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Abstract
Nowadays, multi-sensor fusion technology is a fundamental prerequisite to achieve highly
autonomous robots and robustness. Many studies have been conducted, such as visual–inertial
odometry (VIO), integrated navigation, and LiDAR–inertial odometry. Typically, for VIO,
gratifying results have been achieved, ascribing to the complementary sensing capabilities of
inertial measurement units (IMUs) and cameras. However, this work mainly focuses on the
fusion of visual and inertial data, while the IMU error is less considered, especially for low-cost
or poorly calibrated microelectromechanical system (MEMS) IMU. Such errors may have a
significant effect on the VIO performance. In this study, we compensated for the IMU using
camera assistance. The key characteristic of the method is that we optimize the compensation
parameters (scale factor) from coarse to fine by combining the time domain with the frequency
domain. The proposed method is to use the time-domain and frequency-domain optimization to
suppress large noise in the dynamic calibration process of the extremely low-cost sensor
platform. The effectiveness of this method is validated through experiments and simulations.
The minimal calibration error (0.46%) is commensurate with the advanced work. By feeding the
compensated IMU into the VIO algorithm, the localization accuracy is improved by 9% to 15%.
This method improves the performance in the VIO algorithm, which is equipped with the
low-cost or poorly calibrated MEMS IMU and reduces the hardware and deployment costs of
the system.
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1. Introduction

In recent years, with the rapid development of autonomous
driving [1], augmented reality [2], virtual reality [3], etc, how
to obtain the pose estimation of ego-motion accurately is a cru-
cial prerequisite. To meet these emerging application require-
ments, many positioning methods have been developed, such
as Global Positioning System (GPS), inertial navigation [4],
and vision-based positioning. In addition, there are emerging
methods of multimodal sensor localization, such as floor plan
[5], Wi-Fi [5, 6], Bluetooth [7], ultrawide band [8], visible
light communication [9], etc. Facing these various position-
ing technologies, inertial navigation is a mainstream and reli-
able positioning method, which plays an important role in
GPS-denied environments, such as indoor, high-rise buildings,
and exoplanet detection. With the emergence of microelec-
tromechanical system (MEMS) technology in recent years, the
MEMS-based inertial measurement unit (IMU) has become
an important branch [10]. They are nearly everywhere from
life-saving airbag accelerometers to missile guidance.MEMS-
based IMU, which is widely used in navigation, has been
gradually becoming the key sensors in the field of autonom-
ous driving, such as positioning, motion compensation, etc.
MEMS IMU with the outstanding advantages of high output
frequency (100 Hz to 1000 Hz), low power consumption, and
small size is a micro-unit composed of a triaxial accelerometer
and a triaxial gyroscope [10]. It can sense acceleration and
angular velocity. By integrating the measured acceleration and
angular velocity, the position and attitude information of the
platform can be obtained. Compared with the camera, IMU is
an interoceptive sensor that is not susceptible to the environ-
ment and can locate actively. These characteristics make iner-
tial navigation system (INS) an essential positioning techno-
logy for integrated navigation and sensor fusion.

Unfortunately, owing to the imperfect manufacturing pro-
cess and physical characteristics of the sensor, the true meas-
urements of MEMS IMU are contaminated by system errors,
random noise, packaging process, interface circuit noise, tem-
perature changes, etc. Noise, bias, scale factor, and installa-
tion errors are commonly used to characterize these inaccur-
acy terms. At the same time, these error terms may change
due to mechanical shocks, temperature, and other factors. For
IMUs used in professional fields, such as aviation, naviga-
tion, and missiles, fine calibration or compensation is com-
pleted by the factory, and these IMUs have high-quality per-
formance. They are often not suitable for widespread use in
consumer-grade drones, toys, robot platforms with large-scale
deployment, and other scenarios on account of their high cost.
Cheaper MEMS IMUs are usually used to achieve positioning
and navigation, but they are often poorly calibrated. The exist-
ence of these errors often makes the cumulative error of pose
estimation become larger and larger, resulting in lower con-
fidence. Therefore, the calibration of these deterministic error
terms is a crucial part for the long-term stability of localization
[11].

