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Abstract
In this paper, we propose a fully tightly‐coupled multi‐sensor fusion framework termed
FT‐LVIO, that fuses measurements from a light detection and ranging (LiDAR), a
monocular camera and an inertial measurement unit (IMU) simultaneously to achieve
robust and accurate state estimation in real time. FT‐LVIO is built atop the framework of
an error‐state‐iterated Kalman filter. To take full advantage of the complimentary char-
acteristics of individual sensors, LiDAR point clouds are undistorted by IMU prediction
to the nearest camera exposure time and the filter is updated with measurements from all
sensors. In addition, an efficient sampling method for the LiDAR point‐to‐plane mea-
surements is proposed, which can help select the measurements providing sufficient
constraints to the pose estimation and facilitate a low‐drift odometry. Extensive experi-
ments are performed on both the public NTU dataset and the private handheld dataset,
and the results show that the proposed FT‐LVIO outperforms the state‐of‐the‐art
LiDAR‐inertial, visual‐inertial and LiDAR‐visual‐inertial methods in both accuracy and
robustness. Furthermore, FT‐LVIO can survive in the challenging staircase environment.
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1 | INTRODUCTION

Ego‐motion estimation is essential for mobile robots and ve-
hicles especially when they are performing tasks autonomously
in unfamiliar environments. The past 2 decades have witnessed
many excellent solutions based on a single sensor, such as a
camera [1], a light detection and ranging (LiDAR) [2] and an
inertial measurement unit (IMU) [3]. Cameras are relatively
cheap and can provide dense color and texture information of
the environments at a moderate rate, but they are sensitive to
illumination levels; thus, vision‐based methods tend to fail in
texture‐less, exceptionally bright or dark scenes. LiDAR sen-
sors can provide accurate range measurements at a low rate
regardless of light conditions and are preferred in most sce-
narios for their robustness and capacity to build a dense map.
However, LiDAR can suffer from point cloud sparsity; thus,
LiDAR‐based methods may degrade in structure‐less or open‐
field environments. In contrast with cameras and LiDAR
sensors, which collect the environment information, IMUs
measure the angular velocity and acceleration of ego motion at
a high rate, so they are barely affected by environments and can

capture aggressive motions. IMU‐based methods usually rely
on the integration of raw, noisy and biased measurements and
can present considerable drifts after a short time. To overcome
the weakness of a single sensor and improve system robust-
ness, multi‐sensor fusion‐based methods recently have attrac-
ted much attention and predictably will arouse more attention
in the future since sensor costs keep decreasing. Therefore, this
paper focuses on methods fusing at least two types of sensors.

In general, multi‐sensor fusion methods can be grouped
into two categories: loosely coupled methods and tightly
coupled methods. Loosely coupled methods fuse odometry
results of all individual sensors or odometry results of some
sensors and specific measurements of others. Tightly coupled
methods, instead, directly fuse the measurements of all indi-
vidual sensors. Based on this categorization, we will briefly
review the representative work on visual‐inertial odometry
(VIO), LiDAR‐inertial odometry (LIO) and LiDAR‐visual‐
inertial odometry (LVIO).

MSF‐EKF SLAM [4] is a loosely coupled VIO, which uses
an extended Kalman filter (EKF) to fuse the IMU measure-
ments with visual odometry results. Also based on EKF,
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MSCKF [5] augments the filter state with several previous
camera poses and updates with multi‐view observations of the
same visual features, forming a tightly coupled VIO. In addi-
tion to the filter‐based methods, optimization is another way to
tightly couple IMUs and cameras. It usually estimates the states
of multiple frames by iteratively minimizing the total visual and
IMU measurement errors, which can help reduce the linearized
errors of the system compared with the filter‐based methods.
OKVIS [6] is a representative optimization‐based VIO, which
maintains a sliding window to limit computation. VINS‐Mono
[7] further extends OKVIS with robust initialization, relocali-
zation and loop closure and becomes one of the most popular
VIO methods.

LOAM [2] is a representative loosely coupled LIO. It can not
only run as a LiDARodometry (LO) but also accept IMU inputs,
which help to undistort skewed point clouds and initialize the
pose estimation in scan matching. LIO‐SAM [8] further in-
troduces a factor graph with IMU preintegration, LiDAR
odometry and loop closure factors to correct the IMU bias and
reduce the drifts. Many tightly coupled LIO systems have
emerged recently for their higher robustness and accuracy.
LIOM [9] adopts the optimization framework of ref. [7] as a
processing front end and introduces the rotation constraint at
the back end to reduce the height drifts. LINS [10] designs an
egocentric error‐state iterated Kalman filter (ESIKF) to reduce
filter divergence in a long run. Also based on ESIKF, FAST‐LIO
[11] proposes a new formula of the Kalman gain to reduce
computation complexity and achieves 50 Hz odometry. FAST‐
LIO2 [12] further accelerates FAST‐LIO to 100 Hz by incre-
mentally building the k‐d tree of the map using their proposed
ikd‐Tree structure.

In [13], a loosely‐coupled LVIO with a sequential multilayer
processing pipeline is proposed. A high‐frequency IMU first
provides motion prediction to a loosely coupled VIO and then
the VIO result is loosely coupled with LiDAR measurements,
achieving a coarse‐to‐fine motion estimation. LVI‐SAM [14]
combines VIO in [7] and LIO in [8] to form a tightly coupled
LVIO. VIO provides an initial guess for scan matching in LIO
and LIO output helps VIO to initialize the subsystem and
retrieve feature depth. These two subsystems can function
independently when failure is detected in one of them and they
both provide odometry factors to a factor graph for accuracy.
R2LIVE [15] uses ESIKF to fuse IMU data, respectively, with
camera and LiDAR data in a tightly coupled manner and a local
factor graph to refine the keyframe poses and visual landmark
positions. FAST‐LIVO [16] shares a similar framework with
R2LIVE, while its visual measurements use direct photometric
errors instead of feature‐based reprojection errors, which save
the feature extraction time and are more robust in texture‐less
environments. Based on the MSCKF framework, LIC‐Fusion
[17] estimates not only keyframe poses, visual and LiDAR
feature positions but also IMU delays and extrinsics with respect
to the camera and LiDAR. Strictly speaking, the aforementioned
systems are not fully tightly coupled since they all essentially
consist of two sub‐systems (VIO and LIO); thus, they only
achieve the tight couple of two sensors at a time. This design
scheme does not take full advantage of the complimentary

characteristics of all sensors and is prone to fail if no special care
is taken to identify the integrity of each sub‐system.

