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Abstract: This paper presents a localization system for an autonomous wheelchair that includes
several sensors, such as odometers, LIDARs, and an IMU. It focuses on improving the odometric
localization accuracy using an LSTM neural network. Improved odometry will improve the result of
the localization algorithm, obtaining a more accurate pose. The localization system is composed by a
neural network designed to estimate the current pose using the odometric encoder information as
input. The training is carried out by analyzing multiple random paths and defining the velodyne
sensor data as training ground truth. During wheelchair navigation, the localization system retrains
the network in real time to adjust any change or systematic error that occurs with respect to the
initial conditions. Furthermore, another network manages to avoid certain random errors by using
the relationship between the power consumed by the motors and the actual wheel speeds. The
experimental results show several examples that demonstrate the ability to self-correct against
variations over time, and to detect non-systematic errors in different situations using this relation.
The final robot localization is improved with the designed odometric model compared to the classic
robot localization based on sensor fusion using a static covariance.

Keywords: mobile robot; self-localization; odometry; sensor fusion; long short-term memory

1. Introduction

Auto-localization is an essential component of autonomous robots. It enables the robot
to navigate safely and accurately by providing real-time information about its pose and
surroundings. To achieve this, auto-localization systems typically use fusion algorithms
to combine data from multiple sensors, such as cameras, LIDARs, and GPS, providing
a robust and accurate localization module even in dynamic environments. The fact of
receiving several data based on different operating principles, allows the system to become
resilient to sensor failure, ensuring that the robot can continue to navigate effectively.

There are many fusion techniques used in auto-localization, including the Kalman
filter. This last one requires each sensor to provide a noise covariance, which describes its
measurement accuracy and determines its influence on the final localization. For non-linear
systems, there are variants of the Kalman filter, such as the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF). The EKF linearizes the system using the Taylor
series, but it can be less effective in highly non-linear systems [1]. The UKF, on the other
hand, uses the unscented transform to fit the probability density distribution of non-linear
equations, which allows it to avoid the loss of higher-order terms that can occur with
linearization [2]. This makes the UKF a simple, fast, and precise option for non-linear
systems [3–5].

In order to achieve accurate state estimation for auto-localization systems, it is not
enough to simply use the right fusion techniques. The reliability of the sensor data is also
crucial. Sensors can be easily affected by noise, and overcoming this uncertainty is essential
for improving the efficiency of the auto-localization.

One of the key sensors used in wheeled mobile robots is the odometric sensor, which
is a precise, cheap, and easy-to-process sensor. However, the pose calculated by this sensor
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is incremental, which can lead to the accumulation of small deviations over time. This
can result in significant errors in the pose estimation. Additionally, the odometric sensor
is sensitive to random errors, such as drifting, which can make it difficult to track and
potentially cause inaccurate poses.

Considering these limitations and how artificial intelligence is one of the fastest-
growing technologies in mobile robotics, this paper presents the application of neural
networks to odometry, improving the data accuracy and also reducing the sensor errors.
In this way, the encoder data are processed by a neural network to include effects that a
static model does not represent.

This method is implemented in an autonomous wheelchair that has been designed
to transport people with severe disabilities [6]. The wheelchair is controlled by the user
indicating the destination, while the navigation module will automatically execute the
optimal path, using the sensors for the reconstruction of the environment and the obstacles
detection [7]. In this way, to achieve safe autonomous navigation, the localization is an
essential part of the chair movement, since its failure would affect all other subsystems.

The wheelchair has the following set of sensors:

• Odometry: it estimates the wheel robot movement by optical encoders coupled to the
motor. In the prototype, the resolution of the encoder is 8800 pulses per revolution
with a resolution of 0.04 degrees. The pose is calculated by the wheel movement
knowing the radii and distance between them.

• Light Detection and Ranging (LIDAR): they are two Sick TiM 551 sensors, with a
maximum distance of 10 m, an angular resolution of 1 degree and a viewing angle
of 270 degrees. The relative movement of the robot can be calculated using two
consecutive laser scans. The measurement accuracy is estimated by the ICP (Iterative
Closest Point) algorithm [8,9]. It will return a low covariance value if two consecutive
sweeps have many singular points that ensure their precise matching. However, if
they have few singular points, the covariance will be high.

