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Abstract: To achieve precise localization, autonomous vehicles usually rely on a multi-sensor perception system
surrounding the mobile platform. Calibration is a time-consuming process, and mechanical distortion will cause
extrinsic calibration errors. Therefore, we propose a lidar-visual-inertial odometry, which is combined with an
adapted sliding window mechanism and allows for online nonlinear optimization and extrinsic calibration. In the
adapted sliding window mechanism, spatial-temporal alignment is performed to manage measurements arriving at
different frequencies. In nonlinear optimization with online calibration, visual features, cloud features, and inertial
measurement unit (IMU) measurements are used to estimate the ego-motion and perform extrinsic calibration.
Extensive experiments were carried out on both public datasets and real-world scenarios. Results indicate that the
proposed system outperforms state-of-the-art open-source methods when facing challenging sensor-degenerating
conditions.
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0 Introduction

Nowadays, autonomous vehicles are being equipped
with multi-sensor systems to perform diverse per-
ception tasks, including map construction[1], vehicle
tracking[2], and six degrees of freedom (6-DoF) ego-
motion estimation[3]. With the advantages of robust-
ness and accuracy, multi-sensor fusion solutions, in-
cluding visual-inertial odometry (VIO)[4-6] and lidar-
inertial odometry (LIO)[7-9] are becoming popular re-
search trends to address the ego-motion estimation
problem. Although lidar-based methods can extract
detailed structural measurements at a large scale, their
performance tends to degrade when facing circum-
stances without sufficient structural features. Vision-
based methods are effective when operating in a tex-
tured environment, but tend to fail under low light or
textureless conditions. Both methods can cover only
limited situations; thus increasing attention has been
paid to the combination of lidar, camera, and inertial
measurement unit (IMU) sensors to obtain better local-
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ization performance. To fuse heterogeneous sensors and
produce precise odometry information, extrinsic cali-
bration between sensors should be performed before-
hand. There are many calibration methods applied to
autonomous vehicles that achieve outstanding perfor-
mance in terms of calibration accuracy[10-16]. However,
they usually require a calibration target to be observed
by all sensors, which is difficult for autonomous vehicles
to achieve, because sensors are distributed in various
places on the self-driving platform, and most of them
do not share overlapping views. Therefore, online cal-
ibration methods are receiving increased attention by
researchers.

In this paper, a lidar-visual-inertial system based on
nonlinear optimization is proposed to estimate poses
and perform extrinsic calibration online robustly and
accurately. The main contributions of this study are:
① An adapted sliding window mechanism is proposed
to manage measurements at different frequencies from
heterogeneous sensors including 3D lidar, cameras, and
IMUs. ② A nonlinear optimization formulation is pro-
posed to simultaneously perform online calibration and
motion estimation using visual features, cloud features,
and IMU measurements. ③ A series of extensive ex-
periments are conducted to validate the performance
of the proposed system. Results show that our method
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outperforms state-of-the-art (SOTA) methods.

1 Related Work

In this section, we review multi-sensor calibration
and multi-sensor fusion odometry, which are the most
relevant to our proposed concept.
1.1 Multi-Sensor Calibration

Regarding multi-sensor calibration methods, an off-
line algorithm was presented to enable extrinsic cal-
ibration of a camera and lidar sharing a common
view[14]. Corner features in images and planar fea-
tures in point clouds are extracted from a chessboard
and are matched to estimate the extrinsic views. How-
ever, the method requires an object (the chessboard)
that can be observed by both sensors, which is im-
practical for calibrating the sensors on self-driving plat-
forms. The multi-state constrained extended Kalman
filter (MSCKF) framework estimates motion and on-
line calibrated extrinsic parameters for a camera-IMU
system[4]. The algorithm requires low computational
resources, but achieves relatively low accuracy because
a linear approximation is performed at every update
step. Recently, the M-LOAM[17] online extrinsic ini-
tialization method based on hand-eye calibration has
been proposed. It requires no extrinsic prior, but it
estimates rotational and translation parts separately,
which reduces its accuracy, especially in the translation
estimates.
1.2 Multi-Sensor Fusion Odometry