In this paper, we present a fully tightly coupled LiDAR‐
visual‐inertial odometry algorithm based on the ESIKF
framework of FAST‐LIO2 [12] to achieve accurate and
robust ego‐motion estimation. The main contributions of our
work are:

� We present a fully tightly coupled LiDAR‐visual‐inertial
odometry framework (termed FT‐LVIO), which
simultaneously fuses measurements of three complimentary
sensors and can achieve accurate ego‐motion estimation.

� We propose an efficient sampling method for the LiDAR
point‐to‐plane measurements, which helps select the mea-
surements providing sufficient constraints to the pose esti-
mation and facilitate a low‐drift odometry.

� We perform extensive experiments on both public and
private datasets to validate the proposed FT‐LVIO. The
results show that FT‐LVIO outperforms the state‐of‐the‐art
methods even in face of sensor degradation.

� We conduct an ablation study to show the effects of the
proposed sampling method and the introduction of the
vision.

The remaining content of the paper is organized as follows. In
Section 2, we first give an overview of the system and define
the notations used throughout the paper. Then, each system
module is introduced in detail and the proposed sampling
method is specifically discussed. Section 3 presents the
experiment results on public NTU and private handheld
dataset and also the results of our ablation study. Section 4 is
the final conclusion.

2 | FULLY TIGHTLY COUPLED LiDAR‐
VISUAL‐INERTIAL ODOMETRY

2.1 | System overview

The framework of FT‐LVIO is shown in Figure 1. The feature
handler first extracts surf points from LiDAR point clouds and
tracks corner points in camera images, respectively, at their
input frequency. To tightly fuse the data of three sensors
simultaneously, the synchronization handler associates each
LiDAR feature frame with the nearest image feature frame and
transforms all of the LiDAR feature points to the image time
along with IMU‐state propagation. The measurement handler
selects valid LiDAR point‐to‐plane and visual point‐to‐pixel
measurements and updates the ESIKF alongside the IMU
prior to produce an accurate state estimation. The map handler
finally builds and modifies the LiDAR and visual maps, which
serve as the landmarks of the next round of measurements to
reduce drifts.

Now, we define notations used throughout the paper. We
denote I

ð⋅Þ; Cð⋅Þ; Lð⋅Þ respectively as the local frame of the
IMU, camera and LiDAR. Global frame Gð⋅Þ is the first IMU
local frame. The total state vector of the system is:

2 - ZHANG ET AL.
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x¼ G
I R

T ; GI t
T ; GvT ; bTa ;b

T
g ;
GgT

h iT
ð1Þ

where GI R and GI t are the rotation matrix and translation vector
from IMU frame to global frame, Gv is the IMU velocity in the
global frame, ba and bg are the biases of IMU accelerometer
and gyroscope, and Gg is the gravity vector in the global frame.
Extrinsic between the LiDAR and the IMU is ILT¼ ½

I
LR;

I
Ct�

and between the camera and the IMU is ICT¼ ½
I
CR;

I
Ct�, which

are assumed pre‐calibrated and constant. Moreover, We define
the jth timestamp with certain semantics z as tzj . The IMU local
frame and state vector at tzj , for example, are represented by
Izj ð⋅Þ and xzj .

2.2 | Feature handler

The feature handler receives the incoming data from the
LiDAR and the camera. Then it extracts different features
from the LiDAR point clouds and camera images respectively,
which will be used in the subsequent modules to construct
measurements with the corresponding maps for pose
estimation.

2.2.1 | Surf points extraction

From a raw LiDAR point cloud, we first extract surf points
with high local smoothness [2] as LiDAR features and then
downsample them with a uniform sampling filter [18] to ensure
an even distribution. Note that this is done before point cloud
undistortion (or rather, on the raw distorted point clouds) since
we assume that ego‐motion has a similar effect on neighboring
points and will not change the local smoothness significantly.

2.2.2 | Corner points extraction

From an input image, we extract GFTT corner points [19] as
visual features and track them in the following images using
Kanade‐Lucas‐Tomasi optical‐flow [20]. To ensure the track
accuracy, the visual tracker works at the raw image rate (30 Hz)
instead of the rate after synchronization (10 Hz).

2.3 | Synchronization handler

The goal of synchronization is to retrieve simultaneous data
from three different sensors so that they can be fused.
Considering hardware synchronization support is unavailable
in most cases, we choose to align the data by their timestamps.
Since image warp is inaccurate when pixel depth is unknown,
we choose the image time as ESIKF update time and trans-
form LiDAR and IMU data to that time. We denote the
timestamp of the nth LiDAR (feature) point cloud as tln, the
kth image (feature frame) as tck. The synchronization scheme is
shown in Figure 2.

2.3.1 | Data association

When the (n+1)‐th LiDAR feature cloud Lnþ1 with timestamp
tlnþ1 is available, we associate it with the nearest image feature
frame Ĉnþ1 (namely Ckþ3 in Figure 2) whose timestamp is
denoted as tunþ1 (namely tckþ3 in Figure 2) since the next ESIKF
update will take place at this time. Image feature frames within
tun; t

u
nþ1

� �
will be discarded. Then, we collect all IMU data

within tsnþ1; t
e
nþ1

� �
where tsnþ1 ¼min tln; t

u
n

� �
and tenþ1 ¼max

tlnþ1; t
u
nþ1

� �
. It will be seen in Section 2.3.2 and 2.3.3 that

these IMU data are necessary to propagate the state from tun to
tunþ1 and transform all the feature points in Lnþ1 to tunþ1.