• Inertial Measurement Unit (IMU): an MPU9250 sensor which consists of an accelerom-
eter, a magnetometer and a gyroscope. Our tests indicate that the magnetometer an the
accelerometer are too imprecise to consider its measurements so only the gyroscope
will be used. Likewise, the sensor covariance is estimated by setting a static value.

The robot state x̃k(V, W) is estimated by a UKF. In this case, the algorithm estimates the
state at the next instant (k) by using the uniform rectilinear motion model and considering
the sensor data zk(V, W) and their covariances (COVv/w

k )z as measurements. The output of
the filter not only includes the estimated robot state but also its covariance (COVv/w

k ) f ilter,
which measures the precision of the filter at that moment. Moreover, the pose (X, Y, θ) is
calculated by integrating the output state of the filter. Figure 1 shows the wheelchair and a
schema of the implemented localization where our technique is applied.

Figure 1. The localization system proposed for the wheelchair.



Sensors 2023, 23, 961 3 of 17

Accordingly, our paper focuses on the following key points: the robot self-localization
problem applied to autonomous wheelchair and the LSTM (long short-term memory)
neural network technique to improve the odometric sensor. The paper is structured as
follows. Section 2 includes a review of the studies that have been completed prior to this
work. Section 3 describes the wheelchair kinematics model. Likewise, Section 4 explains the
methodology carried out to improve the accuracy of the odometric sensor. The experiments
using the designed model are shown in Section 5, and the conclusions are summarized in
Section 6.

2. Previous Work

The study of assistive robots is gaining attention for the possible social, economic, and
scientific applications. There are investigations that collect the design of different types of
autonomous wheelchair. Ref. [10] designs an autonomous wheelchair capable of segment-
ing passable areas and anomalies on the roads through deep learning. Refs. [11,12] show
the characteristics of two wheelchairs for the transport of people in predefined hospital. Ref.
[13] describes an adaptive neural control system for governing the movements of a robotic
wheelchair. Likewise, [14,15] use an ROS (Robotic Operative System) in the wheelchair for
the architecture of their modules.

Regarding novel techniques in the current literature on self-localization, there have
been significant advances in the application of artificial intelligence (AI) to mobile robotics.
This has led to the development of more intelligent and autonomous robots that can navi-
gate complex environments and complete tasks more efficiently and accurately. Ref. [16]
describes a survey of the different matching learning techniques for motion planing and
control for mobile robots. In [17,18], a track fusion algorithm based on the LSTM method
are proposed achieving better results in the fusion effect. Likewise, Refs. [19,20] present a
deep reinforcement learning approach for the motion planning of autonomous robots in
dynamic surroundings.

Machine learning is also applied in the odometry pose estimation to improve the
results of using the traditional method by geometric equations. In [21], a feedforward
neural network model is used in order to learn the odometric model from data. However,
these sensors contain errors that need to be corrected in order to obtain a reliable pose.
Real-time calibration of the structure’s parameters is important to adapt to any changes in
the model over time. There are various techniques in the literature that attempt to adjust
these parameters. Refs. [22,23] solves the car odometric systematic errors by using the final
pose difference in a predefined path. Other works try to correct them in real time by the
design of an AKF (Augmented Kalman Filter) [24] or by estimating the deviation of the
radius nominal value by using a marginalized particle filter (MPF) [25].

With respect to non-systematic errors, such as slip, there are some methods that
attempt to reduce them. Ref. [7] uses a Doppler speed sensor in order to measurement the
odometric noise depending on the data quality and obtain a dynamic odometric covariance.
Likewise, Refs. [26,27] try to correct them by reducing their influence in the output filter.
They design a real-time outlier detection in the observations, applying a saturation function
to the residual. Moreover, Refs. [28,29] try to avoid them by using the dynamic structure
model. This last one proposes an slip ratio estimator based on the motion equations,
the input torque and encoders data.

