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Human activity recognition (HAR) has attracted considerable research attention in the past decade with the development of
wearable sensor technology and deep learning algorithms. However, most of the existing HAR methods ignored the spatial
relationship of features, which may lead to recognition errors. In this paper, a novel model based on a modifed capsule network
(MCN) is proposed to accurately recognize various human activities. Tis novel model is composed of a convolution block and a
capsule block, which can achieve end-to-end intelligent recognition. In the meantime, the spatial information among features is
preserved through a dynamic routing process. To validate the efectiveness of the model, a human activity dataset is constructed by
placing an inertial measurement unit (IMU) on the calf of the volunteers to collect their activity data in daily life, including
walking, jogging, upstairs, downstairs, up-ramps, and down-ramps. Te recognition accuracy of this novel approach can reach
96.08%, which performs better than the convolutional neural network (CNN) with an accuracy of 91.62%. In addition, it is
evaluated on two public datasets named WISDM and UCI-HAR, and the accuracies achieve 98.21% and 95.28%, respectively,
which presents higher accuracy than the reported results obtained from benchmark algorithms like CNN. Te experimental
results show that the proposed model has better activity detection capability and achieves outstanding performance for HAR.

1. Introduction

Human activity recognition (HAR) is the foundation of
many felds and has become a research hotspot in the past
decade on account of its signifcance. At present, this
technology has been widely applied in the felds of smart
homes [1], indoor navigation [2], identity recognition [3],
human-machine interaction [4], gait analysis [5], and the
Internet of Healthcare Tings [6, 7]. Te identifcation ac-
curacy of corresponding activities has signifcant efects on
these applications. In order to improve the accuracy of
recognition, various sensor techniques have been employed
to collect activity data and diferent approaches have been
constructed according to data features to identify the
activities.

Te activity data collection methods are mainly divided
into two groups: video images [8] and wearable sensors [9].
Te former acquires a series of human motion images
through cameras and extracts human motion feature in-
formation from these images.Te commonly usedmethod is
the image processing method based on the Kinect sensor,
which can extract the depth image features of the moving
target [10]. Te latter one is to place the sensors on a specifc
part of the wearer’s body to obtain the movement infor-
mation. Wearable sensors mainly include surface electro-
myography (sEMG), plantar pressure sensors, and inertial
measurement unit (IMU) or sensor fusion to obtain more
comprehensive motion information.

However, it has some disadvantages and limitations to
the aforementioned data collectionmethods [9].Temethod
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based on video images needs to be completed under labo-
ratory conditions since a specifc background is required,
and the price of cameras is usually expensive. Te sEMG
sensors need to be in close contact with the wearer’s skin, so
it is easily afected by sweat and causes discomfort to
wearers. Plantar pressure sensors are susceptible to uneven
ground. With the development of sensor technology, IMU is
becoming more and more popular due to its advantages of
lightness, cheapness, high precision, and easy wearing [11].
In addition, IMU sensors are also embedded in mobile
devices such as smartphones and smartwatches that are
widely used by people [6, 7, 12]. Obviously, IMU is a good
choice to collect activity data.

According to the feature of diferent activity signals
obtained by diferent approaches, researchers have proposed
diferent activity recognition methods. Machine learning
algorithms are popular at the beginning, such as support
vector machines (SVM) [13], random forest (RF) [14], linear
discriminant analysis (LDA) [13], Gaussian mixture model
(GMM) [15], and extreme learning machine (ELM) [16].
Tahir Hussain et al. [13] proposed a new feature extraction
method to process sEMG, using two classifcation models of
SVM and LDA to identify the motion intentions of four
subjects. Te method was more robust compared to the
existing methods, but needed eleven sEMG sensors located
on the lower limb muscles. Moreover, as mentioned earlier,
the approaches of multisensor fusion are also efective for
activity recognition [12]. Xi et al. [16] proposed a feature-
level data fusion method and double parameter Kernel
optimization based on an extreme learning machine (DPK-
OMELM) to identify activity types by fusing sEMG signals
and plantar pressure signals and achieved high recognition
accuracy. Chen et al. [5] proposed a novel activity recog-
nition algorithm based on human gait characteristics to
classify six activities using a wearable smart insole system
integrating a plantar pressure sensor and IMU, which had a
low computational cost and higher accuracy, and introduced
gait labs into daily activities.

However, the traditional machine learning methods rely
on manually extracting features, which requires researchers
to have extensive expertise and experience in related felds,
whereas, there is currently no standard on how to manually
extract features [17]. As a result, these methods are time-
consuming and even unachievable.

Deep learning based on neural networks has been
proposed since 2006 [18], and it has achieved outstanding
performance in many challenging felds such as computer
vision, natural language processing, speech recognition, and
autonomous vehicles. Neural networks, including con-
volutional neural networks (CNN) and long short-term
memory networks (LSTM) exhibit powerful feature ex-
traction capabilities and can automatically extract features
from raw data for classifcation and other tasks, bringing
great convenience to researchers [19].