2.3.2 | State propagation

After data association, we first synchronize IMU data to tunþ1.
We propagate the state from the last ESIKF update time tun to
tunþ1 by IMU data collected before according to the following
continuous kinematic model [11]:

G

I
_R¼ G

I R
⌊ωm − bg − ng⌋�;

G

I _t¼ Gv;

G
_v¼ G

I R am − ba − nað Þ þ Gg;
G

_g¼ 0; _ba ¼ nba; _bg ¼ nbg

ð2Þ

F I GURE 1 The overview of the FT‐LVIO system. Each circled number near the arrow represents a specific data flow, which is annotated in detail at the
right side of the figure.
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where ⌊⋅⌋� represents the skew‐symmetric matrix of the vector,
ωm, am are raw IMU accelerometer and gyroscope readings, na,
ng are the Gaussian white noise of IMU measurements and nba,
nbg are random walk noise of IMU biases.

During the propagation, wewill produce the odometry at the
IMU rate and finally obtain an Gaussian state prior x̂unþ1 ∼N
xunþ1; P̂

u
nþ1

� �
at tunþ1. Details of the discrete implementation of

propagation can be seen in [11, 12].

2.3.3 | Point cloud undistortion

According to the LiDAR working principle, points in Lnþ1 are
sampled at different time within tln; t

l
nþ1

� �
and represented,

respectively, in the local LiDAR frame of their sampling time.
To synchronize them to tunþ1, we apply the following trans-

formation to each raw point L
L
i pli sampled at time tLi :

Lunþ 1pli ¼
L
I T ⋅ GIunþ 1

T−1 ⋅ GILi T ⋅ ILT ⋅
LLi
pli ð3Þ

where GIunþ 1
T, GILi

T are IMU poses at time tunþ1 and tLi ,
LLi
pli is the

homogeneous coordinate of L
L
i pli, and

Lunþ 1pli is the synchro-
nized point represented in local LiDAR frame of tunþ1. In

Equation (3), we use GIunþ 1
T̂ retrieved from x̂unþ1 to approximate

G
Iunþ 1

T; thus, we only need to calculate GILi
T for each point:

� If tLi is within tun; t
u
nþ1

� �
, GILi

T can be linearly interpolated as

G
ILi
T¼ G

Il T ⋅ Exp ⌊sδξ⌋�ð Þ ð4Þ

where, s¼ tLi − tl
tr − tl

; δξ ¼ Log G
Il T− 1G

Ir T
� �

, tl, tr are the nearest

IMU data time to tLi following tl ≤ tLi ≤ tr , and GIlT;
G
IrT are the

corresponding odometry results at tl, tr produced during the
state propagation.
� If tLi is earlier than tun,

G
ILi
T is the pose earlier than the latest

updated pose G
Iun
T. We can make a backward prediction of

G
ILi
T by inversely propagating the GIunT from tun to tLi using the

collected IMU data within tsnþ1; t
u
n

� �
according to

Equation (2).
� If tLi is later than tunþ1,

G
ILi
T is the pose later than the latest

propagated pose GIunþ 1
T̂. We can make a forward prediction

of GILi
T by further propagating GIunþ 1

T̂ to tLi using the collected
IMU data within tunþ1; t

e
nþ1

� �
according to Equation (2).

Note that the ‘propagation’ mentioned above is indepen-
dent of the filter and the filter state keeps fixed at x̂unþ1 during
the whole undistortion process. After the undistortion of all
points, we can develop the synchronized LiDAR feature point
cloud L̂nþ1.

2.4 | Measurement handler

Based on the temporary state estimation κð Þ
~xunþ1 from the κ‐th

iteration of ESIKF update, the measurement handler selects
valid LiDAR and visual measurements for the next iterated
update to improve the accuracy and robustness of the state
estimation.

2.4.1 | Point‐to‐plane measurements selection

Similar to [2], for a surf point L
u
nþ 1pli in L̂nþ1, we transform it to

the global frame by pose in κð Þ
~xunþ1, searching for the nearest

several points in the LiDAR map and fitting a plane. If the
fitted plane is flat enough and the distance from the trans-
formed point to the fitted plane is lower than a threshold, we
can form a preliminary point‐to‐plane measurement:

rli
G
Iunþ 1

R; GIunþ 1
t

� �
¼ GnTi

G
Iunþ 1

R I
LR

Lunþ 1pli þ
I
Lt

� ��

þ G
Iunþ 1

t − Gqli
� ð5Þ

where Gni and Gqli are the normal and the in‐plane point of
the fitted plane.

In practice, there are usually over 1000 preliminary point‐
to‐plane measurements in outdoor scenarios, and we find
that pose estimation is prone to be stuck in the local minima if
too many measurements are fed to the ESIKF update. It
means that some measurements are not constraining enough
for pose estimation and they are more likely to introduce un-
wanted local minimum points than to improve the accuracy if
utilized in the pose estimation. Inspired by [21, 22], we propose
an efficient sampling method to select the most constraining
point‐to‐plane measurements to facilitate a global optimal state
estimation.

Essentially, Equation (5) is a concrete form of registering
the source point cloud to the target point cloud using point‐to‐
plane ICP [23]; thus, it can be written in the general form:

F I GURE 2 The illustration of the scheme of the synchronization
handler. First, we associate each light detection and ranging (LiDAR)
feature point cloud to the nearest image feature frame. Then to synchronize
data from all sensors, we transform all LiDAR feature points and propagate
the system state with inertial measurement unit (IMU) data to the
associated image time, at which the error‐state iterated Kalman filter
(ESIKF) will conduct update and produce accurate odometry
approximately at the LiDAR rate.

4 - ZHANG ET AL.
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rlið
t
sR;

t
stÞ ¼

tnTi ð
t
sR
spli þ

t
st − tqliÞ ð6Þ

By the perturbation of tsR;
t
st with δφ ∈ soð3Þ; tst in (6), we

have:

rli
t
sR ⋅ Exp ⌊δφ⌋�ð Þ; tstþ δt
� �

¼ tnTi
t
sR Iþ ⌊δφ⌋�ð Þspli þ

t
stþ δt − tqli

� �

¼ tnTi ð
t
sR
spli þ

t
st − tqliÞ þ

tnTi δtþ ðspli �
sniÞ

Tδφ

¼ rilð
t
sR;

t
stÞ þ Jitδtþ Jiφδφ ð7Þ

where sni ¼ sRttni þ stt and is the target plane normal repre-
sented in the source frame.