On the other hand, due to the richness of visual inform-
ation, related technologies are also continuous expansion in
many fields. Specifically, vision-based positioning methods

called visual odometry (VO) have been gradually developed.
In VO, the pose of the camera can be directly estimated
by the information from adjacent images and the method of
multi-view geometry when the robots or platforms are in an
unknown environment [12]. Comparedwith the IMU, the cam-
era that senses and relies on the environment is an exterocept-
ive sensor and can locate passively. It has the advantage of
small drift, and the long-term stability is better than the pos-
itioning algorithm based on MEMS IMU. Nevertheless, it is
sensitive to fast motion, illumination changes, and occlusion.
So, the fusion localization by leveraging the camera and IMU
has become a development trend. Recently, a growing trend
of visual–inertial odometry (VIO)-related algorithms [13–20]
has emerged, and significant progress has beenmade in robust-
ness and accuracy [21]. However, the current main research
still focuses on the fusion of visual and inertial information,
and less consideration is given to errors of the IMU.

To this end, we have conducted multi-scenario experiments
based on the different grades of IMUs in a previous work
[22] and found that the low-cost or poorly calibrated sensors
(MPU6050 [23]) would make the VIO’s positioning accuracy
not as superior as that of high-performance IMUs and some-
times even worse than visual-only positioning. Based on the
complementary advantages of VO and MEMS IMU, we pro-
pose a vision-aided IMU compensation algorithm for low-cost
IMUs (MPU6050).

From the perspective of signal processing, when the IMU is
in motion state, the output value of the IMU is composed of the
motion sensing signal and the noise signal. We have identified
these two parts through Fourier transformation and removed
the influence of noise in the frequency optimization process.
Based on this, we named the method ‘FDO-Calibr’. We use
this method to compensate the scale factor of the MEMS IMU
whose noise is a significant error source. The compensated
IMU improves the positioning accuracy and has potential
to reduce the hardware and deployment costs of the sys-
tem. The main contributions of this study are summarized as
follows.

The method introduced in this paper is to use the time-
domain and frequency-domain optimization to suppress the
large noise in the dynamic calibration process of the extremely
low-cost sensor platform.

The rest of this paper is structured as follows. In section 2,
related work about IMU calibration or compensation is dis-
cussed. In section 3, the framework flow of the algorithm,
which is divided into six parts, is presented. In section 4, the
method of the compensation algorithm is analyzed and dis-
cussed. Relevant simulation and experiment are discussed in
section 5. Finally, the paper is concluded in section 6.

2. Related work

Several authors [24–26] utilized gravity signal as a stable ref-
erence when an accelerometer is at static periods. The key lies
in how to better linearize the constraints, or there will be con-
vergence problems. However, their method is only suitable
for calibrating the MEMS accelerometers. The calibration of

2



Meas. Sci. Technol. 34 (2023) 045108 Y Liu et al

the gyroscope is achieved by means of a three-axis turntable,
which can provide high-precision angular-velocity informa-
tion or angle information. However, the turntable is expens-
ive, complicated to operate, and bulky enough, which make it
impractical and difficult to use.

The calibration method proposed by Qureshi and
Golnaraghi [27] and Tedaldi et al [28] can calibrate the
IMU without external equipment. For an accelerometer, the
algorithm detected the time period clusters, in which the accel-
erometer is in a static state under different attitudes, and then
the cost function was established with a constant gravity norm
value of g. When the internal parameters of the accelerometer
were solved, the angle calculated by the accelerometer and
the angle integrated by the gyroscope were used to establish
a cost function about the gyroscope. The calibration of the
gyroscope was coupled with accelerometer calibration. The
calibration accuracy of the gyro triad strongly depends on
that of the accelerometer triad. Li et al [29] used pseudo-
observations to replace the GPS measurements in the loosely
coupled GPS/INS integrated systems based on the assumption
that ‘if an IMU were rotating strictly around its measurement
center, its position would remain constant, and its linear velo-
city would be zero’. In addition, Xiao et al [30] employed the
time-domain optimization method to iteratively solve the IMU
parameters and positioning-related states together. The state
vector to maintain was too large, and there is no advantage of
light weight. The Kalibr algorithm developed by Rehder et al
[31] realized the joint calibration of the camera and the IMU.
However, it needs the help of a calibration board placed in the
environment, which is cumbersome to operate. Syed et al [32]
presented a multi-position calibration method to calibrate the
IMU but needed a high-precision turntable. In this research
work, the authors paid little attention to the noise when the
sensors were in dynamic motion process. Noise is a signific-
ant error source for the MEMS IMU sensors, especially for
low-cost MEMS IMUs.