Taking into account the AI advances in the field of self-localization and the previously
mentioned limitations of the odometric sensor, this paper presents a new approach based
on LSTM networks for predicting odometry poses. The proposed system is able to self-
calibrate in real-time through network retraining and another LSTM network is used to
learn and compensate for non-systematic errors in the final localization.

3. Robot with Differential Kinematics

The wheelchair has differential kinematics. It consist of two drive wheels on a common
axis. The robot can move and turn thanks to the independent wheel driving forwards
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or backwards. Figure 2 shows the scheme of a differential mobile robot with radii Rr/l
and a distance D between them. The robot movement between two time instants would
correspond to a circle trajectory with radius ρ around the point ICC (Instantaneous Centre
of Curvature). From the wheel speeds Vr/l , it is possible to estimate the linear (V) and
angular (W) robot velocities, as well as its pose (X, Y) and its orientation (θ).

Figure 2. Differential kinematics schema for a mobile robot.

Figure 2 shows the robot wheel dynamics, where T corresponds to the motor torque
that generates a linear (Vr/l) and angular (Wr/l) velocities. A friction force (Fr) opposes to
the movement, it can have a significant impact on the behavior and movement of the robot.
These forces depend on the environment in which the robot operates, and small variations
in their values can affect the robot’s movement. For example, certain types of robots, such
as wheeled mobile robots, are very sensitive to small changes in the speed of each wheel.
Even minor errors in the relative speeds between the wheels can affect the robot’s path.
These robots are also sensitive to small variations in the ground plane, and they may need
additional wheels (swivel casters) for support.

3.1. Wheel-Encoder-Based Traditional Odometry

The wheelchair’s pose at each instant can be obtained from the wheel speeds following
the scheme of the Figure 2 by using odometric equations. In this case, we can estimate the
respective wheel speeds by using the counts provided from the encoder sensor as follow,

V l
ok =

2πRl4ctl
k

encRes4T ; Vr
ok =

2πRrcountr
k

encRes4T (1)

where V l/r
ok corresponds to the left and right wheel velocities. 4ctl/r

k are the number of each
encoder ticks that the electronics receive in time period (4T), and encRes is the encoder
resolution in one turn. The wheels parameters are the corresponding radii Rr and Rl and
the distance between the wheels D.

Considering the circle trajectory with radius ρ around the ICC point, we can estimate
the linear (Vk) and angular (Wk) robot velocities (Equation (2)). This calculation is obtained
by geometric equations knowing that the linear velocity of a circumference multiplied by
the radius is equal to the angular velocity.

Vr
ok
r = Wk; Vl

ok
ρ+D = Wk; Vk

ρ+D/2 = Wk

Wk =
(Vl

ok−Vr
ok)

D ; Vk =
(Vl

ok+Vr
ok)

2

(2)
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Once the current robot velocities (V, W)k has been estimated, it is necessary to inte-
grate, considering the time interval4T, to obtain the estimated robot pose (X, Y, θ)k+1 at
each moment,

θk+1 = θk + Wk4T
Xk+1 = Xk + Vkcos(θk)4T
Yk+1 = Yk + Vksin(θk)4T

(3)

3.2. Wheel-Motion Pattern Effect

The behavior of wheeled mobile robots depends on the environment characteristics.
The contact type between the wheel and the ground and its friction force value significantly
influence the robot’s movement.

In ideal conditions, regardless of the terrain type, the robot speed depends on the
motor torque and its power. An increase in the motor power will lead to an increase in
angular wheel speed that will be translated into linear velocity. The opposite case is given
to reduce the robot speed. However, there are situations where, depending on the current
robot speed and the adhesion degree with the terrain, the robot can slip or skid, producing
two situations. The first is due to the motor’s dead zone that does not produce enough
torque to move the wheel, causing the wheel to stall instead of turning with the robot
in motion. The second occurs when the wheel rotates freely, slipping and without any
robot movement.

From this assumption, we anticipate that there is a logical correlation between the
angular wheel speed and the motor power consumed. This relation disappears when
non-systematic errors occur due to the type contact with the ground.