From Equation (7), we can see tnTi and ðspli �
sniÞ

T are the
Jacobians of the point‐to‐plane measurement with respect to
the pose perturbation. Their magnitude of each component
implies approximately how much the measurement residual
will change if the corresponding pose component has a unit
increment; hence, they can be seen as an indication of how
much constraint a measurement can provide to each pose
component. To get a subset of preliminary measurements,
which in total can provide sufficient constraints for pose
estimation, in each pose component, we sample those mea-
surements providing the most constraints for this component
and the details of our method are presented in Algorithm 1:

Algorithm 1 Sampling method of preliminary point-
to-plane measurements

Here, we have some comments on this algorithm:

� To ensure the robustness of our odometry in structureless
environments, we perform the sampling only when the
number of preliminary point‐to‐plane measurements is
greater than a certain threshold (e.g., 600) and we will obtain
6 ⋅ MaxSamples sampled measurements in total.

� In line 5 of the algorithm, we choose the normal in the local
frame (ni) instead of the global frame ðGniÞ as the index of
translation constraint as if we were registering to a local map
according to Equation (7). Such an egocentric choice co-
incides with [10, 22] and is shown to be more robust in
practice. Also, we here adopt the six indexes as in [21]
instead of the nine indexes in [22], which considers the
flatness of planes, because we find that these six indexes are
robust and sufficient to indicate constraints. However, we
do not project the index vectors ni, mi to the eigenvectors
of the information matrix as in [21] but directly perform
greedy sampling on the Jacobian matrix like [22] since the
former practice shows no gains in our experiments.

� Our sampling is performed on the measurements instead of
on the raw point cloud as [22]. The normals are directly
retrieved from the measurements instead of from time‐
consuming normal estimation of the raw point cloud.
Thus, there is little computation in our method compared to
[21, 22] and the main cost lies in the sort of six lists, which
however is rather efficient in modern C++.

� Figure 3 illustrates the sampled measurements in both
bird's‐eye‐view and side view. It can be seen that the
sampled measurements distributed sparsely all around,
which can provide sufficient constraints for the pose esti-
mation and meanwhile reduce the possibility of falling into
the local minima point.

2.4.2 | Point‐to‐pixel measurements selection

For a tracked corner point Cpciðu; vÞ in Ĉnþ1, we first retrieve
its corresponding 3D landmark point Gpci in the visual map if it
has been triangulated in the map handler. Then, we project Gpci
to Ĉnþ1 by the pose in κð Þ~xunþ1, obtaining a preliminary point‐
to‐pixel measurement:

rci
G
Iunþ 1

R; GIunþ 1
t

� �
¼ π C

I R
G
Iunþ 1

RT Gpci − G
Iunþ 1

t
� �

þ C
I t

� �
− Cpci
ð8Þ

where πð⋅Þ : R3 → R2 represents the camera model. To reject
outliers, we only select the measurements whose residuals are
smaller than a certain threshold (e.g. 3 pixels) and add them to rc.

2.5 | ESIKF update

In the aforementioned modules, we have obtained the state
prior x̂unþ1 and the selected measurements rl; rc. Assuming each

ZHANG ET AL. - 5
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LiDAR and visual measurement is affected, respectively, by
independent Gaussian white noise with zero mean and
covariance matrix Σli;Σ

c
j , the maximum a posteriori estimation

of the state xunþ1 is:

arg min
xunþ1

kxunþ1 − x̂unþ1k
2
P̂
u
nþ1
þ
X

i

krli x
u
nþ1

� �
k
2
Σli

(

þ
X

j
krcj x

u
nþ1

� �
k
2
Σcj
g

ð9Þ

where kxk2A ¼ xTA−1x. Note that measurement constraints
from all of three sensors are included in Equation (9), meaning
that our odometry system simultaneously uses the data from
three sensors to estimate the system state at time tunþ1 and
therefore achieves a fully tightly couple of the sensors.

According to the Bayesian estimation theory, the solution
of Equation (9) is the Kalman update for linear measurements.
We iteratively linearize Equation (9) with respect to the esti-
mated state and perform Kalman update as in [12] to reduce
the linearized errors of the measurement models and improve
the estimation accuracy. After each iteration, the current state
estimation κð Þ~xunþ1 is fed back to the measurement handler to
select new measurements. The iterated update is stopped if the
state increment between two iterations is small enough or the
maximum iteration time is reached.

2.6 | Map handler

The map handler is in charge of building and managing the
LiDAR and the visual map based on the latest feature frames
L̂nþ1; Ĉnþ1 and the pose estimation Tunþ1.

2.6.1 | LiDAR mapping

We use ikd‐Tree [12] to efficiently build and manage the
LiDAR map. When L̂nþ1 arrives, we transform all of its surf

points with the estimated pose Tunþ1 to the global frame and
add them to the ikd‐Tree, which will update itself incrementally
and support the efficient nearest searching operations from the
measurement handler.

2.6.2 | Visual mapping

The visual map consists of the 3D points corresponding to the
visual features tracked in the latest frame. As in [7], we
maintain a sliding window recording the past few image feature
frames along with global poses. When a new frame Ĉnþ1 ar-
rives, we first push it into the sliding window along with its
pose and discard the oldest frame. For each visual map point
Gpci observed in Ĉnþ1, a feature‐only optimization is per-
formed by minimizing the total reprojection errors Equa-
tion (7) on all its observed frames in the window to improve
mapping accuracy. Points with large average reprojection errors
(e.g. 5 pixels) are deemed as outliers and deleted from the vi-
sual map. Also, points not tracked in Ĉnþ1 will be removed
since it cannot serve as the landmark any more. For features
observed at least twice but not corresponding to any map
point, we triangulate them to generate new visual map points.

3 | EXPERIMENTS

In this section, we evaluate the performance of FT‐LVIO on
both public and private datasets. Also, an ablation study is
conducted to demonstrate the effects of the point cloud
undistortion, our proposed sampling method and the intro-
duction of the vision. In the end, we analyze the running time
of the whole system.