LIC-fusion[18] fuses asynchronous lidar, camera, and
IMU measurements within an MSCKF framework to es-
timate poses and calibrate extrinsic parameters online.
However, as mentioned previously, all MSCKF-based
methods have theoretical defects because of the linear
approximations used. R2LIVE[19] uses a high-frequency
lidar with embedded IMU and a global shutter camera

to realize high-rate iEKF-based odometry and factor
graph optimization to refine poses and visual features
within a sliding window. However, the method com-
bines filtering and optimization directly, which are two
different theoretical frameworks resulting in reduced ac-
curacy. LVI-SAM[20] is the integration of VINS-Mono[6]

and LIO-SAM[8]. The VIO subsystem leverages point
cloud information to perform depth registration, which
normally provides a good guess in the VIO initializa-
tion stage. The LIO subsystem leverages the odometry
information obtained from the VIO to provide an initial
guess for scan-matching. However, the combination of
two subsystems means that each subsystem cannot fully
utilize the correlation among the three sensors, which
degrades the overall performance of the system.

Our proposed method can be classified as a tightly-
coupled method. The most similar concept to ours is
LVI-SAM[20]. The main difference is that our method
handles IMU measurements, visual features, and cloud
features simultaneously within a sliding window as a
whole to achieve better localization accuracy, whereas
LVI-SAM constructs lidar-inertial and visual-inertial
subsystems separately.

2 Optimization-Based Lidar-Visual-
Inertial System

2.1 System Overview
The framework of the proposed system is shown in

Fig. 1, where T
Btc

Btl
is the propagated transformation,

and ba and bω are the IMU accelerometer and gyro-
scope biases respectively. In the measurement prepro-
cessing step, visual features are detected and tracked
between successive images based on the Kanade-Lucas-
Tomasi (KLT) algorithm[21]. Cloud features are ex-
tracted from point clouds based on curvature and
tracked within the local map by 3D lidar, similar to
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LIO-SAM[8]. IMU pre-integration terms are calculated
using all IMU measurements between successive visual
keyframes.

All preprocessed measurements are managed by an
adapted sliding window. When a cloud feature (low-
est frequency feature) arrives, it triggers the spatial-
temporal alignment step. The cloud feature is first
spatially aligned to the body frame using the extrinsic.
Denoting the cloud feature arrival time as tl, after find-
ing the most recent visual feature time tc, we perform
temporal alignment using IMU measurements between
tc and tl.

A nonlinear optimization problem is constructed in-
volving all system states and measurements, which re-
fines the system states (motion and extrinsic) within
the sliding window. If we denote W , B, C, and L
as the frames of world, IMU, camera, and 3D lidar
respectively, then the state variables to be optimized
are defined as the motion states xW

Bti
(i = 0, 1, · · · , N)

within the sliding window range N + 1, camera ex-
trinsic xB

C , 3D lidar extrinsic xC
L , and inverse depth

dj (j = 1, 2, · · · , m) for the observed visual features.
The complete definition of state variables is

x = [xW
Bt0

· · · xW
BtN

xB
C xC

L d1 · · · dm]. (1)

Specifically, xW
Bti

, xB
C , and xC

L are in the forms:

xW
Bti

= [RW
Bti

pW
Bti

vW
Bti

ba,ti bω,ti ]

xB
C = [RB

C pB
C ]

xC
L = [RC

L pC
L ]

⎫
⎪⎪⎬

⎪⎪⎭

, (2)

where, RW
Bti

and pW
Bti

represent the orientation (de-
scribed by a rotation matrix) and the position (de-
scribed by 3D vectors) of the body frame at the time ti,
respectively; vW

Bti
is the velocity vector; ba,ti and bω,ti

are the IMU accelerometer and gyroscope biases at the
time ti, respectively; RB

C and pB
C consist of the extrin-

sic between the camera and IMU; RC
L and pC

L are the
extrinsic between the 3D lidar and camera.