Terefore, combining activity information obtained by
IMU and CNN or LSTM to studyHAR has become a new and
promising trend [20]. Chen et al. [21] proposed a recognition
method based on LSTM-CNN, which combined the ad-
vantages of LSTM and CNN models, and used the collected

IMU motion information to classify fve common activities
and achieved 97.78% average accuracy. Aiming at the com-
plexity of the traditional activity recognition methods, Zhu
et al. [22] proposed a new deep convolutional neural network
model denoted as DDLMI, which classifed fve types of
terrain by collecting the IMU information on the thigh and
calf and the recognition accuracy rate can reach 97.64%.
Semwal et al. [23] used artifcial neural networks (ANN),
extreme learning machines (ELM), and deep neural networks
(DNN) to identify six kinds of motion information collected
by accelerometers. DNN achieved the best recognition ac-
curacy. Hu et al. [24] used six IMU installed on the body to
train three deep-learning models, all of which achieved more
than 90% accuracy. Te experimental results further proved
that the use of deep learning models and wearable IMU
sensors had great potential in gait analysis. Semwal et al. [25]
proposed a deep learning framework based on ensemble
learning to classify the collected IMU information for seven
gait activities. Te experimental results showed that the
framework outperformed other methods. Bozkurt [26] used
various machine learning methods and deep learning
methods to test the IMU dataset, and the results showed that
the deep learning method achieved the best performance.

Although CNN and LSTM have shown excellent per-
formance in the feld of HAR, they still have some disad-
vantages as follows: (1) the pooling layer of CNN loses some
information, which may have an impact on the classifcation
results; (2) CNN has translation invariance, so the gener-
alization ability is poor; and (3) LSTM ignores spatial fea-
tures and parallel processing is poor. In response to these
shortcomings, Sabour et al. [27] proposed a capsule network
(CapsNet) model in 2017. Te so-called capsule is a vector
composed of a group of neurons. Traditional neural net-
works use a single neuron as the inputs and outputs, while
capsule networks use vectors as the inputs and outputs. Te
length of the capsule represents the probability that the
entity exists and the direction represents its characteristic
properties. Te CapsNet realizes the encoding between local
features and the whole through a dynamic routing mech-
anism to preserve the spatial relationship of features, so it
has translation homogeneity, which has the ability to
overcome the referred shortcomings of CNN and LSTM.

Up to now, only a small number of researchers have
applied the CapsNet to HAR. Te frst work of using the
framework of CapsNet for HARwas conducted by Pham et al.
[28] who proposed a model named SensCapsNet. Te ex-
perimental results showed that the method outperformed
CNN and LSTM. Shi et al. [29] proposed a HAR system based
on capsule and “long range”. Te system could realize long-
distance, low-power consumption, and real-time HAR. Te
results demonstrated that the method achieved a higher ac-
curacy than CNN and recurrent neural network (RNN).
Khaled et al. [30] proposed an enhanced model of CapsNet
named 1D-HARCapsNe.Tis provided an efcient intelligent
decision-support approach for HAR. Sun et al. [31] proposed
a novel method named CapsGaNet based on capsule and gate
recurrent unit (GRU) with attention mechanisms. Tis
method could achieve spatiotemporal multifeature extraction
from wearable IMU sensors for HAR.
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Meanwhile, it is worth highlighting that the features of
diferent human activities have some similarities, and pre-
serving the spatial relationship between features may be
more conducive to distinguishing diferent activities. In
order to further investigate the efectiveness of the capsule
network in HAR and overcome the abovementioned
shortcomings of CNN and LSTM, this paper proposed a new
model based on a modifed capsule network (MCN) for
HAR. Te novel model is composed of a convolution block
and a capsule block. Te convolution block can extract
shallow activity features with small convolution kernels. Te
weight sharing and small kernels in the convolution layer
allow fewer parameters to be trained during back-
propagation. Ten, the capsule block employs vectors as the
inputs and outputs of the network and mines the spatial
information of the features. As a result, the model gives full
play to the feature extraction capabilities of CNN and
CapsNet, which well retains spatial information while dig-
ging into in-depth activity features.

To validate the efectiveness of this novel model, ex-
perimental studies are conducted which consist of the fol-
lowing two parts: frst, a self-collected dataset is applied to
test the learning ability of the MCN. Te dataset includes
three-axis accelerometer information and three-axis gyro-
scope information, which is collected by ten volunteers.
Moreover, the efectiveness of the MCN model is verifed by
comparing experiments with CNN. Second, the public
datasets WISDM and UCI-HAR are employed to further
verify the generalization ability of the MCN model.

Te main contributions of this paper are summarized as
follows:

(1) A novel deep learning model based on a modifed
capsule network is proposed for human activity
recognition. Tis model can not only realize end-to-
end intelligent recognition but also retain the spatial
relationship of features.

(2) A human activity dataset based on IMU sensor in-
formation is constructed. Te proposed model
achieves 96.08% recognition accuracy on the dataset,
which is higher than 91.62% of the convolutional
neural network.

(3) Te proposed model achieves 98.21% and 95.28%
recognition accuracies on public datasets WISDM
and UCI-HAR, respectively.

