 ′𝑖 [ 𝑗] of the output, i.e.,

𝑂 ′𝑖 [ 𝑗] = Softmax
(
𝑂 ′𝑖 [ 𝑗]

)
≜

exp
(
𝑂 ′𝑖 [ 𝑗]

)∑𝑋
𝑘=1 exp

(
𝑂 ′
𝑖
[𝑘]

) , 𝑗 ∈ {1, . . . , 𝑋 }. (16)

Let p𝑖 = [𝑝𝑖 [1], . . . , 𝑝𝑖 [𝑋 ]] be the one-hot encoding of the true label for the 𝑖-th rider maneuver record (for
instance, we let [1, 0, . . . , 0] ∈ R𝑋 be a maneuver of short left turn), and 𝑁 be the total number of the rider
maneuvers. Then, the cross-entropy loss function, denoted as 𝐶loss, of our RILMR module is given by

𝐶loss ≜ −
𝑁∑︁
𝑖=1

𝑋∑︁
𝑗=1

𝑝𝑖 [ 𝑗] · log
(
𝑂 ′𝑖 [ 𝑗]

)
, (17)

which is used to train and optimize the RILMR module.

4.4 Asynchronous Federated Maneuver Learning (AFML) Design
Design Motivations: Towards the ubiquitous RIL, one may consider uploading the sensor data (e.g., IMU data
in our case) harvested by the e-scooter riders (e.g., through smartphones or on-board wireless connectivities) to
the cloud server for large-scale and centralized RIL model training, which, however, may have rider data privacy
concerns (e.g., regarding the trustworthiness of the RIL system), discouraging the riders from participating in
the RIL that may potentially benefit their riding safety or enhance their riding experience (for instance, for the
e-scooter sharing service).
Furthermore, despite the conventional federated learning mechanisms for less sensitive model parameters

(e.g., gradients) [34], it is crucial for emerging smart e-scooters in complex urban environments to reduce the
communication overhead and delays, while the spatial distributions and communication connectivities of the
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Fig. 7. Our AFML designs: (a) overview of AFML; and (b) illustration of the training process.

smart e-scooters are highly dynamic, making the synchronized model training across multiple devices impractical.
It is highly challenging to achieve fast convergence of the global RIL model, and conventional federated learning
methods might be unscalable for large-scale ubiquitous and urban computing scenarios.

Therefore, to meet these practical needs of e-scooter manufacturers and sharing service operators, we design
within our FCRIL, a novel Asynchronous Federated Maneuver Learning (AFML) to train the core RIL model. We
illustrate the overall workflow of our proposed AFML algorithm in Fig. 7(a). In particular, in the early stages of the
algorithm, the client side (e.g., the rider’s smartphone or the smart e-scooter with computing capability), first
downloads the latest global parameters of RIEL module. Then, it calculates the gradients of its parameters based
on its local maneuver dataset and uploads the gradients to the RIL server asynchronously.
On the other hand, on the server side, the RIL server is asynchronously waiting for enough gradients to be

accumulated. Once enough gradients are available, the RIL server samples batches of gradients and averages
each batch to update the RIEL parameters. We note that, while the RIL server is training the FCRIL model, the
clients do not download the FCRIL model. We also note that in order to ensure both modules do not interfere
with each other, after the training procedure is completed for the RIEL module, we cease its updates and freeze
its weights, and start the training procedure of the RILMR module, which has similar steps as stated above.

Detailed Designs: We present the AFML procedures as follows.
(1) RIEL Module Instance Training at the RIL Server Side: We first create an instance of RIEL module parameter-