Finally, it should be noted that the visual loop closure
module of VINS-Mono is directly utilized to eliminate
accumulated localization errors[6].
2.2 Adapted Sliding Window

The sliding window mechanism of our system is
adapted from VINS-Mono[6]. The main difference lies
in feature management, as shown in Fig. 2. Consider-
ing the measurement at the lowest frequency (cloud fea-
tures) as reference, it always performs spatial-temporal
alignment with the matching visual feature. However,
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Fig. 2 Adapted sliding window: IMU measurements represented by orange bars, cloud features by green circles, and visual
features by purple circles

because of its higher frequency, a visual feature may
not always find a matching cloud feature (as indicated
by the dashed circle stating “CLOUD NOT FOUND”
in Fig. 2). We next describe the spatial-temporal align-
ment in detail.

When a new frame of cloud feature P L
tl

arrives at the
time ti, it is first spatially aligned to the body frame,
i.e.,

P B
tl

= RB
C (RC

LP L
tl

+ pC
L ) + pB

C . (3)

After spatial alignment, P B
tl

is temporally aligned to

the most recent visual feature time tc:

tc = max{t0, tl, · · · , tN}
s.t. tc � tl

}

. (4)

By denoting T Y
X as the transformation matrix between

the frame Y and the frame X , the propagated transfor-

mation T
Btc

Btl
=

[
R

Btc

Btl
p

Btc

Btl

0 1

]

is computed using IMU

measurements in the time interval [tc, tl]. IMU mea-
surements are shown within the red bracket in Fig. 2.
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The temporal alignment is then formulated as

P B
tc

= R
Btc

Btl
P B

tl
+ p

Btc

Btl
. (5)

After performing these two steps, initial spatial-
temporal alignment is accomplished. However, ba and
bω may change after nonlinear optimization; therefore,
if the change in either bias exceeds a certain threshold,
IMU re-propagation is performed to update T

Btc

Btl
and

realign cloud features.
2.3 Nonlinear Optimization with Online

Calibration
Using the state variables defined in Eq. (1) and sensor

measurements, we formulate a nonlinear least squares
problem to jointly perform motion estimation and on-
line calibration:

x̄ = argmin
x

{‖rp − Hpx‖2+
∑

i∈B

‖rB(ẑBi

Bi+1
, x)‖2

P
Bi
Bi+1

+

∑

(l,j)∈C

ρ(‖rC(ẑCj

l , x)‖2

P
Cj
l

)+

∑

m∈E

ρ(‖rE(ME
l , ẑE

m, x)‖2
P E

m
)+

∑

n∈P

ρ(‖rP (MP
l , ẑP

n , x)‖2
P P

n
)+

‖rex(x, xini)‖2
P ex

}
, (6)

where, ρ(·) is the Huber function[22]; ‖r(·)‖P is the co-
variance matrix of residual r; rp − Hpx denotes the
marginalized prior; rB(ẑBi

Bi+1
, x) and rC(ẑCj

l , x) are the
IMU pre-integration residual and visual reprojection
residual, respectively. The derivations of rB(ẑBi

Bi+1
, x)

and rC(ẑCj

l , x) are presented in the discussions involv-
ing VINS-Mono[6]. In addition, rE(ME

l , ẑE
m, x) and

rP (MP
l , ẑP

n , x) are residuals for lidar edge and pla-
nar features, respectively, which are discussed below;
rex(x, xini) is the residual term of the extrinsic prior.
Equation (6) forms a maximum a posteriori (MAP) es-
timation minimizing the sum of the marginalized prior
and the Mahalanobis norm of all measurement residu-
als, and the C++ library Ceres[23] is used for the non-
linear optimization implementation.

The lidar edge residual rE(ME
l , ẑE

m, x) is defined as
the error between an edge feature point ẑE

m (described
as 3D vector P L

m,E) and a matched edge in the local
edge feature map ME

l under the state x of the frame
l, where ME

l is defined as the union of N edge cloud
frames P W,E

l−i (i = 1, 2, · · · , N) in the world coordinate
system, such that

ME
l = P W,E

l−1 ∪ P W,E
l−2 ∪ · · · ∪ P W,E

l−N . (7)

The edge residual term is defined as the point-to-line
error:

rE(ME
l , ẑE

m, x) =
(P W

m,E − PA) × (P W
m,E − PB)

‖PA − PB‖ , (8)

where PA and PB are the matched edge points in local
map ME

l , and P W
m,E ∈ P W,E

l represents the world co-
ordinates of the edge feature extracted from the current
lidar scan.