Te structure of the paper is organized as follows: the
capsule network model and proposed MCN model are
presented in Section 2. Introduction to datasets and data
preprocessing are presented in Section 3. Comparative ex-
periments and results are disclosed in Section 4. Corre-
sponding discussions are given in Section 5.Te conclusions
of this paper are summarized in Section 6.

2. Methods

2.1. CapsNet Model. Te original CapsNet consists of three
layers, namely, the convolutional layer, PrimaryCaps layer,
and DigitCaps layer [27]. Te convolution layer performs

feature extraction through 256 convolution kernels with a size
of 9× 9, a stride of 1, and ReLU activation, which are then
input into the PrimaryCaps layer. Te PrimaryCaps layer
further extracts features through 32× 8 convolution kernels
with a size of 9× 9 and a stride of 2.Ten, 1152 capsules with a
dimension of 8 are generated, which are input into the
DigitCaps layer as low-level capsules. Te DigitCaps layer
fnally generates 10 capsules with a dimension of 16 through a
dynamic routing mechanism. Te capsule with the largest
length is the fnal classifcation result. Finally, the correctly
predicted capsule is passed through a three-layer fully con-
nected neural network to reconstruct the input.

Dynamic routing is a core part of the CapsNet, in which
the inputs and outputs of capsules are vectors and through it,
the CapsNet retains the spatial information of features [32].
Figure 1 shows the process of information transfer between
capsules.

Te input capsule ui is multiplied by the weight matrix
Wij to obtain the predicted capsule uj|i, which is completed
by the following formula:

uj|i � Wijui, (1)

where the weight matrixWij is updated by backpropagation.
Te weighted summation of uj|i and the coupling co-

efcients cij can obtain the deep feature capsule sj.Ten, sj is
squeezed nonlinearly through the activation function, so
that the short vector is almost 0 and the long vector is close
to 1, and the output capsule vj is obtained, as shown in the
following equations:

sj � 
i

cijuj|i, (2)

vj �
‖ sj‖

2

1+ ‖ sj‖
2

sj

‖ sj ‖
, (3)

where cij is the coupling coefcient determined by the it-
erative dynamic routing process, which can be updated by
the intermediate variable bij, vj is the vector output of
capsule j, and sj is its total input.

Updating bij and cij is by calculating the correlation
between each output capsule vj and prediction capsule uj|i,
as shown in the following equations:

bij← bij + uj|i · vj|i, (4)

cij � softmax bij  �
exp bij 

k exp bik( 
, (5)

where the initial value of bij is 0. After getting bij, cij is
updated. If the consistency of the two vectors is high, cij

becomes larger, and it becomes smaller when they are in-
consistent.Ten, sj and vj will be updated, and the fnal output
capsule vj will be obtained after the dynamic routing process.

2.2. Proposed MCN Model. Te convolutional neural net-
work (CNN), frst proposed in 1998, is a feedforward neural
network [33], which has outstanding performance in HAR.
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But in the process of pooling layer, spatial information of
features such as pose and velocity is discarded. However,
through the dynamic routing process, the information be-
tween local parts and the whole is preserved by the CapsNet.
Consequently, the CapsNet can distinguish smaller difer-
ences between features of diferent activities. In addition, the
parallel processing of LSTM is poor. Toward the drawbacks
of CNN and LSTM, a deep learning model based on a
modifed capsule network, namely, MCN, is proposed for
HAR.

Te MCN structure proposed in this paper is shown in
Figure 2, which can be divided into two parts: the CNN block
and the CapsNet block. Compared to the original capsule
network, the network structure is modifed as follows: First,
the three-layer convolution layer with a kernel size of 3
replaces the one-layer convolution layer with a kernel size of
9. Tis can realize parameter sharing and efectively reduce
the number of parameters in the network. Moreover, a batch
normalization (BN) layer is added after each convolution
layer. It can speed up the convergence of neural networks
[34]. Te activation function uses Leaky ReLU instead of
ReLU. Tis increases the nonlinearity of neural networks
and gives all negative values a nonzero slope so that all
negative values can be preserved. Te dropout layer is added
to the network to randomly drop some neurons in a certain
proportion, which can efectively prevent the model from
overftting. Finally, because the result does not require image
reconstruction, the three-layer fully connected layer is
discarded, which further reduces the network parameters
and is conducive to the lightweight of the network.

Te specifc process of the proposed MCN model is
shown in Figure 2. First, the IMU data are preprocessed and
then input into the CNN block. After three 2D convolution
layers, they are input into the CapsNet block. After the
PrimaryCaps layer and the ActivityCaps layer, six capsules
with a dimension of 16 are output. Finally, the length of each
capsule is calculated.

For the CNN block, considering the in-depth feature
mining capabilities of convolution layers, three Conv2D
layers with a kernel size of 3× 3 are assigned to extract the
shallow features. Using small kernels can efectively reduce

the number of parameters in training. After each convo-
lution layer is connected to a BN layer and Leaky ReLU
activation layer, the BN layer can speed up network con-
vergence, and the activation layer introduces nonlinear
mapping to the network.