ized by 𝜃𝑒 . Then, we execute the Algorithm 1 with the following parameters as its input to train RIEL module
for module parameters 𝜃 = 𝜃𝑒 , i.e., number of the communication rounds, 𝑖round = 𝑖𝑒 ; learning rate 𝜆 = 𝜆𝑒 ; and
gradients batch size, 𝐺 = 𝐺𝑒 . As illustrated in Algorithm 1, the RIL server maintains a list of gradients, denoted
as total_gradients, which are gradients asynchronously transmitted from the clients (e.g., a smartphone or an
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embedded IMU sensor). AFML first continuously checks the available gradients (Line 8). If the harvested gradients
are enough for RIEL training, the RIL server samples the batches of gradients with a batch size of 𝐺𝑒 from
the total_gradients list, and updates the parameters of RIEL, 𝜃𝑒 , using the average of the sampled gradients
(Lines 11–15 in Algorithm 1). The algorithm updates the parameters for 𝑖inner iterations by sampling batches of
the gradients, for which 𝜆𝑒 is used as the learning rate.
We note that when performing parameter updates, the RIL server freezes the RIEL module parameters, 𝜃𝑒

and prevents devices from downloading them (Line 11 in Algorithm 1) to ensure that the mobile devices (on
the smart e-scooters or with the rider) would use the latest parameters for the local training on the client side.
Besides, to prevent the algorithm from updating the modules using outdated gradients, total_gradients is
cleared after each parameter update (Line 18 in Algorithm 1). Additionally, to avoid unnecessary computations,
before updating the module, the clients that are currently performing module training are notified to stop their
training as their module is an outdated version of the global parameters (Line 9 in Algorithm 1). The entire
procedure above is repeated for 𝑖𝑒 communication rounds to complete the training of RIEL.

Algorithm 1: AFML on the server side (for RIEL or RILMR).
1 Input: Number of the communication rounds 𝑖round; learning rate 𝜆; gradients batch size, 𝐺 .
2 Output: Learned global parameters 𝜃 (either RIEL or RILMR).
3 current_devices← list of clients (e.g., a smartphone) currently performing model training, which is maintained

asynchronously.
4 𝜃 ← initialize module parameters uniformly;
5 module_available← true;
// List of gradients received from different clients that is updated asynchronously.

6 total_gradients← [];
7 while 𝑖 ≤ 𝑖round do

// Perform an update only if enough gradients are received from different clients.

8 if enough gradients are available in total_gradients then
9 Notify current_devices to stop training;

10 current_devices← [];
11 module_available← False;
12 for 𝑗 ← 1 to 𝑖inner do
13 grads← sample 𝐺 records of gradients from total_gradients;
14 Δ𝜃 ← calculate average of grads;
15 𝜃 ← 𝜃 − 𝜆 × Δ𝜃 ;
16 𝑖 ← 𝑖 + 1;
17 module_available← True;
18 total_gradients← [];

19 return 𝜃 ;

(2) RILMR Module Instance Training at the RIL Server Side: Recall in Sec. 4.1, once the parameters of RIEL are
updated and trained (say, for 𝑖𝑒 communication rounds), we freeze the RIEL parameters and continue to train
RILMR based on a similar procedure in Algorithm 1. Specifically, we create an instance of the RILMR module
parameterized by 𝜃 = 𝜃𝑐 . We set the number of the communication rounds 𝑖round = 𝑖𝑐 ; learning rate 𝜆 = 𝜆𝑐 ; and
gradients batch size 𝐺 = 𝐺𝑐 .
(3) Local Training on the Client Side: As illustrated in Algorithm 2, AFML first determines if the parameters of

the FCRIL model are available for the download from the RIL server (Line 2). Then, AFML calculates the gradients
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of the parameters of either the RIEL module, denoted as 𝜃𝑒 (Lines 4–6), according to the supervised contrastive
loss in Eq. (13), or the RILMR module, denoted as 𝜃𝑐 (Lines 12–13), based on the cross-entropy loss in Eq. (17),
respectively. Afterwards, the calculated gradients are uploaded to the RIL server for later aggregation. We note
that if the algorithm is training the RILMR module, it also downloads the latest parameters of the RIEL module, 𝜃𝑒
(Line 9), freezes them (Line 10), and connects the output layer of the RIEL module (Eq. (12)) to the input layer
(Eq. (14)) of the RILMR (i.e., feeding the embeddings of the local dataset to the RILMR module in Line 11).

Algorithm 2: AFML on the client side for the local FCRIL model training.
1 while True do
2 if module_available then

// Check with the server if the RIL model (either RIEL or RILMR) is available to

download.