Figure 3 shows graphically an example of the relationship between the motor power
and its angular velocity, given by the encoder sensor counts. In Figure 3a, there is no
significant slip, following wheel speed and motor power, a similar pattern, increasing
and decreasing in a correlated way. However, in Figure 3b there is a slip, highlighted by
the green lines, where, although the power increases, the real angular velocity decreases,
contrarily to the expected effect. Using this property, the motor power can be used to detect
non-systematic errors in the odometric system. There is not a clear mathematical relation
between motor power and speed in order to detect non systematic errors, so a Neural
Network is used to learn this relation from data.

Figure 3. Motor power vs. encoder counts for both wheels.(a) Without slipping and (b) with slipping.
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4. Odometry System Proposed

In this localization system, the data accuracy provided by the odometric sensor is
improved using neural networks that learn from the robot behavior. It avoids using
manually estimated parameters, improving and correcting some errors, which in the
mathematical model are not appreciable and, therefore, difficult to adjust.

The proposed model consists of two neural networks that have, as input, the incre-
mental encoder counts (4ctr/l

k ) of the right and left wheels, and provides, as output, the
robot state, that are the linear (Vk) and angular (Wk) speeds for the respective network.
We decided to use two neural networks for each output instead of a single one in order
to allow each network to specialize in predicting a specific output and converge more
quickly and easily. This is because in the following sections we will have to retrain them
online and we need the network to quickly adapt and converge to any changes that may
occur in the model. Using a single network with two outputs makes retraining much
more difficult and it does not adequately adjust to our desired requirements. This has also
been tested experimentally, and we found that the architecture proposed resulted in more
precise execution.

The training has been carried out offline by creating a dataset from the information of
multiples paths with different characteristics. During the training, the speed data provided
by a velodyne HDL 32 sensor at each moment have been collected as the desired output of
the robot state. It has been installed in the upper part of the chair and consists of 32 LIDARs
with a precision of 2 cm that enables the calculation of the state with high reliability using
the LOAM slam algorithm [30,31].

We decided to use recurrent networks, specifically, the LSTM-type [32] was chosen
over other models, such as MLP, because of its ability to learn and remember patterns over
time. This is particularly useful as it can take into account long-term patterns in the encoder
data sequence. Moreover, during the neural network design, we compared the use of other
models using the wheelchair dataset and it demonstrates a better effectiveness during
training and validation. For the LSTM network, it has been considered a time window
of 20 samples that are provided by the sensor at a frequency of 10 Hz. Figure 4 shows
the structure carried out to obtain the linear (Vk) and angular (Wk) velocity at each time
k. In order to train the designed model, pre-processing data are necessary. First, the raw
data were resized into a tensor whose dimension was (samples, time step, features), which
in our case was (10,115,20,3). The inputs at one moment correspond to the encoder count
increments and the speed at the previous time (4ctr,4ctl , V/W)k−1. The outputs are the
lineal Vk and angular Wk speeds of the robot. Moreover, the input must be normalized to
the same scale by eliminating the mean and scaling to a standard deviation equal to 1. So,
the samples of an input type are pre-processed using:

z = s−µ
σ with µ = 1

N

N

∑
i=1

si σ =

√√√√ 1
N

N

∑
i=1

(si − µ)2 (4)

where z is the new normalized value and s is the raw sample. µ is the mean and σ is the
standard deviation of the input, and N correspond to the samples dimension.
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Figure 4. Schema of the odometric model proposed using LSTM networks.

Regarding the implemented LSTM layer, it analyzes an input data stream and produces
a prediction. In this structure, data are introduced sequentially in an LSTM unit (cell) that
can be divided into different parts. In each cell, xt corresponds to the input at the current
time, ht−1 is the previous cell output and Ct−1 is the cell state. First, the forget gate controls
how much information about Ct−1 is relevant from the inputs ht−1 and xt, by using a
sigmoid layer (σ),

ft = σ(ω f [ht−1, xt] + b f ) (5)

where ω f represents the weight matrix and b f the bias. ft value in each dimension is in the
range (0, 1). The information will be forgotten when ft is close to 0, and the information
will be retained when is close to 1.