For the CapsNet block, include the PrimaryCaps layer
and the ActivityCaps layer. Te PrimaryCaps layer receives
the feature maps from the CNN block, and it is a 2D
convolution capsule layer with a kernel size of 2× 2 and a
stride of 2 to further extract features. After that, they are
reshaped to low-level capsules of a dimension of 8 and input
them into the ActivityCaps layer. After dynamic routing
iterations, six capsules with a dimension of 16 are fnally
generated. Te capsule with the largest length is the human
activity recognition result by the neural network. In addi-
tion, a dropout layer is added between the PrimaryCaps layer
and the ActivityCaps layer to randomly drop some neurons
with a probability of 0.5 to prevent overftting. Owing to the
inputs being IMU data, the recognition result does not need
to be reconstructed. Detailed network parameters will be
given in Section 4.

Te loss function is defned asMargin Loss [27]. For each
output capsule vector, the loss function is calculated as
shown in the following formula:

Lk � Tk max 0, m
+

− vk

����
���� 

2
+ λ 1 − Tk( max 0, vk

����
���� − m

−
 

2
,

(6)

where Tk � 1 when the class k activity actually exists, oth-
erwise it is 0, and m+, m− , and λ are the hyperparameters
during training, which take the values 0.9, 0.1, and 0.5,
respectively. Te total loss is the sum of the losses of all
output capsules.

In addition, a conventional CNN model is designed for
comparative experiments. Te structure is shown in Fig-
ure 3. Te model consists of six layers, including three
convolution layers, a pooling layer, and two fully connected
layers. A BN layer and activation layer are added after each
convolution layer. Te pooling layer can achieve dimen-
sionality reduction. Te fully connected layer is used for
classifcation and outputs the probability value of each

Capsule-1

Capsule-2

Capsule-i

Dynamic 
Routing

+

cij = sofmax (bij)

u2

u1

ui

W1j

c1j

c2jW2j

Wij

cij

ûj|i

ûj|2

ûj|1

bij ← bij + ûj|i · vj

squash (·)sj
vj vj

Figure 1: Information transfer between capsules.
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category through softmax. Te one with the highest prob-
ability value is the recognition result of the neural network.

3. Datasets and Preprocessing

3.1. Collected Dataset. To collect experimental data, 10
volunteers (all male, age 25± 1 years, weight 70± 20 kg, and
height 170± 10 cm) are invited to school. Tey are healthy
people without any lower limb-related disability. For each
volunteer, six diferent activity experiments (walking, jog-
ging, up-ramps, down-ramps, upstairs, and downstairs) are
performed. Before the experiment, the nature of the ex-
periment is informed to each participant and written con-
sent is obtained from each volunteer.

In the process of data collection, the IMU (Model:
BWT901BLECL5.0, Shenzhen wit-motion Technology Co.
Ltd., Shenzhen, China) is applied to collect activity data,
which can collect accelerometer and gyroscope on three
orthogonal axes during the activity. Te IMU sensor layout
and coordinate system are shown in Figure 4(a). Te IMU is
tied to the outside of the volunteer’s right calf with a strap,
which does not cause discomfort to the volunteer’s activities.
Data collection is performed outdoors and indoors, rather
than under strictly controlled laboratory conditions. Te
volunteers walk in their own comfortable way and each
activity is shown in Figure 4(b).

During the data collection process, the sampling fre-
quency of the IMU is 100Hz.Temotion information is sent
to the laptop through Bluetooth transmission. A text fle is
generated and stores in the laptop after each activity. Finally,
2,015,766 data samples are collected, and the data distri-
bution of each activity is shown in Figure 5. Te number of

samples in this dataset is relatively balanced, which is
conducive to improving the generalization ability of the
neural network.

3.2. Public Datasets

3.2.1. WISDM. Te WISDM dataset is collected by 36
volunteers using a built-in three-axis accelerometer in an
Android phone in the front leg pocket [35]. Te sampling
frequency is 20Hz, and six activities are collected: walking,
jogging, upstairs, downstairs, standing, and sitting. A total of
1,098,209 samples are recorded, and the distribution of each
activity is shown in Figure 6. It can be seen that the dataset is
an imbalanced dataset.

3.2.2. UCI-HAR. Te UCI-HAR dataset is built from 30
volunteers [36]. Te volunteers, aged 19–48, put the
smartphone on their waists and completed a total of six
activities in their daily life. Te six activities are standing,
sitting, laying, walking, upstairs, and downstairs. Acceler-
ometer and gyroscope data are collected for each activity at a
sampling frequency of 50Hz. Tese experiments are vid-
eotaped to facilitate manual labeling of the data. Ultimately,
the dataset yields 748,406 samples. Te distribution of each
activity is shown in Figure 7. It can be seen that the dataset is
a balanced dataset.

3.3. Data Preprocessing. In order to facilitate the training of
the network model and improve the recognition accuracy,
the following preprocessing needs to be performed on the
original IMU data.

CNNInputs

IMU Data

PrimaryCaps ActivityCaps

32

Dynamic 
Routing

Ootputs
CapsNet

Conv2D

BN

LeakyRelu

8

6

16

6

.