3 if training_RIEL then
// If yes, we train the RIEL module, and the RILMR module otherwise.

4 𝜃𝑒 ← Download latest RIEL module parameters;
5 Δ𝜃𝑒 , 𝐿1 ← Supervised contrastive loss according to Eq. (13) using 𝜃𝑒 and the local data;
6 Upload Δ𝜃𝑒 to the server (to be added to the total_gradients in Algorithm 1);

7 else
8 𝜃𝑐 ← Download the latest RILMR module parameters;
9 𝜃𝑒 ← Download the latest RIEL module parameters;

10 Freeze RIEL parameters 𝜃𝑒 ;
11 Connect the output layer of RIEL in Eq. (12) (with 𝜃𝑒 ) to the input layer of RILMR in Eq. (14) (with 𝜃𝑐 );
12 Δ𝜃𝑐 , 𝐿2 ← Cross-entropy loss according to Eq. (17) using 𝜃𝑐 and the local data;
13 Upload Δ𝜃𝑐 to the server (to be added to the total_gradients in Algorithm 1);

We further illustrate an example of the workflow of AFML in Fig. 7(b). Specifically, the clients asynchronously
download the module parameters (either RIEL or RILMR), calculate the gradients, and upload them to the RIL
server. In the meantime, the RIL server is receiving the gradients asynchronously. Next, at the time_step5, the
RIL server has received enough gradients and therefore at time_step6, it starts updating the RIL model, during
which the the clients do not have access to the FCRIL model parameters.

5 EXPERIMENTAL EVALUATIONS
We first present the experimental settings in Sec. 5.1, and then show the experimental results in Sec. 5.2.

5.1 Experimental Settings
• Baselines: We compare our FCRIL model framework with the following baseline approaches and models. We
note that these baseline approaches considered are capable of processing the time series or image features (i.e.,
the spectrogram features), and their comparison with FCRIL helps validate the effectiveness and accuracy of our
proposed designs.
(1) – (3) LSTM, GRU, and RNN: which respectively use stacked long short-term memory (LSTM) [30, 51], gated

recurrent unit (GRU), and recurrent neural network (RNN) to learn the time series features T of the rider
maneuvers.

(4) BiLSTM: which leverages the bidirectional LSTM (BiLSTM) layers [46] to process the time series features T
of rider maneuvers.
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(5) ATTLSTM: which leverages the attention-based LSTM [8] to process the time series features T.
(6) Conv2D-T: which leverages 2D convolutional neural networks (Conv2D) [31] to process time series features

T of the rider maneuvers.
(7) Conv2D-D: which uses the Conv2D to process the spectrogram features D of the rider maneuvers.
(8) Conv1D-T: which uses the 1D convolutional neural networks (Conv1D) and takes in only the time series

features T of the rider maneuvers.
(9) ResNet-T: which uses the residual neural network (ResNet) [18, 22] to take in the time series features T of

the rider maneuvers.
(10) ResNet-D: which implements the ResNet architecture [18, 22] that processes the spectrogram features D

of the rider maneuvers.
(11) DenseNet-D: which leverages the dense connections between layers, i.e., the DenseNet [23, 57], to process

the spectrogram features of the rider maneuvers.
(12) DLSTM-Conv: which implements a denoising LSTM-based auto-encoder to remove the input noise. The

filtered data are further processed by Conv2D layers with wide kernels along the time axis [45].
(13) TST: which implements a time series feature classification framework [54] based on the encoder designs

adapted from the transformer architectures [49].
(14) SVM: which applies the support vector machine (SVM), a traditional machine learning algorithm, to process

the statistical features S of the rider maneuvers.
(15) GBDT: which leverages the gradient boosting decision tree (GBDT) as another statistical machine learning to

process the statistical features S of the rider maneuvers.