Based on these, we used the extremely low-cost MEMS
IMU (MPU6050), which is less than $0.5, in our experiment
to verify the effectiveness of the method. Our method can sup-
press the noise that occurs when the sensor is dynamically cal-
ibrated. In addition, from the perspective of application, the
experiment that the compensated IMU improves the position-
ing accuracy of multi-sensor fusion is also verified.

3. System overview

The specific framework of the system is shown in figure 1.
To complete the error compensation of low-cost MEMS IMU,
six steps need to be executed. The entry of the pipeline is
to get the IMU data stream first. Then, the image stream
is fed into the VO algorithm to obtain the pose information
of the camera. The motion information based on vision is
obtained by interpolation and Kalman Smoothing (KS), which
is the third step. The motion information includes the linear
acceleration and angular velocity of the platform. The fourth
step is to spatially and temporally align the visual and iner-
tial motion data and remove the bias. In the fifth step, the

cost function is constructed to perform the optimization solu-
tion in the time domain first. Due to the existence of nonlin-
ear factors in the frequency-domain optimization, the time-
domain optimization result of this step is used as the initial
value of the frequency-domain optimization in the fifth step.
This step completes the coarse-to-fine optimization. In the last
step, the compensated IMUdata are fed into theVIO algorithm
to verify the effect of the visual-assisted IMU compensation
algorithm on the VIO positioning accuracy.

To better express the association among the data of differ-
ent frames, we define the relevant notations and frame trans-
formation, in which w represents the world frame, c repres-
ents the camera frame, and b represents the IMU frame body.
For example, (X)b represents the variable vector X in the body
frame, and Twb represents the Euclidean transformation from
the body frame to the world frame. V represents the informa-
tion obtained by visual methods, I represents the information
obtained by inertial MEMS IMU methods, and V, I is used to
distinguish the different information sources. XVc/b represents
the visual vector information X in the camera or body frame.
XIc/b represents the inertial vector information X in the camera
or body frame. We use rotation matrices R or Hamilton qua-
ternions q to represent rotations; ⊗ represents the multiplica-
tion operator between two quaternions, and q−1 represents the
inverse operation of a quaternion. Moreover, gw = [0,0,g]T is
the gravity vector in the world frame.

4. Calibration methods

4.1. Measurement model of the IMU

The measured value of the IMUwill be affected by many error
sources, resulting in deviation from the real physical value.
The common error items are noise, bias, scale factor, and mis-
alignment. The noise refers to the additive noise caused by
various noise sources. The higher the noise is, the larger are the
errors caused by IMUmeasurements. The bias is an error value
that slowly shifts between the output value and the input value
with the running time. The scale factor represents the ratio
between the measured value and the true value. The install-
ation error represents the degree of non-orthogonality among
the three axes. Themeasurementmodel of the low-costMEMS
IMU is as follows [33],

âIb = Taa
I
b + na + ba (1)

ŵIb = Tgw
I
b + ng + bg. (2)

In these equations, âIb, ŵ
I
b and aIb,w

I
b represent the meas-

urements and true values of acceleration and angular velocity
in the body frame, respectively. The accelerometer is used to
sense the vector sum of the linear acceleration of motion and
the acceleration of gravity. The gyroscope is used to sense
the angular velocity of the body; na,ba represents the accel-
erometer noise and bias, and ng,bg represents the gyroscope
noise and bias. We assume that the noise in the accelerometer
and the gyroscope measurements are Gaussian, that is, ng ∼
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Figure 1. Full pipeline of the proposed IMU calibration with visual-aided IMU compensation algorithm based on frequency-domain
optimization.