Figure 2: Te structure of the proposed MCN model.
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3.3.1. Data Normalization. Te collection of activity data is
wirelessly transmitted through Bluetooth, and data may be
lost during the transmission process. First, if there are
missing values, the entire row of the data is discarded.

Te accelerometer and gyroscope data collected from the
IMU sensor have diferent numerical ranges. Using the data
directly to train a neural network model may have poor
training results. Terefore, in order to treat each feature
equally, it is necessary to normalize the IMU data to a range
with a mean of 0 and a variance of 1. Te normalization
process removes any overall bias and the impact of the
diferent ranges in the IMU data [37, 38]. Te normalized
formula is shown as follows:

Yi �
Xi − X

σ
, (7)

where Yi is the normalized data, Xi is the original data, and
X, σ are the mean and variance of the original data,
respectively.

3.3.2. Data Segmentation. For the collected activity data, it is
not advisable to directly use each sample for model training,
because each sample is 0.01 seconds of data, which repre-
sents the instantaneous state of the activity and cannot
refect the characteristics of each activity. Terefore, in this
paper, a sliding window with a fxed length is applied to

Conv2D

BN

LeakyRelu

Inputs

IMU Data

Ootputs

6

sofmax

Pooling

Fully Connected Layer

Figure 3: Te structure of the CNN model.

X

Y

Z

(a)

(B-F)(B-E)(B-D)

(B-A) (B-B) (B-C)

(b)

Figure 4: (a) Schematic diagram of sensor location and coordinate system. (b) Te volunteers wore an IMU sensor to their right calf and
completed six activities. (B-A) Upstairs, (B-B) downstairs, (B-C) walking, (B–D) down-ramps, (B–E) up-ramps, and (B–F) jogging.
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segment the data, and each window contains three-axis
accelerometer information and three-axis gyroscope infor-
mation. A fxed-length window moves from one sampling
point to another, moving forward by the same length each
time, while retaining a certain proportion of the historical
information of the previous window. Ten separate each

window from the original sequence for feature extraction.
Te collected data can be represented by the sample matrix S
as shown in the following:

S �

A
0
x A

0
y A

0
z B

0
x B

0
y B

0
z

A
1
x A

1
y A

1
z B

1
x B

1
y B

1
z

A
2
x A

2
y A

2
z B

2
x B

2
y B

2
z

A
3
x A

3
y A

3
z B

3
x B

3
y B

3
z

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

A
t
x A

t
y A

t
z B

t
x B

t
y B

t
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where A and B represent the accelerometer and gyroscope; x,
y, and z represent the three channels of the accelerometer
and gyroscope; t represents the total number of rows of the
sample matrix. Assuming that the size of the sliding window
is m, and the step size of each window is step (step<m), the
sample matrix S can be divided into S1, S2, · · · , Sn with the
same size, and the segmentation result is shown in Figure 8.

3.3.3. Data Labels. Te “one-hot” encoding method is ap-
plied to encode six activities, that is, in each column vector,
except one is 1, and the rest are 0, which can solve the
discrete value problem of categorical data. Te encoding
result of six activities is as shown in the following equation:

Downramps � 1 0 0 0 0 0 

Downstairs � 0 1 0 0 0 0 

Jogging � 0 0 1 0 0 0 

Upramps � 0 0 0 1 0 0 

Upstairs � 0 0 0 0 1 0 

Walking � 0 0 0 0 0 1 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (9)

4. Results

Te experiments use the PyTorch deep learning framework
to implement the MCN model, which supports C++, Py-
thon, and other programming languages, and can run on
CPU and GPU. Te experimental hardware confguration is
Intel i5-8300 CPU, NVIDIA GeForce GTX 1050 graphics
card, and 8G RAM. Te experiments are performed on
Windows 10 system. Te software is anaconda3, Python
3.10, PyTorch 1.11, and CUDA 11.3.

In order to evaluate the performance of the MCNmodel,
accuracy, precision, recall, F1–score, and confusion matrix
(CM) are used as evaluation metrics, and the calculation
formulas are shown in the following equations:

Accuracy �
TP + TN

TP + TN + FP + FN
, (10)

Precision �
TP

TP + FP
, (11)

Downramps
15.5%

Upramps
14.9%

Downstairs
16.4%

Upstairs
17.7%

Jogging
16.9% Walking

18.7%

Figure 5: Schematic diagram of the data distribution of the col-
lected dataset.

Standing
4.4%

Sitting
5.5%

Downstairs
9.1%

Upstairs
11.2%Jogging

31.2%

Walking
38.6%

Figure 6: Schematic diagram of the data distribution of the
WISDM dataset.
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Figure 7: Schematic diagram of the data distribution of the UCI-
HAR dataset.
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Recall �
TP

TP + FN
, (12)

F1 − score �
2 × Precision × Recall
Precision + Recall

, (13)

where TP is the number of the model correctly predicts the
positive class, FP is the number of the model mistakenly
predicts the positive class, TN is the number of the model
correctly predicts the negative class, and FN is the number of
the model mistakenly predicts the negative class. F1-score
comprehensively considers the precision and recall, so it is a
fairer evaluation index. Te value range is [0, 1]. Te larger
the value, the better the model output is.