Parameter and Evaluation Settings: In our data preprocessing stage, we leverage a sliding window of size 10
seconds with an overlap of 50%. We note that before the sliding window is applied, the time series data from all the
sensors are re-sampled to have a sampling frequency of 40 Hz, leading to records with 10 seconds × 40 Hz = 400
samples. Furthermore, we have used the moving average method (i.e., using the 150 values preceding the current
one) to filter the noise.
To train our RIEL and RILMR modules, we set the penalty parameter 𝜏 in Eq. (13) to 0.025 to ensure that

the resultant rider maneuver embeddings across different classes are differentiated. We use one layer of LSTM,
Conv1D, and Conv2D in RIEL (𝑏1 = 𝑏2 = 𝑏3 = 1 in Eqs. (3), (8), and (10)). RIEL leverages 𝑏4 = 3 (in Eqs. (7),
(9)), and (11)) consecutive FC layers with LR activation function to produce the embeddings. Also, RILMR uses
𝑏5 = 6 FC layers with residual connections and 𝑛4 = 64 neurons to further process the embeddings of the rider
maneuvers (Eq. (14)). We set the output embedding sizes for the time series, spectrogram, and statistical features
to 𝑛1 = 𝑛2 = 𝑛3 = 64 (Eqs. (7), (11)), (9)). Furthermore, for RIEL module, we use 𝑙1 = 16 (Eq. (3)) units for its LSTM
layers, and 𝑙4 = 𝑙6 = 32 filters for the convolutional layers with (3,3) and 2 as the kernel sizes for the 2D and 1D
convolutional layers, respectively (Eqs. (8) and (10)). We use a dropout rate of 20% and 10% for all the Dropout
(DO) layers in the RIEL and RILMR modules, respectively.

For the AFML studies (Algorithms 1 and 2), we respectively train RIEL and RILMR with 𝑖𝑒 = 35 and 𝑖𝑐 = 10
communication rounds, and therefore we have a total of 45 communications rounds. Furthermore, we empirically
set 𝐺𝑐 = 𝐺𝑒 = 5 to sample from the gradients list to perform 𝑖inner = 5 module parameter updates. We use the
learning rates, 𝜆𝑒 = 0.01 and 𝜆𝑐 = 0.0005, to train RIEL and RILMR, respectively. To simulate the federated learning
settings, we divide the NR data collected with each smartphone or IMU sensor into morning and evening and
consider them as different clients.

The parameter settings of our baselines are as follows. For (1)–(5), we use two recurrent layers with 64 neurons.
For (6)–(8), we leverage three convolutional layers, and for (9) and (10), we implement the first two stages of
the ResNet architecture [18]. For (11), we adopt DenseNet with a growth rate of 5, 32 filters, and 3 blocks of
Dense-Transition blocks, each with 3 layers. In (12), we use 6 LSTM and 4 Conv2D layers. For (13), we leverage a
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transformer encoder block with 4 attention heads, each with 64 units. For (14) we consider SVM with the radial
basis function (RBF) kernel, and for (15) we consider GBDT with a total of 100 estimators and a maximum depth of
128.

To train our proposed FCRIL and other baseline approaches, we adopt the Adam [15] optimizer, and we leverage
70% of the data for training and 30% for evaluation. We train our models on an HPC deep learning server equipped
with an AMD Ryzen Threadripper 3960X 24-Core Processor, 2× Quadro RTX 8000 48GB GDDR5 GPUs, 128GB
RAM, and Linux Ubuntu 18.04.6 LTS. For our current prototype with the above settings, the average computation
times (per rider maneuver record) for data preprocessing and feature extraction, model training, and prediction
are 18.61ms, 342.85ms, and 0.1435ms, respectively. We have collected a total of 2,800 rider maneuver records,
i.e., 630 from iPhone 13 Pro, 700 from iPhone 13 Mini, 770 from iPhone 12 Mini, 280 from iPhone 7 Plus, and
420 from our stand-alone IMU sensors. We focus on the smartphone IMU data for our model ablation studies,
sensitivity studies, AFML convergence analysis, and rider generalization studies. We use Accuracy to measure the
performance of our FCRIL and the baselines, i.e., the ratio of the correctly predicted maneuvers over the total
number of the maneuvers.