Subsequently, the gateway is responsible for processing the current input and updating
the relevant information. It has two parts, the first (it) controls how much of the input is
stored using a sigmoid layer and the second (C̃t) generates a new current state candidate
by using the tanh function,

it = σ(ωi[ht−1, xt] + bi) C̃t = tanh(ωc[ht−1, xt] + bc) (6)

where ωi and ωc represent weight matrix and bi and bc represent the bias. From this
information, the cell state can be updated from the previous one (Ct−1) and from the new
generated candidate (C̃t),

C̃t = ft ∗ Ct−1 + it ∗ C̃t (7)

Finally, the output gate generates the cell output (ht) from the selection of the relevant
information in the current cell state,

ht = σ(ωo[ht−1, xt] + bo) ∗ tanh(Ct) (8)

where ωo is the weight matrix and bo its bias.
Therefore, considering the Figure 4, the data are processed and normalized, then

divided into a 70% of training and a 30% as test data. In this case, the LSTM is 1 layer with
5 neurons in each cell, chosen ad hoc, providing the best training and validation results
for different tests. This state is passed to a full connected output layer with 1 neuron for a
single output and linear activation. Regarding the training, the ADAM optimizer algorithm
and the MAE (mean absolute error) metric has been used with a learning rate of 0.001,
a batch size of 10, 150, and 200 epochs depending on the model. Figure 5 shows the loss in
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both training and validation, using the MAE errors obtained with respect to the epochs for
each model, V and W.

Figure 5. Loss function per epochs using the MAE for the angular and linear velocities.

4.1. Odometry Error Covariance Modeling

The odometric system can be improved using an LSTM network to detect non-
systematic errors that occur in unpredictable environments. For example, local bumps,
holes, rocks, and non-level terrain can cause non-systematic errors. Using gyro sensors to de-
tect these errors has shown good performance, as demonstrated in previous research [33,34].
However, there are other cases that are more difficult to detect, such as wheel slippage on
level terrain. In these cases, a non-systematic detection method is necessary.

As explained in the first section, the fusion algorithm estimates the robot localiza-
tion from different sensors, where each measurement is defined with a covariance that
characterizes its confidence. In the case of odometry, it takes the speed covariances
(COVV

k , COVW
k )odom. Then, the filter prioritizes the measurements with a small covari-

ance and avoids those with greater values. So, it is important to dynamically adjust
the covariance of the odometric sensor to assign a high number in the presence of non-
systematic errors and, thus, reduce its influence on the final localization result, compared to
other sources. This variable covariance is designed based on the assumptions in Section 3.2,
where we demonstrate how the wheel speeds depend on the motor torque and its power,
and how the adhesion degree with the terrain causes the wheel to slip, affecting this
dependence. Therefore, we need a system that is able to learn the relationship between
the power of each wheel and its corresponding angular velocity in order to detect when
this relationship is not fulfilled and is in an error state. In this case, the system will act
accordingly by assigning a very large static value to all elements in the covariance matrix,
considering that they are stochastically independent random variables.

Figure 6 shows the method implemented on the wheelchair for this purpose. It con-
sists of an LSTM neural network that takes as input the powers of each wheel (Pr, Pl),
the encoder increment counts (4ctr,4ctl), and the sensor covariance in the previous mea-
surements (COVV

k−n), (COVW
k−n). As output, it is able to estimate the next step covariance

(COVV
k ), (COVW

k ). The data have been preprocessed using the same method discussed
earlier, organized into time windows with memory of 20 samples, and normalized to have
a standard deviation of one and a mean equal to zero. In our case, several samples have
been collected with different slip types and whose input dimension is (12442,20,5), which
have been divided into 70% for training and 30% for validation. The training has been
carried out offline by using the velodyne sensor data. The network structure is a LSTM
layer consisting of 10 neurons and a full connected output layer with 1 neuron for a single
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output and ReLU activation. We considered the ADAM optimizer algorithm and the MAE
metric with a learning rate of 0.001, 120 epochs, and a batch size of 10. A de-normalization
process is required in the final phase to obtain the estimated covariance data.