It can be seen from the CM that the number of actual
labels is misidentifed as the other labels by the model. Te
CM is defned as follows:

CM �

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where the horizontal axis represents the true label, and the
vertical axis represents the predicted label. Te diagonal

elements represent the number of correct recognition of
each type of activity, while the of-diagonal elements rep-
resent the number of activities of each type that are in-
correctly identifed as other activities. Terefore, the larger
the number of diagonal elements and the smaller the
number of of-diagonal elements, the better the recognition
results of the model.

4.1. Results in the Collected Dataset

4.1.1. MCNModel Evaluation and Results. In this paper, the
sliding window size is 128 and the step size is 64. Tat is, the
data of 1.28 s are taken, and the overlap rate is 50%. Te six
activities recognized are all periodic and 1.28 s data can
contain one activity cycle [14, 21]. Terefore, this paper
selects 1.28 s of data as the training data of the classifer to
ensure that the window data contains at least one complete
activity cycle, so as to retain all information about each
activity. After the collected IMU data are preprocessed,
31,495 single-channel “images” are generated, and the size of
the “images” is 128× 6. 80% are randomly taken as the
training set, and the remaining 20% are used as the test set
for evaluating model performance. 20% of the training set is
randomly selected as the validation set, which is employed to
monitor the efect of the model during the training process.
Te recognition fow chart is shown in Figure 9.

Te input dimension of the MCNmodel is 128× 6. After
three convolution layers, it is input into the PrimaryCaps
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layer. After the PrimaryCaps layer, 32× 62×1 capsules with
a dimension of 8 are generated and input into the Activi-
tyCaps layer. After passing through the ActivityCaps layer, 6
capsules with a dimension of 16 are output.

Tere are 20,157 samples for training, which is absolutely
sufcient. Te BN layers are in the model structure.
Moreover, the dropout layer between the PrimaryCaps layer
and the ActivityCaps layer randomly discards some neurons
with a probability of 0.5. Tese strategies can prevent the
model from overftting during training.

Te optimizer is Adam, the initial learning rate is 0.001,
the batch size is 128, and the number of training epochs is
100. In the process of model training, the method of dy-
namically adjusting the learning rate provided by PyTorch is
applied to ensure that the model is closer to the optimal
solution in the late training period.

Te dynamic routing process retains the spatial rela-
tionship of features.Te number of iterations of the dynamic
routing is an important parameter of the MCN model. Te
number of iterations is set to 2, 3, and 4. Te accuracy of
93.92%, 96.08%, and 94.09% is achieved on the test set,
respectively, so the number of iterations of the dynamic
routing is 3. Te detailed structural parameters of the MCN
model are shown in Table 1.

When the model training is completed, the test set is
used for evaluation. Te accuracy reaches 96.08%, which has
achieved a good recognition result. Other evaluation indi-
cators and CM are shown in Table 2 and Figure 10.

From Table 2, it can be seen that the values of precision,
recall, and F1-score of each activity all exceed 0.9. For the F1-
score, the minimum value is 0.929 for down-ramps and the
maximum value is 0.990 for jogging.Te average value of the
F1-score is 0.960, which indicated that the MCN model

proposed in this paper has achieved a good recognition
result in this collected dataset.

In Figure 10, it is not difcult to fnd that 59 down-ramps
samples are misidentifed as walking and 41 up-ramps
samples are misidentifed as walking. So, down-ramps and
up-ramps are easy to be confused with walking. Te possible
reason is that at the beginning and the end of these two
activities, the slope becomes smaller, which makes it difcult
to distinguish it from the level ground. Tere are also some
down-ramps that are incorrectly identifed as up-ramps and

IMU Data

Data preprocessing

Training set (80%) Test set (20%)

Training set (80%) Validation set (20%)

Model training

End

Model

Outputs

Figure 9: Te MCN model activity recognition fow chart.

Table 1: Detailed structural parameters of the MCN model.

Model Layers Parameters

MCN

Conv2d-1 Kernel size� 3× 3 step� 1 flters� 32
padding� 1

Conv2d-2 Kernel size� 3× 3 step� 1 flters� 64
Conv2d-3 Kernel size� 3× 3 step� 1 flters� 128
Primary
caps Kernel size� 2× 2 step� 2 flters� 32× 8

Activity
caps Routing iterations� 3

Table 2: Evaluation metrics of the MCN model on the test set.

Precision Recall F1-score
Walking 0.912 0.971 0.941
Jogging 0.986 0.995 0.990
Down-ramps 0.952 0.908 0.929
Up-ramps 0.951 0.944 0.947
Upstairs 0.982 0.975 0.978
Downstairs 0.987 0.962 0.974
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downstairs incorrectly identifed as down-ramps, probably
because these have similar features.

To display the original features and the features captured
by each layer of the MCN, the t-SNE dimensionality re-
duction algorithm is applied for visualization [39]. Te vi-
sualization results are shown in Figure 11.

In Figure 11, the dots of diferent colors represent the
extracted features from diferent activities. It can be found
that with the deepening of the network, similar activity
features are gradually gathered. Te original data are difuse,
and after three convolutional layers, activities of the same
type show a tendency to cluster together. After passing
through the CapsNet layer, the characteristics of the six
activities are basically separated.