3.1 | NTU VIRAL dataset

First, we evaluate FT‐LVIO on the nine sequences of the
public NTU VIRAL dataset [24], which is collected on the
NTU campus by an aerial platform equipped with multiple

F I GURE 3 An illustration of the sampled light detection and ranging (LiDAR) point‐to‐plane measurements. The colorful point cloud represents the
accumulated LiDAR map. Small white points are the feature points constructing the preliminary point‐to‐plane measurements of the current frame. Big red
points correspond to the measurements sampled according to the proposed method and will be used for the error‐state iterated Kalman filter (ESIKF) update.
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sensors. We compare our method with various state‐of‐the‐art
multi‐sensor odometry or SLAM systems, including Visual‐
Inertial (VI) systems like VINS‐Mono, VINS‐Fusion [25],
LiDAR‐Inertial (LI) systems like LIO‐SAM, FAST‐LIO2,
LiDAR‐Visual (LV) systems like DVL‐SLAM [26] and LiDAR‐
Visual‐Inertial (LVI) systems like R2LIVE, VIRAL‐SLAM [27]
and FAST‐LIVO. For all the sequences, our FT‐LVIO uses the
data from the left camera (10 Hz), the horizontal LiDAR
(10 Hz) and the main IMU (385 Hz). Since the camera data
have the same rate with the LiDAR data but are unsynchro-
nized with them, we set a maximum time offset of 0.04s
(slightly lower than half of the data period) in the synchroni-
zation handler. It means that if a LiDAR feature frame is
associated with an image feature frame with a timestamp dif-
ference over 0.04s, we reject this association and only use IMU
and LiDAR data in the pose estimation for this frame. This can
help prevent from suffering from errors caused by bad and
uncertain synchronization. Besides, we set the MaxSamples of
Algorithm 1 to 100.

Absolute Trajectory Errors of the aforementioned methods
are presented in Table 1, where the results for VINS‐Mono,
VINS‐Fusion, LIO‐SAM and VIRAL‐SLAM are directly from
[27], and the results for DVL‐SLAM, FAST‐LIO2, R2LIVE and
FAST‐LIVO are from [16]. We can see that our FT‐LVIO
outperforms other methods on all sequences. VIRAL‐SLAM,
as another system with a fully tightly coupled framework, pro-
duces the second best results. The gap between the performance
of FT‐LVIO and VIRAL‐SLAM can be mainly attributed into
two factors: (1) The LiDAR observations of VIRAL‐SLAM are
constructed with a local map formed by some nearest frames
instead of with a global map like FT‐LVIO do; thus, VIRAL‐
SLAM is likely to produce a larger drift compared to FT‐
LVIO; (2) VIRAL‐SLAM synchronizes data from all sensors to
the LiDAR time and uses the estimated pixel velocity to
compensate the time delay for the image while FT‐LVIO
chooses to transform LiDAR points to the image time for
synchronization. The accuracy of the former is usually less than

that of the latter since the former is based on the velocity esti-
mation from the past image frames, while the latter directly uses
the estimated pose from timely IMU data.

It is worth noting that even though FAST‐LIVO and
R2LIVE fuse the data from three kinds of sensors, their
performance is apparently worse than LIO‐SAM, which only
fuses the data from the LiDAR and the IMU. The reason
here is twofold: (1) FAST‐LIVO and R2LIVE are just
odometry systems and they are lack of the loop closure
module as LIO‐SAM has to reduce the long‐run drifts; (2)
FAST‐LIVO and R2LIVE do not realize a fully tightly couple
of all the sensors since their systems essentially consist of an
LIO subsystem and a VIO subsystem. Such framework leaves
them susceptible to the degeneration of a certain subsystem.
And on this dataset, the VIO subsystem is prone to degen-
eration because the UAV sometimes performs fast motion
and blurs the images; thus, the LIO subsystem of FAST‐

TABLE 1 Absolute Trajectory Errors (ATE) (units: meters) of various methods over the NTU VIRAL Dataset. The best result for each sequence is
highlighted in bold, and the second best is underlined. The last line calculates the average ATE for each method on all the sequences

Sequence

VI Systems LI Systems LV Systems LVI Systems

VINS‐mono VINS‐fusion LIO‐SAM FAST‐LIO2 DVL‐SLAM R2LIVE VIRAL‐SLAM FAST‐LIVO FT‐LVIO

eee_01 0.568 0.306 0.075 0.540 2.880 0.450 0.060 0.280 0.031

eee_02 0.443 0.266 0.069 0.220 1.650 0.210 0.058 0.170 0.020

eee_03 0.886 0.383 0.101 0.250 3.080 0.970 0.037 0.230 0.026

nya_01 0.830 0.237 0.076 0.240 2.090 0.190 0.051 0.190 0.026

nya_02 0.422 0.297 0.090 0.210 1.450 0.630 0.043 0.180 0.029

nya_03 0.501 0.368 0.137 0.230 1.820 0.310 0.032 0.190 0.029

sbs_01 3.739 0.372 0.089 0.250 1.080 0.560 0.048 0.290 0.026

sbs_02 0.890 0.369 0.083 0.260 2.310 0.240 0.062 0.220 0.025

sbs_03 0.802 0.276 0.140 0.240 2.230 0.440 0.054 0.220 0.026

Average 1.009 0.319 0.096 0.271 2.066 0.444 0.049 0.219 0.026

F I GURE 4 The illustration of our handheld device and data‐gathering
process.
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LIVO and R2LIVE can be affected by the bad estimation
results from the VIO subsystem, making the gain of fusing
camera data not clear.

Counterintuitively, the LV systemDVL‐SLAMproduces the
worst results on most sequences even compared to the VI sys-
tems VINS‐Mono and VINS‐Fusion. The reason is due to that
DVL‐SLAM is more like a visual SLAM system because LiDAR
data are just used to provide sparse depth information to the
images. It cannot handle the fast motion of the UAV well
without inertial sensors because the severely distorted point
clouds will introduce significant depth errors to the image pixels.