N
(
0,σ2

g

)
, na ∼ N

(
0,σ2

a

)
. As for the bias, gyroscope bias and

acceleration bias are modeled as random walk, whose derivat-
ives are Gaussian, nba ∼ N

(
0,σ2

ba

)
, nbg ∼ N

(
0,σ2

bg

)
,

ḃa = nba , ḃg = nbg . (3)

Ta,Tg represents the product matrix of the scale factor and
the cross-axis error of the three-axis accelerometer and gyro-
scope, which is called compensationmatrix or calibrationmat-
rix. The main diagonal represents the scale factor, and the
other elements are the degree of misalignment among the axes.
The specific form is as follows,

Ta =

 sax ma
12 ma

13

ma
21 say ma

23

ma
31 ma

32 saz

 ,Tg =

 sgx mg
12 mg

13

mg
21 sgy mg

23

mg
31 mg

32 sgz

 .

(4)

The goal is to identify the measurement model of low-cost
MEMS IMU. Through experiments, it was found that the scale
factors of these poorly calibrated MEMS IMUs had a more
significant impact on the positioning accuracy of MEMS IMU
in multi-sensor fusion. The value of non-diagonal elements
was k× 10−3, which was very close to 0 and had less impact
on the results. Here, k represents a constant in scientific nota-
tion. Therefore, the optimization algorithm of this paper com-
pensates and calibrates the scale-factor error source.

4.2. Visual odometry

The monocular camera that has been widely studied has the
advantages of miniaturization, high integration, and low cost.

However, the depth information dimension will miss when the
monocular camera is projected from the 3D space to the 2D
plane of the camera. Therefore, it is often not used in the actual
positioning and navigation field. Instead, the Red, Green, Blue
and Depth (RGB-D) map and binocular camera can obtain
depth information, and the real scale of the overall positioning
trajectory can be constructed. In this paper, the VO framework
VINS_Fusion [20], which is based on sliding window optim-
ization, is adopted [18]. The binocular camera is introduced
in visual-only odometry to obtain the rotation matrix Rwc and
position vector pwc of the camera. Rwc can also be expressed
in the form of Hamilton quaternions qwc.

4.3. Visual motion data processing

4.3.1. Visual linear acceleration. In the experiment, the out-
put frequency of the VO is 30 Hz, and the IMU frequency is
100 Hz. Here, the camera output frequency is 60 Hz, but lim-
ited by the computing time, the odometry output frequency of
the binocular VO is 30 Hz. Due to the low frequency of the
camera odometry, the camera position information is linearly
interpolated to match the frequency of the IMU. To obtain the
visual acceleration, the KS algorithm, which is divided into
forward filtering and backward smoothing, is implemented.
Because the physical motion law is considered in the predic-
tion model and the observation value of the camera position
information is used in the measurement model, better acceler-
ation information can be obtained through the state estimation
algorithm. The state vector of the KS at time step k is given
by,

Xk =
[
pk vk ak

]
. (5)

4
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In equation (5), pk vk ak represent the state vectors for
position, velocity, and acceleration, respectively. The predic-
tion process and its covariance estimation are performed first,

X̂k = AkX̃k−1 + ϵk

P̂k = AkPk−1A
T
k +Qk. (6)

Ak =

 1 ∆t 1
2∆t

2

0 1 ∆t
0 0 1

 represents the state transition

matrix. ∆t represents the sampling time, (̃·) represents the

optimal state estimate, and (̂·) represents a predicted value. For
example, X̃k−1 represents the optimal state at time k− 1. X̂k
represents the predicted state at time k. Similarly, the matrix
P represents the covariance matrix of the optimal state or pre-
dicted state. We assume that the noise in the predictive model
is Gaussian, ϵk ∼ N(0, Qk). When the measurements of the
camera position arrive, the update procedure and the covari-
ance estimation were performed,