4.1.2. CNN Model Evaluation and Results. In order to verify
the efectiveness of the MCN model, the CNN model is used
for comparative experiments. Te model structure of CNN is
shown in Figure 3. In order to ensure the fairness of the
comparative experiment, the structure of the frst three 2D
convolution layers is the same as the MCN. After three
convolutional layers, the CNNmodel achieves dimensionality
reduction through the max pooling layer, and the kernel size
is 2× 2 with a stride of 2. Ten, two fully connected layers are
connected to replace the CapsNet of the MCN. Te dropout
layer is also used in the fully connected layer, and some
neurons are randomly discarded according to the probability
of 0.5. Finally, the CNNmodel output the probability value of
each activity through softmax. During training, except for
using the cross entropy loss function, the rest of the settings
are the same as the MCN, and fnally, the accuracy on the test
set is 91.62%, which is lower than 96.08% of MCN.

4.2. Results in the Public Datasets. To further validate the
generalization capability of the MCN model, evaluation
experiments are also performed on the public datasets
WISDM and UCI-HAR.

4.2.1. WISDM Dataset. Te window size is 128 and the
step size is 64. After data preprocessing, 17,158 samples
are generated. 70% of the samples are used for training
and the rest are used for testing. Te input dimension of
the MCN model is 128 × 3. Te optimizer, initial learning
rate, and batch size are the same as the self-collected
dataset. Te detailed structural parameters are shown in
Table 3. After 100 epochs of training, the accuracy rate on
the test set is 98.21%. Other evaluation indicators and CM
are shown in Table 4 and Figure 12. Te t-SNE dimen-
sionality reduction algorithm is also employed to visu-
alize the features extracted by each layer, as shown in
Figure 13.

In Table 4, the standing achieves the best recognition
efect which all evaluation metrics are 1. Te dataset is an
imbalanced sample dataset, but the F1-score of each activity
exceeds 0.9 and the average is 0.978, which further proves
the efectiveness of the MCN model.

From Figure 12, it can be seen that the standing and the
sitting are all correctly identifed. 15 downstairs samples are
misidentifed as upstairs and 23 upstairs samples are mis-
classifed as downstairs, probably, because the features of the
two activities are too similar.

4.2.2. UCI-HAR Dataset. Te sliding window size is 128
(2.56 s), and the overlap rate is 50%. Terefore, 10,299
samples are generated. Among them, 7,352 samples from 21
volunteers are used for training, and 2,947 samples from 9
volunteers are used for testing. Te training set is input into
the MCN model with the dimension of 128× 9. Te opti-
mizer, initial learning rate, and batch size are the same as the
self-collected dataset. Te detailed structural parameters are
shown in Table 5. After the same training, the accuracy rate
of 95.28% is obtained on the test set. Other evaluation in-
dicators and confusion matrix are shown in Table 6 and
Figure 14. Te feature visualization results of each layer are
shown in Figure 15.
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Figure 11: Features visualization of each layer of the MCN model via t-SNE: (a) origin, (b) conv 1, (c) conv 2, (d) conv 3, (e) primary caps,
and (f) activity caps.

Table 3: Detailed structural parameters of the MCN model on the WISDM dataset.

Model Layers Parameters

MCN

Conv2d-1 Kernel size� 3× 3 step� 1 flters� 32 padding� 1
Conv2d-2 Kernel size� 3× 3 step� 1 flters� 64 padding� 1
Conv2d-3 Kernel size� 3× 3 step� 1 flters� 128

Primary caps Kernel size� 2× 2 step� 2 flters� 32× 8
Activity caps Routing iterations� 3

Table 4: Evaluation metrics of the MCN model on the WISDM dataset.

Precision Recall F1-score
Walking 0.992 0.993 0.992
Jogging 0.985 0.992 0.988
Sitting 0.997 1.000 0.998
Standing 1.000 1.000 1.000
Upstairs 0.963 0.923 0.943
Downstairs 0.937 0.960 0.948
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Figure 12: CM of the MCN model on the WISDM dataset.

–15

–10

–5

0

5

10

0 10 20 30 40–10

Downstairs
Jogging
Sitting

Standing
Upstairs
Walking

(a)

–15

–10

–5

0

5

10

15

0 20 40–20 60

Downstairs
Jogging
Sitting

Standing
Upstairs
Walking

(b)

–20 –10–30–40–50 0 2010

–20

0

20

40

60

Downstairs
Jogging
Sitting

Standing
Upstairs
Walking

(c)

Downstairs
Jogging
Sitting

Standing
Upstairs
Walking

–20

0

20

40

60

0 50 100–50

(d)

Downstairs
Jogging
Sitting

Standing
Upstairs
Walking

–20

–10

0

10

20

30

0 20 40–20

(e)

Downstairs
Jogging
Sitting

Standing
Upstairs
Walking

–30

–20

–10

0

10

20

300 20 40–20 –10 10

(f )
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As can be seen from Table 6, the recall of laying and
downstairs are all 1. Te F1-score of sitting is 0.885, which is
slightly lower, and the rest are also above 0.9. Walking has
the highest F1-score of 0.992 and the average F1-score is
0.952.