Figure 6 also shows the variance of the angular odometry velocity estimated by our
designed network with respect to time, where a slippage happens (non-systematic error) in
the period 400–405 s. As we can see, the covariance remains at a low value when the sensor
operates correctly and increases considerably when it is in an error state. This information
allows the UKF filter to weight the input data in real time. If the LSTM Network detects
a failure condition, the covariance will increase, so the data coming from odometry will
be considered by the filter with a small weight. The odometry data together with this
variable covariance will be used in a subsequent filter to be fused with other sensors and
its influence on the final localization result will depend on that estimated covariance.

Figure 6. Scheme implemented to avoid non-systematic odometry errors, and the evolution of the
angular velocity variance when a slippage happens in an example path.

4.2. Real Time Auto-Calibration

Real-time calibration of the model is crucial when designing an odometry system. It
must be able to detect and correct any systematic error that may arise in relation to the
offline-trained model. For example, a sudden change in the model may occur due to a shift
in the weight of passenger, which can significantly impact the model accuracy. Over time,
other situations, such as a change in tire pressure, can also affect the model performance,
causing errors in the estimated localization. In order to ensure high accuracy, the system
should be able to adapt to these changes in real-time by fine-tuning its model.

The scheme used for this calibration is shown in Figure 7. In this case, the neural
network models for both angular and linear velocity estimation are retrained in real-
time using input data from encoders (4ctr,4ctl) and the output from the UKF filter
speeds (V, W)k. It is an iterative process where the data are stored in real-time, and when
300 samples are collected, the network weights are adjusted accordingly. These samples are
only stored whenever the covariance of the filter (COVFilter) and the variable covariance
of the odometry (COVOdom) are small, which ensures that the data used for re-training
are reliable and accurate. In this way, the model is changed only when the robot is well
localized, avoiding introducing errors in the retraining process.

Figure 7 also shows the error in angular velocity over time with respect to the ground
truth (velodyne) when there is a change in the model, causing the error to increase. These
graphs compare the behavior of the odometric system with and without re-training. With-
out considering the calibration, the model does not detect any change and the error grows
and remains constant. In case of the real-time calibration, the system is able to detect these
changes and adjust the model by retraining, reducing the relative error with respect to the
velodyne sensor.
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Figure 7. Retraining scheme for odometric model calibration. The error using the model with
real-time retraining is smaller than using the model without it.

5. Results

The validation of the implemented wheelchair localization system was demonstrated
through the study and analysis of several paths with different characteristics. These exper-
iments were carried out in the corridor of the robotics laboratory at the University of La
Laguna. In addition, to evaluate the proposed odometric model, different parameters and
speeds were used on the paths to demonstrate the functionality of its variable covariance
and the online calibration, as well as to ensure that a wide range of circumstances were
covered. The effectiveness of the calibration was tested by varying the passengers and
altering the diameters of the wheels through inflation. Furthermore, in the experiments to
detect errors from the environment, the wheelchair speed has been increased in various
sections and we have used other wheels with greater wear to generate slipping. We have
also created these situations by applying pressure on one side, preventing the rotation of a
wheel while allowing the other to turn freely.

On the one hand, Figure 8a,b shows two different example paths where the estimated
pose of the odometry using LSTM networks (green line) and the pose obtained using
traditional odometry (blue line) have been compared with the reference data from the
velodyne (black line). As can be observed, the use of our model significantly improves the
estimated pose accuracy, providing results that are closer to the ground truth.
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(a)

(b)

Figure 8. Paths to validate the odometry model proposed. Odometry with LSTM networks (green),
traditional odometry (blue), and ground truth (black).