Zk = HkXk+ δk

Kk = P̂kH
T
k

(
HkP̂kH

T
k +Rk

)−1

X̃k = X̂k+Kk
(
Zk−HkX̂k

)
P̃k = P̂k−KkHkP̂k. (7)

Zk represents the observation in the Kalman algorithm,
which refers to the camera position pwc in section 4.2. Hk rep-
resents the transformation matrix between the state and the
measurements. We assume that the noise in measurements is
Gaussian, δk ∼N (0, Rk). Kk represents the optimal weight
between the measurements and the predicted state.

Forward filtering completed the forward recursion with
time step [t0, t1, . . . , tk], and backward smoothing completed
the backward recursion in [tk, tk−1, . . . , t0]. Because all pos-
ition information of the camera is available at the whole
sample time, the influence of noise is reduced by using the KS
algorithm to further improve the accuracy of visual accelera-
tion. The formulation of the specific smoothing is as follows,

X̄k+1 = AkX̃k+ ϵk

P̄k+1 = AkP̃kA
T
k +Qk

Gk = P̃kA
T
k (P̄k+1)

−1

Gk = P̃kA
T
k (P̄k+1)

−1

Ps
k = P̃k+Gk

(
Ps
k+1 − P̄k+1

)
GT
k

. (8)

X̄k+1 represents the backward predicted state based on X̃k.
P̄k+1 represents the covariancematrix of the predicted state.Ps

k
represents the covariance matrix of the backward smoothing
optimal state. Gk represents the optimal weight between the
smoothing state and the predicted state. The optimal estimated
state Xs

k is obtained by the KS algorithm, fromwhich the visual
acceleration information aVc can be obtained.

4.3.2. Visual angular velocity. The rotation information of
the camera can be obtained by VO. Because the frequency
of the camera is inconsistent with the IMU, spherical linear
interpolation of the quaternion rotation is needed. The visual
angular velocity can be solved by the differential of the qua-
ternion. The derivative of the quaternion with respect to time
is as follows,

q̇wc =
1
2
qwc ⊗

[
0
wV

c

]
. (9)

So, there is, [
0
wVc

]
= 2q−1

wc ⊗ q̇wc. (10)

The element corresponding to the imaginary part is the
visual angular-velocity information in the camera frame wVc .

4.4. Spatial and temporal transformation

Spatiotemporal alignment is an interactive bridge between the
IMU data in the body frame and the vision data in the cam-
era frame. For the purpose of compensation, it is necessary to
unify the data in different frames into the same frame. Here,
we chose the camera frame.

The camera and the IMUmodule are connected to the same
circuit board through a rigid body. In spatial alignment, there
is no need to consider translation parameters due to the pro-
cessing of the angular-velocity and linear-velocity vectors.
The rotation matrix Rcb can be obtained through the geomet-
ric relationship of the frames. For temporal alignment, the
angular-velocity information is used to obtain the time off-
set td between vision and inertia based on the golden ratio
search algorithm. The cost function about time offset can be
constructed,

td
∗ = argmin

∑
t

∥∥wVc (t)−Rcbw
I
b (t+ td)

∥∥2

2
(11)

where wIb represents the angular-velocity information of the
inertial IMU in the body frame. Rcb denotes the transformation
from the body frame to the camera frame. Themeasured values
in the body frame can be converted into the camera frame by
Rcb, as shown in equation (12). Figure 2 shows the spatial and
temporal alignment,

wIc (t) = Rcbw
I
b (t) . (12)

4.5. Compensating accelerometer and gyroscope

4.5.1. Coarse optimization of the time domain. A. Time-
domain optimization of accelerometer compensation matrix:
the average value of the stationary period T is taken as the
IMU bias ba,bg, where T is 5 s. Because the acceleration
of the inertial device is gravity mixed and the visual linear
acceleration is non-observable for the gravity vector gw =
(0,0,g) in the inertial frame, the inertial acceleration needs to
remove the influence of the gravity vector in the inertial frame.