5.2 Experimental Results
• Overall Performance: We first demonstrate the overall performance in RIL based on the rider maneuver
classification accuracy. Here we train our FCRIL as well as the baselines based on a centralized learning method
(i.e., considering the availability of all the data on the server) and the same loss function designs in order to
study the learnability and identifiability improvements through our core designs. We also note that a centralized
learning study will help us compare FCRIL with the conventional machine learning approaches (SVM and GBDT
in our studies) that may be hard to be adapted for a federated learning setting. For each approach, we run the
experimental studies 5 times and report the average accuracy as well as the standard deviation.
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Fig. 8. Overall accuracy (%) of FCRIL and the baseline approaches for RIL based on (a) the stand-alone IMU data; and (b) the
smartphone IMU data (centralized learning settings).

Specifically, we illustrate the results of the RIL accuracy in Figs. 8(a) and (b), where the RIL results are based
on the stand-alone IMU sensor and smartphone IMU measurements, respectively. We can first see that the RNN
(scheme (3)) outperforms the baselines based on LSTM and GRU (schemes (1) and (2)), indicating that only using
the gated mechanism of the LSTM and GRU may not necessarily capture the temporal dependencies in the complex
rider maneuvers. The bidirectional time series processing of BiLSTM (scheme (4)) and the attention mechanism
in ATTLSTM (scheme (5)) focus on the essential temporal information of the input features and hence enhance
their performance from the LSTM and GRU. However, we also observe that BiLSTM and ATTLSTM do not achieve
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satisfactory RIL accuracy since they only capture the temporal dependencies across the time series features of
the rider maneuvers.

In our studies, Conv2D-D, ResNet-D, and DenseNet-D (schemes (7), (10), and (11)) are shown to achieve overall
better performance than the above-mentioned BiLSTM, ATTLSTM, LSTM, GRU, and RNN. This is mainly because
these image-based approaches extract more comprehensive patterns from the spectrogram features and are
less prone to the noisy rider maneuver data thanks to the convolutional and pooling operations. However,
learning the spectrogram features through Conv2D-D, ResNet-D, and DenseNet-D may not necessarily encode
the correct positions of important rider maneuver patterns within the spectrogram features, yielding degraded
performance. DLSTM-Conv (scheme (12)) leverages the auto-encoders to filter the sensor data, but this approach
cannot comprehensively capture the patterns within rider maneuvers due to its main use of the temporal
information solely for denoising. The transformer-based encoder within TST (scheme (13)) performs better than
DLSTM-Conv. However, TST only focuses on short-term dependencies and hence might not achieve satisfactory
results like FCRIL. We can also see that the traditional machine learning algorithms like SVM and GBDT in our
studies cannot fully capture the complex rider maneuver features due to their shallow learning structures, and
hence achieve low RIL accuracy.

Compared with the aforementioned approaches, our FCRIL achieves a higher RIL accuracy due to our novel
designs of rider interaction embedding learning (RIEL) that differentiates the feature embeddings generated from
the time series, spectrogram, and statistical features. Furthermore, the rider interaction learning and maneuver
recognition (RILMR) module further overcomes the model over-fitting issue through the inclusion of residual
layers, yielding better accuracy than the other baseline approaches. Additionally, our FCRIL achieves comparable
performance for the stand-alone IMU sensor and the smartphone IMU datasets, demonstrating the generalizability
and ubiquitousness of our model designs. This will also help the smart micromobility manufacturers and sharing
service operators in the micromobility sensing designs, such as using the low-cost IMU sensor installed on
e-scooters, or prompting the riders to use their own smartphones for behavior analysis.
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Fig. 9. Overall accuracy (%) of FCRIL and the selected baseline approaches for RIL based on (a) the stand-alone IMU data;
and (b) the smartphone IMU data (federated learning settings).