3.2 | Private handheld dataset

In this section, we use our handheld device shown in Figure 4a
to gather dataset for further evaluation. Our handheld device
consists of a Velodyne VLP‐16 LiDAR, an Intel RealSense
D455 camera and a Xsens MTi‐300 IMU. We use RealSense
RGB frames with the resolution of 1280 � 720 as the image
inputs of the system. The data rate of the LiDAR, camera and
IMU is 10, 30 and 200 Hz, respectively. All of 5 sequences in
our dataset are collected by an operator holding the device at
chest height (Figure 4b) and walking around the campus of
Tsinghua University, Beijing, China. Due to the lack of a high‐
precision RTK or motion capture suite for ground truth, all
sequences start and end at the same position and we calculate
the start‐to‐end translation errors to represent the odometry
drifts. We compare FT‐LVIO to open‐sourced LI systems
(LIO‐SAM, FAST‐LIO2), VI systems (VINS‐Mono) and LVI
systems (LVI‐SAM, R2LIVE). For FT‐LVIO, we set Max-
Samples of Algorithms 1–5 on outdoor sequences WQ, EP,

MB, RM and deactivate the sampling on indoor sequence SC
due to point cloud sparsity. Also, the loop closure of LIO‐
SAM, LVI‐SAM and VINS‐Mono is switched off for fair-
ness. All the methods are implemented in C++ and tested on a
laptop with Intel i7‐11800H CPU and 16 GB RAM in Ubuntu
Linux. Furthermore, the results on EP, MB and SC can be
found in the video attachment1.

3.2.1 | Outdoor short‐distance experiments

In this group of experiments, we show the robustness of our
proposed FT‐LVIO after a short journey with sensor degra-
dation. We consider two sequences WQ (∼389m) and EP
(∼495m). WQ is collected in the vicinity of the Weiqing
Building. The camera suffers from degradation when we walk
in and out of a narrow corridor (indicated by the cyan arrow
(ii) in Figure 5a) due to the sharp change of illumination. EP is
collected by walking around the open East Playground, where
the track lines and fences exhibit similar visual features and the
LiDAR sometimes degrades in certain directions due to point
cloud sparsity.

From the results shown in Table 2, we can see that benefit
from the fully tightly couple of all the sensors, our FT‐LVIO
almost closes the loops with a drift of only 0.174 and
0.054 m on these two sequences, demonstrating its accuracy
and robustness in spite of sensor degradation. VINS‐Mono
drifts significantly because the camera sometimes suffers
from degradation due to the lack of visual features or the

F I GURE 5 We evaluate the performance of various methods on 4 outdoor sequencesWQ, EP. MB and RM of our private handheld dataset. The top line
shows the estimated trajectories of all the methods in bird's‐eye‐view. The trajectory direction is clockwise forWQ, RM and counterclockwise for EP, MB. The
bottom line displays the mapping results (rendered by elevation) of our proposed FT‐LVIO and the corresponding real scenarios. The white lines are the
estimated trajectories and the cyan arrows represent the shooting locations and directions of the associated images.

1
https://cloud.tsinghua.edu.cn/f/41d3adf10311491d8bdf/
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presence of many similar features. Two LI systems, LIO‐SAM
and FAST‐LIO2 also present considerable drifts. Interestingly,
both LVI‐SAM and R2LIVE produce larger errors than their
LIO subsystems namely LIO‐SAM and FAST‐LIO2, meaning
that their system performances deteriorate with the introduc-
tion of the camera. This can be attributed to their two‐
subsystem framework.

3.2.2 | Outdoor long‐distance experiments

In this group of experiments, we show that our FT‐LVIO is
low‐drift after long journey in environments containing
abundant facades and vegetations. We consider two sequences
MB (∼1054m) and RM (∼1130m), which are collected near the
Tsinghua Main Building and the RHOM Building, respectively.
As shown in Table 2, FT‐LVIO presents a drift of only
0.085 m on MB, while the second least drift produced by
FAST‐LIO2 is as large as 5.682 m. LVI‐SAM and R2LIVE
again produce larger errors than their LIO subsystems. Per-
formance gap is more prominent on RM, where FT‐LVIO
successfully closes the loop even after a long journey, while
all of the other methods produce drifts over 10 m Figure 5
shows the estimated trajectories of different methods and the
mapping results of FT‐LVIO, from which we can further see
how FT‐LVIO outperforms other methods on various out-
door scenarios.

3.2.3 | Indoor degradation experiment

In this experiment, we challenge the difficult staircase scenario
in the Weiqing Building of Tsinghua University (Figure 6a).
The main challenges are: (1) the surrounding walls are nearly
pure white with few visual features; (2) the LiDAR point
clouds are sparse especially in the vertical direction, and the
body of our operator can also block some points horizontally;
(3) the windows on the wall can further reduce the density and
accuracy of the point cloud; (4) the whole trajectory contains
many sharp turns of 180°, which can cause the loss of visual
features and the severe distortion of the point clouds.

The dataset SC (∼93m) is gathered by walking down the
stairs from the 12th floor to the 8th floor and then walking

TABLE 2 Start‐to‐end errors (units:
meters) over the private handheld dataset

Sequence

VI Systems LI Systems LVI Systems

VINS‐mono LIO‐SAM FAST‐LIO2 LVI‐SAM R2LIVE FT‐LVIO

WQ 56.764 0.986 1.029 1.289 1.143 0.174

EP 153.241 2.375 2.708 2.542 2.835 0.054

MB 72.664 7.499 5.682 7.737 6.089 0.085

RM 101.307 12.076 11.428 12.270 11.301 0.051

SC 7.053 Fail 1.574 1.341 1.751 0.128

Average 78.206 5.734 4.484 5.036 4.624 0.098

Note: The best result for each sequence is highlighted in bold, and the second best is underlined.

F I GURE 6 The illustration of the challenging staircase environment
and the corresponding mapping results of some methods.
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upstairs to the origin. The odometry and mapping results of
different methods are shown in Table 2 and Figure 6, respec-
tively. We can see that VINS‐Mono has a poor performance in
this visual‐unfriendly environment as expected. LIO‐SAM fails
on this dataset since its IMU data are just used to undistort point
clouds and provide preintegration factors to the backend factor
graph but are not used in the pose estimation of the odometry.
Such a loose couple of IMU and LiDAR data is not beneficial for
the system to survive in the environment where the LiDAR
degrades significantly. In contrast, FAST‐LIO2 achieves a tight
couple of LiDAR and IMU and does not fail on this dataset, but
it still presents considerable drifts. With the aid of vision, LVI‐
SAM does not fail like LIO‐SAM, while its odometry and
mapping results are far from satisfactory. Similarly, R2LIVE
survives but its performance does not improve with the intro-
duction of the vision compared with FAST‐LIO2. Making full
advantage of complimentary characteristics of individual sen-
sors by a fully tightly coupled framework, our FT‐LVIO has a
drift of only 0.128m and builds a consistent map of the staircase.
This experiment confirms the robustness of FT‐LVIO in the
scenario of severe sensor degradation.