5
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Figure 2. Comparison between with and without temporal
alignment. The blue line represents the inertial angular velocity. The
red line represents the visual angular velocity without temporal
alignment. The yellow line represents the visual angular velocity
after temporal alignment.

Otherwise, there will be a large proportion in the frequency-
domain optimization, which will affect the optimization res-
ults. The time-domain cost function is as follows,

âIc (t) = Rcb

(
âIb (t)− ba

)
T−1*
at = argmin

∑
t

∥∥∥aVc (t)−T−1
at *

(
âIc (t)−Rcw (t)gw

)∥∥∥2

2
.

(13)

In equation (13), âIc indicates the inertial acceleration
information after bias removal in the camera frame; aVc repres-
ents the visual linear acceleration in the camera frame.Rcw is
the transpose of the camera rotation matrix Rwc in section 4.2.
Rcw converts the gravity in the world frame to the camera
frame. In addition, ∥·∥ represents the norm of a vector. T−1

at
represents the state to be optimized. The subscript t represents
solving Ta in equation (1) through the time-domain method.
The estimation value of the accelerometer compensation mat-
rix under time-domain optimization can be solved by con-
structing the optimization factor of this cost function by using
Ceres [34].

B. Time-domain optimization of gyroscope compensation
matrix: similar to the accelerometers, visual angular velocity
is used to assist in compensating for inertial angular-velocity
information. The time-domain error cost function is estab-
lished as follows,

ŵIc (t) = Rcb

(
ŵIb (t)− bg

)
T−1*
gt = argmin

∑
t

∥∥∥wVc (t)−T−1
gt *ŵIc (t)

∥∥∥2

2
. (14)

In equation (14), ŵIc represents the inertial angular-velocity
information in the camera frame after bias is removed; wVc rep-
resents the visual angular-velocity information in the camera

frame. T−1
gt denotes the optimized state. The estimated value of

the gyroscope compensation matrix in the time domain can be
calculated by constructing the optimization factor of this cost
function by using Ceres.

Through the cost function, the coarse compensation of the
IMU is completed under the time domain. The estimated value
of the coarse compensation will be used as the initial value of
the fine compensation in the frequency domain.

4.5.2. Fine optimization of the frequency domain. In the
preceding time-domain optimization, a global optimum is
obtained by least-squares optimization. Compared with the
time domain, the frequency-domain optimization realizes
the separation of low-frequency useful signals and high-
frequency noise signals. The optimization accuracy can be
further improved by using low-frequency signals. In many
measurement models, it is generally assumed that the noise
is Gaussian white noise, and the assumption of noise can be
ignored by separating in the frequency domain. Based on the
method of the frequency-domain optimization proposed by
Mustaniemi et al [35], we further applied it to the compens-
ation of low-cost or poorly calibrated MEMS IMU and com-
pleted the fine optimization in the frequency domain based on
vision and inertia. Unlike the IMU-preintegrationmethod [36],
the frequency-domain information can be made full use of by
obtaining the visual and inertial motion information.

A. Fine optimization for accelerometer in frequency
domain: because the frequency-domain transformation has
nonlinear effects, the time-domain optimization solution in
section 4.5.1 needs to be used as the initial value of the
frequency-domain optimization. For the accelerometer, the
cost function constructed in the frequency domain is as
follows,

FVai = F
(
aVc (t)

)
, i= x,y,z

FIai = F
(
T−1
af *

(
âIc (t)−Rcw (t)gw

))
, i= x,y,z

T−1∗
af = argmin

∑ fcut

f

∥∥∣∣FVai∣∣− ∣∣FIai∣∣∥∥2

2
, i= x,y,z (15)

where FVai represents the complex value of the visual acceler-
ation of each axis aVc (t) after Fourier transform F (·). FIai rep-
resents the complex value of the inertial acceleration of each
axis after the Fourier transform. In addition, |·| represents the
norm value of the Fourier transform result. When the amp-
litude of Fast Fourier transform (FFT) of the IMU is obvi-
ously smaller and in a flat band, these signals will be con-
sidered as the noise. In the equation, fcut indicates the selec-
ted frequency in frequency-domain optimization, which was
selected as 10.2 Hz in the paper. T−1