Similarly, we define rP (MP
l , ẑP

n , x) as the residual
between a planar feature ẑP

n (described as 3D vector
P L

n,P ) and the matched planar surfel (surface element)
in the local planar feature map MP

l consisting of N

planar cloud frames P W,P
l−i (i = 1, 2, · · · , N), such that

MP
l = P W,P

l−1 ∪ P W,P
l−2 ∪ · · · ∪ P W,P

l−N . (9)

The lidar planar residual rP (MP
l , ẑP

n , x) is defined
as the point-to-plane error:

rP (MP
l , ẑP

n , x) = −nTP W
n,P + d, (10)

where, n and d are the norm vector and constant term
of the matched surfel, respectively; P W

n,P ∈ P W,P
l rep-

resents the world coordinates of the planar feature in
the current frame.

The extrinsic prior residual rex(x, xini) is defined as
the error between initial state xini and current state x:

rex(x, xini) = x � xini, (11)

where � is the SE(3) ‘translation and rotation in 3D’
operator. In addition,

x − xini =

[
ln(RRT

ini)
∨

p − pini

]

, (12)

where ln(·) is the logarithm map defined on the SO(3)
‘3D rotation group’, and (·)∨ is the operator mapping
a skew-symmetric matrix to its corresponding vector.

3 Experiments and Analysis of Results

To verify the performance of the proposed method,
several experiments were carried out on both pub-
lic datasets and real scenarios. The proposed lidar-
visual-inertial odometry is compared with other SOTA
fusion methods including VINS-Mono[6], LIO-SAM[8],
and LVI-SAM[20].
3.1 Experiments on Public Dataset

First, we evaluate the performance of the proposed
system on a public dataset. The handheld dataset
was collected on a baseball field and surrounding area
with a handheld sensor suite consisting of a Velodyne
VLP-16 3D lidar, FLIR BFS-U3-04S2M-CS monocu-
lar camera, MicroStrain 3DM-GX5-25 IMU, and Reach
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RS+GPS[20]. The environment is shown in Fig. 3,
where a lidar-degenerating scene on flat ground is de-
noted by the red ellipse in Fig. 3(a).

To verify the performance of the proposed method,
we compare VINS-Mono[6], LIO-SAM[8], LVI-SAM[20],
and our system using the dataset. Because lidar-based
loop closure is not implemented in our system, we turn
off the lidar-based loop closure of LVI-SAM to en-
sure an equitable comparison. All methods are imple-
mented with C++ and executed on a personal com-
puter with an Intel i7-8700 3.20GHz CPU and 16GB
RAM.

The localization results for the entire area in Fig. 3(a)
are shown in Table 1. All trajectories are evaluated us-
ing the absolute trajectory error (ATE). VINS-Mono

exhibits the worst performance because there are few
distinct visual features that can be used to find a loop;
thus the localization error accumulates. When consid-
ering the flat ground, LIO-SAM cannot extract suffi-
cient structural information, and thus the localization
error is also large, whereas our system leverages visual
features of the flat ground to perform accurate local-
ization. Compared with our system, LVI-SAM is a rela-
tively loosely-coupled system, and although it performs
well, our system outperforms all three methods. The
result shows that our method achieves the lowest root
mean squared error (RMSE) ATE of 5.105m, indicat-
ing that our system is robust, even in the degenerated
flat area. Trajectories for all methods are shown in
Fig. 4, where the ground-truth from GPS positioning
measurements is shown in green.