3.3 | Ablation study

In this study, we explore the effects of the point cloud undis-
tortion (U), the proposed LiDAR point‐to‐plane measurement
sampling method (S0) and the introduction of the vision on the
performance of FT‐LVIO.We denote the subsystemwithout S0
and all the visual‐related modules (V, i.e. the green modules in
the Figure 1) as the backbone (B), which is actually an LIO
system like FAST‐LIO2. We consider: (1) removing U from B
(B ‐ U); (2) adding S0 and V, respectively, to B (B + S0, B + V);
(3) adding S0 and V simultaneously to B (B + S0 + V). Besides
the aforementioned NTU and private datasets, we also conduct
the ablation study on KITTI dataset [28] to make the results
more convincing. Since IMU data are unavailable on the KITTI
dataset, we use the constant motion model for state propaga-
tion. And we setMaxSamples of S0 to 100 for KITTI. The total
results of the study are summarized in Table 3.

3.3.1 | Effects of the undistortion

In Table 3, the fourth column shows the results of the back-
bone as a baseline. The third column lists the results after
disabling the point cloud undistortion for NTU and private
datasets, and the corresponding results for KITTI dataset are
omitted since KITTI directly provides the undistorted point
clouds. It is clear that the errors increase over two times on
both datasets without undistortion, which highlights the
adverse effects that the distorted point clouds have for the
system accuracy. Hence, the point cloud undistortion is
essential to high‐accuracy odometry on platforms moving
unsteadily like UAVs and handheld devices in these datasets.

3.3.2 | Effects of the vision

The results after adding visual modules to the backbone
correspond to the eighth column in Table 3. It can be seen that
the NTU and the private dataset each have two sequences
obtaining the improved results with the vision, but the im-
provements are slight. Things are better for the KITTI dataset
since there are 7 out of 11 sequences that are improved and the
average ATE is reduced by around 0.18 m due to the vision.
Furthermore, we can find that sequences of long distance
benefit most from the vision. For the KITTI dataset, the
apparently improved sequences (00, 02, 05, 08, 09) are all with
a length of over 1.7 km. And for the private dataset, the results
are also improved only on two long‐distance sequences RM
and MB. The reason for this phenomenon is due to that the
LiDAR measurements greatly outnumber the visual measure-
ments and thus dominate the pose estimation. For short‐
distance sequences, LiDAR odometry is usually robust in the
whole process and can solely provide an accurate pose esti-
mation (just like on NTU dataset), making the introduction of
the vision unnecessary. However, for long‐distance sequences,
LiDAR odometry is liable to drift slowly if not aided with the
vision. So, the introduction of the vision can somewhat help
reduce the drift rate but its function is limited since the whole
pose estimation is still dominated by LiDAR.

3.3.3 | Effects of the sampling

The fifth column in Table 3 shows the results after performing
point‐to‐plane measurements sampled with the proposed
method (S0) on the basis of the backbone system. For com-
parison, we also implement other two sampling methods in
[21, 22] and name them S1 and S2, respectively. The results for
S1 and S2 are listed in the sixth and the seventh columns. Note
that the original methods in [21, 22] require the normal esti-
mation for the source point cloud, while this operation is ab-
sent in our system, so we use the normals in the point‐to‐plane
measurements as a replacement in the implementation of S1
and S2. Besides, we make sure that the sampling number is
equal for all the sampling methods.

In summary, there are, respectively, 5 out of 9 sequences on
the NTU dataset, 10 out of 11 sequences on the KITTI dataset
and 3 out of 4 sequences on the private dataset benefiting from
our sampling method. Moreover, the average error is reduced,
respectively, by 0.001 , 0.441 and 1.848 m. This result confirms
that the proposed methods can certainly improve the odom-
etry accuracy even without the vision, and the reason is due to
that the sampled point‐to‐plane measurements contain fewer
local minima points while maintaining good constraints for the
pose estimation. Similar to our method, S2 also results into the
improvement of average accuracy on all the datasets, while its
contribution is rather limited. As for S1, it mainly produce gain
on the KITTI dataset and the gain is smaller than that of our
method.

10 - ZHANG ET AL.

 17518792, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.12376 by Shanghai Jiao T

ong U
niversity, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.3.4 | Combined effects

When simultaneously utilizing the vision and the proposed
sampling method, it forms the complete FT‐LVIO system and
the corresponding results are presented in the ninth column of
Table 3. It is clearly seen that the results on all the sequences
except eee_01 and sbs_03 are improved compared to that of
the backbone system and the decrement of average error is,
respectively, 0.002 , 0.569 and 4.478 m for three datasets. It
means that the combined effects of the vision and the pro-
posed sampling method are stronger than their individual ef-
fects, which can be attributed to the balance and the
complementation of different sensors. However, we must
admit that the results of B + S0 on the KITTI sequence 03, 08,
09 and 10 are clearly better than that of B + S0 + V, which

warn us that there may exist better methods to fuse LiDAR
and camera data. Also, Table 3 lists the results of combining S1
and S2 with the vision in the last two columns. Except from S1
on the KITTI dataset, the introduction of the vision brings
about gains for these two sampling methods, while the final
average errors of them are still larger than those of our method
on all the datasets. So far, we can conclude that the proposed
sampling method is more efficient and robust than other two
methods regardless of the vision.

3.4 | Running time analysis

Table 4 shows the average per‐frame time consumption of
each FT‐LVIO module on the aforementioned datasets.