In Figure 14, it can be seen that downstairs and laying are
all correctly identifed, but 61 sittings are misclassifed as
standing, 24 upstairs are misidentifed as upstairs, and 21
sittings are misclassifed as upstairs.

5. Discussion

In this study, the CapsNet is investigated to apply for HAR
and a model based on a modifed capsule network called
MCN is proposed. To illustrate the efectiveness of the
model, data collection is carried out using an IMU sensor
and a dataset is built. Tis work is carried out under natural
conditions and the volunteers moved in their own

comfortable way under diferent terrain conditions. It is
somewhat arbitrary and not collected in a controlled lab-
oratory. Finally, the model achieved 96.08% accuracy on this
dataset.Te efectiveness of the MCNmethod is verifed by a
comparative experiment with CNN and the recognition
efect is better than CNN. Table 7 lists the recognition
methods and accuracy rates of some other researchers. As
can be seen, this result is similar to other references.
However, this accuracy is achieved with only one IMU
sensor. And it does not involve the fusion of diferent types
of sensor data.

In order to further verify the efectiveness of the MCN,
experiments are also carried out on public datasets WISDM
andUCI-HAR. Finally, the accuracy is 98.21% inWISDMand
95.28% in UCI-HAR. Table 8 lists the methods and results of
some other studies onWISDM. Among them, CapsNet is also
applied for HAR in references [29–31].Te accuracy is higher
than references [29, 31] but slightly lower than reference [30].

Table 5: Detailed structural parameters of the MCN model on the UCI-HAR dataset.

Model Layer Parameters

MCN

Conv2d-1 Kernel size� 3× 3 step� 1 flters� 32
Conv2d-2 Kernel size� 3× 3 step� 1 flters� 64
Conv2d-3 Kernel size� 3× 3 step� 1 flters� 128

Primary caps Kernel size� 3× 3 step� 3 flters� 32× 8
Activity caps Routing iterations� 3

Table 6: Evaluation metrics of the MCN model on the UCI-HAR dataset.

Precision Recall F1-score
Walking 0.998 0.986 0.992
Sitting 0.955 0.825 0.885
Standing 0.893 0.959 0.925
Laying 0.993 1.000 0.996
Upstairs 0.951 0.949 0.950
Downstairs 0.931 1.000 0.964
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Figure 14: CM of the MCN model on the UCI-HAR dataset.
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Because the WISDM dataset is a very imbalanced dataset, the
random SMOTE algorithm was employed in reference [30] to
handle the imbalanced issue of the dataset, which is more
conducive to training the network model. Table 8 also shows
that the MCN model proposed in this study outperforms
CNN, LSTM, and their combination on WISDM.

Table 9 lists the methods and results of some other
studies on UCI-HAR. It can be seen that the MCN model
also achieved higher accuracy than some other researchers.
In summary, through a series of comparative experiments, it
is verifed that the proposed MCN model has high recog-
nition accuracy and good robustness.
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Figure 15: Features visualization of each layer of the MCN model via t-SNE on UCI-HAR.

Table 7: Comparison of the methods and experimental results.

References Sensor Model Accuracy (%)
[21] 7 IMU LSTM-CNN 97.78
[22] 4 IMU DDLMI 97.64
[40] IMU EMG BP 93.76
[41] EEG sEMG EDMEFNet 88.44
[42] 8 sEMG GA-DANN 94.89
[37] 5 IMU LSTM >95
Tis paper 1 IMU MCN 96.08
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6. Conclusion

In this paper, a deep learning model based on a modifed
capsule network named MCN is proposed. In comparison
to traditional machine learning methods, this model can
save the complicated process of manual feature extraction
from raw IMU data. Compared with CNN and LSTM, this
model preserves the spatial information of features, which
may be more conducive to activity recognition. Contrast
experiments have been conducted on three datasets to
evaluate the efectiveness of the model. Te frst dataset is
collected by ourselves, which is a balanced dataset collected
under natural conditions using a single IMU sensor. Te
recognition accuracy of the proposed model is 96.08%,
which is 4.46% higher than CNN. Moreover, the F1-score is
0.960. Te second dataset is the public dataset named
WISDM, which is an imbalanced dataset. Te proposed
model achieves an accuracy of 98.21% and an F1-score of
0.978. Tis accuracy is higher than most similar types of
models. Te third dataset is the public dataset named UCI-
HAR, which is a balanced dataset. Te proposed model
achieves an accuracy of 95.28% and an F1-score of 0.952.
Satisfactory results are obtained on the three datasets.
Trough the t-SNE dimensionality reduction algorithm,
the extracted features of each layer by the MCN model are
visualized. By comparing with the results of some other
researchers, it further shows that the proposed MCNmodel
can achieve higher recognition accuracy and have better
activity detection ability.

Te proposed model has achieved satisfactory perfor-
mance in the experimental process, but has not been tested
in real life. Terefore, in the future work, optimization and
light weight of the model parameters will be considered to
deploy the model in embedded devices to detect the actual
recognition efect.
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