af represents the state to
be optimized in the frequency domain. The subscript f repres-
ents further using the frequency-domain method to solve Ta in
equation (1) based on the time-domain results. Constructing
the frequency-domain optimization factor of this cost function
by using Ceres can solve the optimization value under the fre-
quency domain.
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Figure 3. Results of FFT between IMU and visual: (a) visual and
inertial acceleration information in the frequency domain. (b) Visual
and inertial angular-velocity information in the frequency domain.
Where Acc represents the accelerometer, Gyro represents the
gyroscope, and Abs represents the norm of the FFT result.

B. Fine optimization for gyroscope in frequency domain:
for the gyroscope, the cost function constructed in the
frequency domain is as follows,

FVgi = F
(
wVc (t)

)
, i= x,y,z

FIgi = F
(
T−1
gf *ŵIc (t)

)
, i= x,y,z

T−1
gf = argmin

∑ fcut

f

∥∥∣∣FVgi∣∣− ∣∣FIgi∣∣∥∥2

2
, i= x,y,z (16)

where FVgi represents the complex value of the visual angular
velocity of each axis wVc (t) after Fourier transform. FIgi repres-
ents the complex value of the inertial angular velocity of each
axis after the Fourier transform. T−1

gf represents the state to be
optimized in the frequency domain.

Figure 3 shows the distribution of visual and inertial
information in the frequency domain. In the whole frequency
band, the motion information is mainly concentrated in the
low-frequency band, while the noise signal occupies a high-
frequency band.

To quickly process the Fourier transform in the Ceres
optimization process, the cuFFT module based on Compute
Unified Device Architecture (CUDA) platform is introduced
to speed up the optimization solution process, which is 104

times faster than the traditional FFT. The cuFFT module
is a fast Fourier transform algorithm running on the cuda
platform.

5. Simulation and experiment

5.1. Simulation

To verify the effectiveness of the proposed algorithm, simu-
lation tests have been performed. We generated the measured
value information of the IMU and camera odometry based on
themeasurement model in section 4.1 to try tomatch the actual
data. A piece of data about 45 s was generated, and the true
value was set to (1.04 1.05 1.06) in diagonal matrix. The data
in the time and frequency domains are shown in figure 4.

Figure 4. Simulation data for the visual and inertial angular
velocities: (a) and (c) represent the time-domain data polluted by
noise, whereas (b) and (d) represent the frequency-domain
segmentation result.

Table 1. Simulations: summary of calibration parameter results and
RE. RE represents reference value. The abbreviation ‘TO’
represents the time-domain optimization. The abbreviation ‘FO’
represents fine optimization in the frequency domain. The third
column represents the results of TO. The fourth column represents
the RE of TO. The fifth column represents the results of FO. The
sixth column represents the RE of TO.

Simulation RE TO FO

sax 1.04 0.767 26.20% 1.024 1.56%
say 1.05 0.891 15.16% 1.033 1.66%
saz 1.06 1.022 3.55% 1.057 0.24%
sgx 1.04 0.973 6.44% 1.033 0.64%
sgy 1.05 1.004 4.37% 1.036 1.31%
sgz 1.06 1.031 2.76% 1.050 0.90%

Relative error (RE) represents the error relative to the true
value, x̃ represents the estimated value, and x represents the
ground truth value for reference,

RE=
|x̃− x|
x

× 100%. (17)

Table 1 shows the calibration results about the three main
calibration parameters of the low-cost MEMS IMU. It can
be found that the compensation parameters are reduced from
the time-domain error (26.20%, 15.16%, and 3.55%) to the
frequency-domain error (1.56%, 1.66%, and 0.24%) for the
accelerometer, and the compensation parameters are reduced
from the time-domain error (6.44%, 4.37%, and 2.76%) to
the frequency-domain error (0.64%, 1.31%, and 0.90%) for
the gyroscope. Through the simulation, the frequency-domain
compensation algorithm proposed in this paper reduces the
impact of high-frequency noise on optimization and improves

7
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Figure 5. Sensor suite of multi-IMU camera. It contains two
forward-looking global shutter cameras (RealSenseD435i) with
640× 480 resolution and different grades of IMUs. No. 1, No. 2 and
No. 3 represent MPU6050, ADIS16490 and RealSenseD435i
respectively.