TABLE 3 Results of the ablation study. The results are presented with Absolute Trajectory Errors (ATE) (units: meters) for NTU and KITTI datasets and
with start‐to‐end errors (units: meters) for the private dataset

Dataset Sequence

Undistortion ‐ Sampling Vision Sampling + Vision

B ‐ U B B + S0 B + S1 B + S2 B + V B + S0 + V B + S1 + V B + S2 + V

NTU eee_01 0.073 0.028 0.032 0.033 0.033 0.029 0.031 0.033 0.032

eee_02 0.060 0.021 0.021 0.027 0.022 0.022 0.020 0.027 0.021

eee_03 0.096 0.027 0.028 0.028 0.026 0.027 0.026 0.027 0.025

nya_01 0.056 0.032 0.025 0.032 0.026 0.032 0.025 0.033 0.026

nya_02 0.078 0.032 0.029 0.034 0.030 0.031 0.029 0.032 0.031

nya_03 0.071 0.032 0.029 0.032 0.029 0.032 0.028 0.032 0.028

sbs_01 0.068 0.029 0.028 0.030 0.026 0.028 0.026 0.027 0.025

sbs_02 0.059 0.026 0.025 0.026 0.024 0.026 0.025 0.026 0.024

sbs_03 0.061 0.026 0.026 0.026 0.025 0.026 0.026 0.026 0.025

Average 0.070 0.028 0.027 0.030 0.027 0.028 0.026 0.029 0.026

KITTI 00 ‐ 3.823 3.382 3.104 2.585 3.020 2.532 3.119 2.827

01 ‐ 18.922 15.803 15.850 18.763 18.888 15.767 15.615 18.644

02 ‐ 10.014 9.954 10.619 11.316 9.403 9.668 11.277 11.449

03 ‐ 0.978 0.879 0.954 0.967 0.975 0.919 0.914 0.928

04 ‐ 0.464 0.410 0.397 0.403 0.467 0.421 0.435 0.410

05 ‐ 1.681 1.267 1.395 1.341 1.324 1.256 1.387 1.231

06 ‐ 0.876 0.781 0.729 0.785 0.887 0.786 0.741 0.785

07 ‐ 0.471 0.477 0.439 0.895 0.818 0.464 0.501 0.495

08 ‐ 4.179 3.874 3.916 3.817 3.730 3.425 4.044 4.213

09 ‐ 1.786 1.582 1.602 2.186 1.627 1.723 2.213 1.933

10 ‐ 1.744 1.679 1.990 1.774 1.832 1.721 1.634 1.601

Average ‐ 4.085 3.644 3.727 4.075 3.906 3.516 3.807 4.047

Private WQ 1.987 0.747 0.179 0.829 0.168 0.753 0.174 0.387 0.661

EP 5.711 2.467 1.602 0.013 2.431 2.549 0.054 0.694 2.613

MB 17.770 4.846 5.725 5.790 6.846 4.739 0.085 6.188 3.363

RM 15.487 10.215 3.376 14.767 7.927 10.186 0.051 11.967 7.647

Average 10.239 4.569 2.721 5.350 4.343 4.557 0.091 4.809 3.571

Note: The best result for each sequence is highlighted in bold.
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Considering NTU and KITTI are both outdoor datasets, we
do not include the indoor sequence SC in the computation of
the running time for our private dataset. Besides, the time of
the corner points tracker is excluded from the total time for the
tracker running in a separate process.

It can be seen that the main time cost lies in the surf point
extraction and point‐to‐plane measurement selection since the
former needs point‐by‐point smoothness calculation and the
latter requires frequent nearest search operations. The pro-
posed sampling method consumes around 1 ms on average,
exhibiting its efficiency as expected. Also, the corner points
tracker can perform the real‐time visual feature track even
facing the 30 Hz large resolution (1280 � 720) images of our
private dataset. So in general, FT‐LVIO is able to perform the
whole state estimation in real time with respect to the 10 Hz
LiDAR input in outdoor environments either for the 16‐
channel LiDAR of NTU and private datasets (consuming
around 30 ms pre frame) or for the 64‐channel LIDAR of
KITTI dataset (consuming around 60 ms per frame).

4 | CONCLUSION

Ego‐motion estimation is an essential task for autonomous
robots, and multi‐sensor fusion‐based methods recently have
attracted lots of attention due to their accuracy and robustness.
In this paper, we propose a fully tightly coupled multi‐sensor
fusion odometry framework termed FT‐LVIO within the
framework of an error‐state iterated Kalman filter. To take full
advantage of the complimentary characteristics of individual
sensors, measurements from the LiDAR, the monocular
camera and the IMU are synchronized to the same time and
update the filter simultaneously to achieve an accurate pose
estimation. Moreover, an efficient sampling method for
LiDAR point‐to‐plane measurements is proposed to select
those measurements, providing the most constraints for a
global optimal state estimation.

According to the extensive experiments on both the public
NTU dataset and private handheld dataset, the proposed FT‐
LVIO is able to achieve real‐time state estimation and out-
performs the state‐of‐the‐art methods. It also shows robust-
ness and accuracy in scenarios with severe sensor degradation.
Furthermore, our ablation study demonstrates that the direct
fusion of visual measurements and preliminary LiDAR point‐
to‐plane measurements helps little in improving performance
compared to the raw LIO system since the latter are great in
number and dominate the state estimation. Meanwhile, the
study confirms that the proposed sampling method is benefi-
cial for the system to avoid local minima points and result in an
accurate state estimation, and the performance can be appar-
ently improved if the visual measurements are fused with the
sampled LiDAR measurements as our FT‐LVIO do.

Currently, the sampling number of the LiDAR measure-
ments is pre‐determined by a series of tuning attempts and
fixed throughout the whole sequence, which is not elegant and
may not be optimal for the specific sequence. In the future, we
will explore the adaptive method to determine the sampling
number automatically according to the environment.
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TABLE 4 Average per‐frame time consumption of each system module (units: milliseconds)

Module Submodule NTU KITTI Private

Feature handler Surf points extraction 3.42 25.06 4.04

Corner points tracker 7.37 9.92 18.29

Synchronization handler Data association 0.33 0.00 0.01

State propagation 0.33 0.00 0.20

Point cloud undistortion 1.98 3.12 2.29

Measurement handler Point‐to‐plane measurements selection (Sampling) 21.65 (1.08) 26.37 (1.10) 20.48 (0.99)

Point‐to‐pixel measurements selection 0.02 0.02 0.04

ESIKF update 0.56 0.28 0.33

Map handler LiDAR mapping 0.60 1.90 1.40

Visual mapping 1.27 1.07 2.18

Others 0.12 0.09 0.26

Total time 30.26 57.92 31.24
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