This fact is also demonstrated numerically in Table 1. In this case, multitude of
trajectories have been executed and the odometry error with respect to the velodyne has
been collected for both cases, using our LSTM network and using traditional model. We
have analyzed the errors at each time in the velocities (V, W) and in the robot pose (X, Y, θ).
The table shows the mean squared error (RMSE), the mean absolute error (MAE), and the
R squared, which are defined by the following formulae:

RMSE =
√

1
n ∑n

i=1 (ŷi − yi)2 MAE = 1
n ∑n

i=1 |ŷi − yi| R2 = 1− ∑n
i=1(ŷi−yi)

2

∑n
i=1(yi−ȳ)2 (9)

where ŷi is the predicted value, yi is the true value, n is the number of samples, and ȳ is
the mean value of the true values. Based on the obtained values, the errors of our system
are smaller than the traditional model. Therefore, despite the small difference between
the errors, it demonstrates the effectiveness of our model in improving the odometry
localization of the wheelchair.
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Table 1. Error values obtained by comparing the LSTM odometry model and the traditional odometry
with respect to the velodyne data.

V (m/s) W (rad/s) Pose
X,Y (m) θ (rad)

LSTM odometry
MAE 0.04646 0.08103 1.56692 0.07131
RMSE 0.10282 0.1791 2.076499 0.0864
Rscore 0.799122 0.84129 0.9569 -

Accuracy % 79.91% 84.13% 95.69% -
Global Model Accuracy (%) 86.57%

Traditional odometry
MAE 0.062744 0.102723 1.83725 0.1720
RMSE 0.1237 0.200329 2.48464 0.2151
Rscore 0.6734 0.7953 0.9389 -

Accuracy % 67.43% 79.53% 93.89% -
Global Model Accuracy (%) 80.2%

On the other hand, the proposed real-time calibration model has been studied in
several paths and with different changes in the system that have occurred both initially and
during it. Figure 9 shows two examples where the characteristics of one wheel have been
intentionally modified from the initial model to represent the odometry behavior when a
systematic error arises. It causes the pose to deviate, generating an error in the velocities
that, when integrated, accumulates over time in the pose. We compared the behavior
of three different odometry models: the neural network-based odometry with real-time
retraining (green line), odometry with neural networks but without retraining (yellow line),
and traditional odometry (blue line). As reference, we consider the velodyne(black line).

(a)

(b)

Figure 9. Example paths to validate the calibration model by retraining in real-time. (a) Shows the
position “X, Y” and (b) shows the orientation “θ”.

This figure shows how, thanks to retraining, the model is adjusted to new changes and
corrects the pose increments of the trajectory, approaching the velodyne. Table 2 collects
the errors obtained from several experiments comparing the proposed odometry model
with and without retraining. Based on these results, the neural network-based odometric
model and traditional odometry are unable to perceive these changes, increasing the error
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indefinitely. If we consider the calibration, the error in the velocities is reduced. However, it
does not directly correct the error pose, but rather gradually improves the pose increments
at each time interval. Moreover, we are interested in correcting the velocities, which will be
the input measurement data for the filter in estimating the final pose of the robot.

Table 2. Error values obtained by comparing the LSTM-odometry model with and without retraining
considering the velodyne data as reference.

V (m/s) W (rad/s) Pose
X,Y (m) θ (rad)

LSTM Retraining
MAE 0.0384577 0.06484 4.27604 0.56772
RMSE 0.069028 0.115653 8.34219 0.629522
Rscore 0.848956 0.71317 0.25404 -

Accuracy % 84.9% 71.32% 25.4% -
Global Model Accuracy (% ) 60.54%

LSTM No retraining
MAE 0.05496 0.07919 5.156277 1.5677
RMSE 0.081812 0.22197 8.90407 1.7094
Rscore 0.67216 0.57198 0.03743 -

Accuracy % 67.22% 57.2% 3.74% -
Global Model Accuracy (%) 42.7%

Regarding the process implemented to reduce the influence of non-systematic errors,
the output of the UKF filter has been studied in various experiments with different slip
types. Figure 10 shows a path example where a considerable non-systematic error occurs.
The green line represents the pose estimated by the odometry, the blue one the LIDAR,
the red is the UKF localization, and the black line defines the ground truth. This error
type causes the odometry pose to deviate significantly, and since it is a random error, it is
impossible to correct its pose. The proposed solution is to modify the odometry covariance.
During the corridor, the LIDAR sensor has a high covariance due to the low number of
possible matching points and its estimated pose could be erroneous, however the odometry
provides accurate results. In turn, due to the slip, the error in the odometric sensor grows
and the LIDAR is more accurate.