(a) Handheld dataset environment (b) Flat ground

Fig. 3 Handheld dataset environment
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Fig. 4 Trajectories for different methods using the handheld dataset

Table 1 Comparison of localization results for the
handheld dataset

Method
VINS-

Mono[6]

LIO-

SAM[8]

LVI-

SAM[20]
Ours

RMSE ATE/m 28.470 14.372 7.570 5.105

3.2 Experiments in Real-World Scenario
We further evaluate the performance of the proposed

system using real-world experiments. The experimental
platform is a JiaoLong intelligent wheelchair equipped
with a sensor box, as shown in Fig. 5. The sensor box
includes a Robosense RS-163D lidar (10 Hz), Realsense

D435i camera (30Hz) with embedded IMU (200Hz),
and CHCNAV CGI-210 GNSS/INS device (to provide
the ground-truth, 100Hz), and all of the sensors are not
synchronized beforehand.

Two individual experiments were carried out on the
campus of Shanghai Jiao Tong University at night and
midday (Fig. 6) to evaluate the localization robust-
ness and online calibration effectiveness of the pro-
posed method, respectively. Trajectory of the ground-
truth (GNSS/INS) is the blue line in Fig. 6(a); Fig. 6(b)
shows images collected at the same location under
different illumination conditions (top-right: midday;
bottom-right: night).
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Lidar

GNSS/INS
device

Camera

Fig. 5 JiaoLong wheelchair and hardware set-up

(a) Top view (b) Scene images

Fig. 6 Outdoor experiment area

To evaluate the robustness of our system under low
illumination conditions, we compare our system with
LVI-SAM during the night scene, as LVI-SAM config-
ures the same sensors as ours. It should be noted that
because visual-based methods will fail quickly in dark
scenes, whereas lidar-based methods will not be affected
under low illumination, we do not compare VINS-Mono
and LIO-SAM. The localization results are shown in Ta-
ble 2. Results demonstrate that the accuracy of LVI-
SAM is much worse than that of our system. In fact,
LVI-SAM quickly fails, whereas our system achieves ro-
bust pose estimation. On the one hand, LVI-SAM is
a combination of two subsystems, i.e., VIO and LIO,
which means that it cannot make full use of the correla-
tions among the sensors. Although it possesses a failure
detection mechanism, the indicators reflecting failure
status are relatively simple. Under the low illumination
conditions in our experiment, even when VIO failed to
produce an accurate initial guess of pose for LIO, the
mechanism did not report an error, which finally caused
the entire system to fail. On the other hand, our sys-
tem couples visual features, cloud features, and IMU
measurements into one odometry, which is more robust
when operating in sensor-degenerating environments.
Trajectories for both methods are shown in Fig. 7.

To evaluate the performance of the online calibra-
tion used in our method, another experiment was exe-
cuted at midday. Localization results are listed in Ta-
ble 3, where we denote Ours-Fix as our system with

Table 2 Comparison of localization results for the
real-world experiment

Method LVI-SAM[20] Ours

RMSE ATE/m 17.715 8.782
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Fig. 7 Localization results at night

Table 3 ATE results for online calibration using
the proposed method

Method Max/m Mean/m Min/m RMSE/m

Ours-Fix 4.873 1.739 0.076 1.904

Ours-OC 3.767 1.645 0.052 1.821

fixed extrinsic, and Ours-OC indicates our system with
online calibration. Evaluation metrics include maxi-
mum (Max), Mean, minimum (Min), and RMSE. Re-
sults show that with the help of online calibration, our
system achieves better localization accuracy, especially



76 J. Shanghai Jiao Tong Univ. (Sci.), 2023, 28(1): 70-76

in terms of maximum error.

4 Conclusion

We propose a lidar-visual-inertial odometry tech-
nique that performs robust 6-DoF pose estimations and
can be calibrated online. An adapted sliding window
mechanism is proposed to manage the measurements
arriving at different frequencies from heterogeneous
sensors. Sparse visual features, cloud features, and
IMU measurements are combined to formulate resid-
ual terms, which are then used in a MAP problem to
solve the nonlinear optimization. The experimental re-
sults indicate that our system achieves better localiza-
tion accuracy when facing sensor-degenerating condi-
tions than existing SOTA methods. In the future, loop
closure based on lidar will be implemented to further
improve localization precision.
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