With a federated learning setting in Fig. 9, we further compare FCRIL with five different selected deep learning
baselines (with the best performance in Fig. 8). We can observe FCRIL achieves better accuracy compared with
the other baseline approaches when integrated with federated learning settings of AFML, demonstrating the
effectiveness of the entire framework designs of FCRIL. Furthermore, we can observe from both Figs. 9 and 8,
FCRIL achieves comparable performance given both centralized learning (CL) and federated learning (FL) settings,
demonstrating the effectiveness of the AFML module in FCRIL. We can also observe a slight increase of standard
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deviation in terms of RIL classification accuracy compared with the centralized learning setting due to more
stochastic processes of sampling batches of gradients (i.e., nondeterministic steps) in AFML. Despite the negligible
performance degradation (say, up to 1.46% for FCRIL), the AFML module within FCRIL will bring the benefits in
terms of model adaptivity and learning flexibility, as well as data privacy implications for RIL. In the real-world
RIL scenarios, when the e-scooter riders’ data may be opportunistically fed to the RIL server, our proposed
AFML design can achieve an overall more consistent and robust model training performance than the centralized
learning settings.
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Fig. 10. (a)–(b) Confusion matrices of FCRIL based on the proposed federated learning algorithm (AFML); (c)–(d) FCRIL
trained based on the centralized learning (CL) setting.

To show the more detailed classification results of our FCRIL, we have included the confusion matrices of RIL
results of FCRIL in a centralized learning setting (Figs. 10(a) and (b)) and a federated learning setting with AFML
(Figs. 10(c) and (d)). We can see that thanks to the comprehensive fusion of multiple features and the differentiated
maneuver embeddings by our RIEL module, our FCRIL achieves high and consistent accuracy in classifying all
the rider maneuver classes. In real-world RIL scenarios, such an accurate and consistent classification across all
maneuver classes will help FCRIL achieve more robust and generalizable rider interaction understandings and
enable more ubiquitous RIL applications in the NR scenarios.
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Fig. 11. Ablation studies performance results of FCRIL.

•Model Ablation Studies: Taking the smartphone data as an example, we further conduct the model ablation
studies to demonstrate the relative importance of different core components of our FCRIL framework. Specifically,
we have considered the following variations of our model: (1) the complete model, (2) without the time series
features, T, (3) without the statistical features, S, (4) without the spectrogram features, D, (5) without using the
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supervised contrastive loss function (i.e., using a cross-entropy loss function instead), and (6) without the residual
layers in the RILMR module. We illustrate the results of model ablation studies in Fig. 11, from which we can
see that the most significant performance degradation results from the removal of the supervised contrastive
learning (5), which demonstrates the importance of the supervised contrastive loss function compared with the
traditional cross-entropy loss function in differentiating the rider maneuver embeddings. In addition, we can
observe the considerable performance degradation due to the removal of each feature in (2)–(4), indicating the
importance of fusing comprehensive features for more accurate RIL. From the performance degradation of (6),
we can observe the importance of using the residual layers in the RILMR module (Sec. 4.3) in overcoming the
model over-fitting.
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Fig. 12. Sensitivity studies of FCRIL: (a) penalty parameter 𝜏 ; (b) number of LSTM layers 𝑏1; and (c) number of Conv1D layers.

• Model Sensitivity and Case Studies: We have further evaluated the impacts of (A) important model
parameters, (B) smartphone device types, (C) road types and conditions, and (D) IMU sensor placement positions.
We perform the (A) and (B) studies based on the smartphone IMU data, and the (C) and (D) using the stand-alone
IMU data.

(A) Model Parameters: We perform sensitivity studies regarding the following important model parameters: (a)
the penalty parameter, 𝜏 , (Eq. (13)) for supervised contrastive learning; (b) the number of the LSTM layers in RIEL,
denoted as 𝑏1 (Eq. (3)); and (c) the number of the 1D convolutional layers in RIEL, denoted as 𝑏3 (Eq. (10)). We
demonstrate the result of the sensitivity studies in Fig. 12(a)–(c). From Fig. 12(a), we can see that the penalty
parameter, 𝜏 , is important for the model performance. When 𝜏 is large (e.g., 0.4), the resulting rider maneuver
embeddings may not be differentiated for accurate RIL as the RIEL module is not sensitive to the embedding
differences across different rider maneuver classes. However, if 𝜏 is very small (e.g., 0.00625), RIEL may generate
the rider interaction embeddings that are too distant from each other, and hence make it difficult to capture
the common patterns within the embeddings. Furthermore, according to Figs. 12(b) and (c), we can see that
increasing the number of the LSTM or Conv1D layers may complicate the RILmodel architecture, leading to model
over-fitting and performance degradation.