Figure 10a shows the UKF-filter output when the traditional odometry is used with
a static covariance manually adjusted. The result is worse since it either relies too much
on odometry, underestimating the LIDAR or vice versa. Figure 10b shows the localization
result of the UKF filter with the proposed LSTM neural network with non-systematic error
detection and dynamic covariance estimation. During the slip, the power of the motors and
wheel speed is not correlated, the error classifier detects a non-systematic error during the
turn, and increases the covariance, reducing the odometry influence on the final localization
during that error state. The final pose of the filter is close to ground truth, and clearly better
than without the detector.
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(a)

(b)

Figure 10. Localization system for a path where the red line is the filter output, the green is the
odometry, the blue the LIDAR, and the black line for the ground truth. (a) Shows the position “X,
Y” and (b) shows the orientation “θ”. (1) Odometry with static covariance and (2) odometry with
variable covariance.

In addition to the graphical study, the errors of the UKF filter, with respect to the
velodyne, have been collected in different experiments for both cases, using traditional
odometry with static covariance and the proposed odometry with variable covariance.
Table 3 shows the metric values used for its comparison that are MAE, RMSE, R squared,
and we have also considered the normalized estimation error squared (NEES) using the
filter results and the estimated odometry poses against the ground truth. This metric takes
into account the state covariance and is defined as:

NEES = 1
n ∑n

i=1(xi − x̂i)
T P−1

i (xi − x̂i) (10)

where n is the number of samples, xi is the true state, x̂i is the estimated state, and Pi is the
covariance matrix for the ith sample.

Therefore, the proposed odometry model with a variable covariance has been shown
to improve the accuracy of the UKF filter in the presence of non-systematic errors. This has
been demonstrated through graphical analysis and by comparing the errors of the UKF
filter using the proposed odometry model and the traditional odometry model with static
covariance. The NEES metric has also been used to evaluate the accuracy of the filter, with a
lower NEES value indicating better performance.
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Table 3. Error values obtained by comparing the UKF filter output with respect to the velodyne data
in two cases. Using the odometry model with variable covariance and with static covariance.

V (m/s) W (rad/s) Pose
X,Y (m) θ (rad)

LSTM odometry
MAE 0.04125 0.03149 1.4021 0.0547
RMSE 0.03804 0.05464 2.8699 0.07037
Rscore 0.83329 0.80617 0.9279 -

NEESOdom 1087 1982 - -
NEESFilter 1614 2963 - -

Accuracy % 83.33% 80.62% 92.8% -
Global Model Accuracy (%) 85.58%

Traditional odometry
MAE 0.05333 0.0452 2.0592 0.38356
RMSE 0.0661 0.071619 5.3323 0.4759
Rscore 0.7697 0.67634 0.678483 -

NEESOdom 6439 7650 - -
NEESFilter 5986 4779 - -

Accuracy % 76.97% 67.63% 67.85% -
Global Model Accuracy (% ) 70.82%

6. Conclusions

This work presents a new odometry system implemented in an autonomous wheelchair.
It consists of LSTM neural networks that are able to estimate the robot speed using the data
from the encoder sensor. The real-time retraining allows the system to self-calibrate and
adapt to changes in the defined model, further improving its performance. Likewise, it is
able to reduce the influence of some non-systematic errors by training LSTM networks that
learn the relationship between the power of the wheels and their angular velocity to design
a variable covariance.

In conclusion, this system significantly improves the accuracy of the wheelchair
estimated pose by the UKF filter, compared to the use of classic odometry methods. This is
demonstrated through graphical analysis and numerical comparisons of the errors between
the different methods. The results show how our system errors are smaller and closer to the
velodyne data, providing more accurate final robot localization, particularly in presence
of systematic and non-systematic errors. Overall, the proposed wheelchair localization
provides a more robust solution for state estimation in challenging environments.
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