(B) Smartphone Devices: To study the impacts of different smartphones on the NR data collection, we further
test FCRIL model (trained based on the data using iPhone 13 Pro) on the data harvested from (a) iPhone
13 Pro, (b) iPhone 13 Mini, (c) iPhone 12 Mini, and (d) iPhone 7 Plus. We can see from Fig. 13 that despite
some performance differences due to the potential heterogeneity in the smartphone IMU chipsets, our FCRIL
framework demonstrates robust performance and overall consistent accuracy across different smartphones, which
corroborates the robustness and generalizability of our proposed model designs.
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Fig. 13. Performance of FCRIL for different smartphones, i.e., (a) iPhone 13 Pro; (b) iPhone 13 Mini; (c) iPhone 12 Mini; and
(d) iPhone 7 Plus.
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Fig. 14. Left : Different road types and conditions: (i) sidewalks; (ii) asphalt roads; (iii) concrete roads; and (iv) red bricks;
Right : FCRIL’s performance results for different road types.

(C) Road Types and Conditions: We collect the NR data from the road types of: (i) sidewalks, (ii) asphalt, (iii)
concrete roads, and (iv) red bricks, as shown in Fig. 14 (left) with the stand-alone IMU sensor, and also illustrate
the FCRIL’s performance on the collected data in Fig. 14 (right). Since the uneven surfaces of the roads with red
bricks may lead to noisier IMU readings than the others, one may observe a slight decrease of RIL accuracy.
Despite the above, we can observe that FCRIL achieves overall high accuracy across different road types and
conditions, demonstrating our model’s adaptivity, ubiquitousness, and robustness.
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Fig. 15. Left : Different stand-alone IMU sensor installation positions, i.e., (a) the e-scooter board (our default setup), (b) on
the top of the e-scooter’s steering handle, (c) in the middle of the scooter bar, and (d) above the e-scooter rear end; Right : the
resulting RIL performance.

(D) IMU Sensor Placement Position: As illustrated in Fig. 15(a)–(d) (left), we attach the stand-alone IMU sensor
at different positions of the e-scooter, including: (a) the e-scooter board (our default setup); (b) on the top of the
e-scooter’s steering handle; (c) in the middle of the scooter bar; and (d) above the e-scooter rear end. We further
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show in Fig. 15 (right) that the performance of our FCRIL model is overall robust with various stand-alone IMU
sensor installation positions, while installation close to the rear end of the e-scooter (more vibrations) may not
be recommended due to the noisier IMU measurements.
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Fig. 16. Convergence analysis of AFML.
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Fig. 17. AFML performance for two e-scooter riders.

• Federated Learning Convergence Studies: Furthermore, to investigate the performance of our proposed
AFML algorithm, we have evaluated the number of communication rounds, denoted as 𝑖𝑐 , needed (i.e., between
clients and the server) to train RILMR after the RIEL is trained with the supervised contrastive loss (Eq. (13)). We
can see in Fig. 16 that our model quickly converges (say, no further accuracy improvement higher than 0.5%)
after about 19 communications rounds in our experimental studies, validating the effectiveness of our proposed
AFML designs. We also compare AFML with FedAvg [34], which is a traditional synchronized federated learning
algorithm that takes the average of the gradients (or model parameters) received from the clients to update the
model. By showing the faster convergence (about 38% faster) than FedAvg, we also corroborate the efficiency and
deployment potentials of our FCRIL framework in the complex urban environments for the e-scooter riders.

We also show the learning curve of our model for two e-scooter riders in our studies during the AFML process
in Fig. 17. Since the riders may have different riding styles and use different devices to collect the NR data, we can
see that their learning curves slightly oscillate after each round as the FCRIL is adapting to both riders. Despite
this, after about 20 communication rounds, the learning curves stabilized and finally converged. We can also
infer the similar RIL accuracy and the generalizability of FCRIL across different riders.
• Result Visualization: We visualize the embeddings learned by our FCRIL in Fig. 18(a) and when the

supervised contrastive loss (Eq. (13)) is used to train RIEL, and we leverage principal component analysis (PCA)
for dimensionality reduction and visualization. Fig. 18(a) illustrates the overall distinguishable rider maneuver
classes, i.e., the resulting rider maneuvers embeddings belonging to different classes are distant from each other
while those belonging to the same class are close. Furthermore, we can observe that similar maneuver classes
such as long and short left or right turns are also differentiated from each other. As a comparison, as shown in
Fig. 18(b), the rider interaction embeddings of different classes based on the cross-entropy loss function are not
well distinguishable from each other, which validates the need to incorporate supervised contrastive learning
within our FCRIL. We also note that the sequential learning of RIEL and RILMR modules help further differentiate
resulting rider interaction embeddings as shown in Fig. 18(a), yielding accurate RIL results.

6 DEPLOYMENT DISCUSSION
We briefly discuss the following deployment considerations of our current FCRIL prototype.
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Fig. 18. Comparison of the resulting rider interaction embeddings: (a) w/ supervised contrastive loss; and (b) w/ conventional
cross-entropy loss.

• Societal Implications: Our proposed RIL framework will benefit the micromobility manufacturers, sharing
service operators, city planners, and other stakeholders in: (i) developing safety measures and improving interac-
tion designs upon the manufactured and deployed e-scooters (e.g., handlebars, brake handles, and electric motor
designs) based on the analyzed maneuver behaviors and their dynamics; (ii) reducing conflicts and collision
risks with motorized vehicles, pedestrians, and pedaled bikes and other scooters by understanding the rider
behaviors in various spatio-temporal contexts; (iii) promoting safe riding conducts and policies within and across
the rider communities. For instance, city planners can receive more insights from our FCRIL framework’s output
to determine safe and suitable road types or conditions for e-scooters in complex city environments.
• Expanding Rider Analysis and System Studies: Our focus here is to design the core RIL algorithm and

develop a prototype system framework for understanding and recognizing the e-scooter rider maneuvers. Due to
the severe impacts of the COVID-19 pandemic, we were not able to conduct large-scale rider studies from the
e-scooter rider communities for the RIL studies. However, our model and system prototype designs, including the
federated maneuver learning mechanism, are generalizable and scalable, and can be easily extended to more rider
studies (e.g., through crowdsourcing [11, 39]). We have also conducted various case studies to further corroborate
the adaptivity and generalizability of our approach. Towards more in-depth RIL and behavioral analytics, we
will take into account factors such as more rider studies, diverse weather conditions, and other mobile/wearable
Android devices in our future studies.
• Further Data Privacy Designs: Our current prototype studies focus on understanding the rider maneuvers

as well as the impacts of integration with a federated learning setting for privacy-preserving implications. Further
data security and privacy enhancement designs (in response to various privacy attacks [9, 29, 37, 38]), including
differential location privacy, have been studied from other application domains [7]. Since they are outside the
major scope of the proposed studies, we will further investigate in our future studies.

7 CONCLUSION
We have proposed FCRIL, a novel e-scooter rider interaction learning framework based on contrastive federated
maneuver recognition. Specifically, we have designed the rider interaction embedding learning network (RIEL) to
learn and differentiate the e-scooter rider maneuver embeddings based on comprehensive RIL feature extraction
as well as a novel supervised contrastive loss function. Furthermore, we have designed the rider interaction and
maneuver recognition (RILMR) network to further perform RIL and rider maneuver recognition given the learned
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rider interaction embeddings. We have integrated a scalable federated learning algorithm that asynchronously
receives the gradients from the edge e-scooter (and its on-board mobile devices) and updates a global instance of
our FCRIL model towards accurate RIL. We have performed extensive and real-world experimental studies based
on our harvested e-scooter rider maneuver dataset, and have demonstrated the high accuracy and deployment
potentials of our proposed FCRIL framework for ubiquitous, scalable, and privacy-preserving e-scooter rider
behavior analysis.
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