Figure 6. Calibrate settings to obtain excitation for different poses
by handheld or remote-controlled vehicles. The wavy line represents
the excitation of the irregular motion to obtain the measurements.

the estimation accuracy of the error parameters we are con-
cerned about.

5.2. Experimental verification

To further verify the effectiveness of the algorithm, a multi-
IMU camera platform was built to perform the experiments.
The sensor suite we used is shown in figure 5. TheMEMS IMU
named MPU6050 represented the IMU module that needed
to be compensated in the experiment. The binocular camera,
which was well corrected by Kalibr [37], was used as the
input of the VO to obtain the pose information of the camera.
The frequencies of the IMU and the camera were 100 Hz and
60 Hz, respectively. The image frequency should be as high
as possible so that the interpolation process will not cause too
much information missing due to the low frequency.

To be compensated for each axis of the MEMS IMU,
rotation and variable-speed translation around the three axes
are performed to obtain the measurement excitation. In our
experiments, we conducted these operations with a handheld
sensor suite in a texture-rich scene. Because it is easy to
realize variable-speed movement by handheld, it can meet
the requirements of measurement excitation. In addition to
handheld devices, we can also complete data collection by
remote-controlled vehicles walking different routes through
the schematic diagram shown in figure 6.

Table 2. Summary of calibration parameter results and RE for
MPU6050. The abbreviation explanation of the first row is
consistent with that in table 1.

MPU6050 RE TO FO

sax 0.975 1.021 4.75% 0.964 1.14%
say 0.905 1.030 13.8% 0.911 0.67%
saz 1.024 1.010 1.42% 0.984 3.89%
sgx 0.965 1.022 5.97% 0.969 0.46%
sgy 0.989 0.993 0.47% 1.005 1.61%
sgz 0.974 1.006 3.29% 0.991 1.82%

By executing our algorithm of coarse optimization in time
domain and fine optimization in frequency domain, the calib-
ration of MPU6050 was completed. Because the ADIS16490
[38] has a very high precision inMEMS IMU, the results com-
pensated by ADIS16490 were used for reference to verify the
validity of the experimental results. The specific results are
summarized in table 2. The average calibration error of the
scale factor is 1.6%. From table 2, it can be found that after
the frequency-domain optimization, the overall error is smal-
ler. Compared with some advanced work, the minimum calib-
ration error of 0.46% in our work is commensurate with the
0.34% in [27] and 400– 700 ppm in [29]. Our method can
suppress the noise that occurs when the sensor is dynamically
calibrated.

5.3. Indoor fusion positioning experiment

Based on the VINS_Fusion [20] algorithm framework, the
compensated MPU6050 was used for VIO fusion positioning
to verify the improvement of the localization accuracy. As for
the test experiment, loop-closure detection was not enabled
because the detection was a stronger constraint for the com-
pensated MPU6050. Enabling the detection would reduce the
constraints of the IMU on the fusion framework.

To evaluate the accuracy, the VINS_Mono algorithm
framework [18] was used as a ground truth because of the
higher positioning accuracy in monocular and IMU [20].
ADIS16490, which is expensive and has the highest nom-
inal accuracy, was used for the IMU sensor. The left camera
of RealSenseD435i [39] was used for monocular image. As
for the reference experiment, the loop-closure detection was
enabled for globally consistent trajectories. These operations
guaranteed that the reference value had the highest accuracy
about positioning.

We performed seven experiments through the handheld
device in the indoor environment of the office. Figure 7 shows
the indoor environment of the office. The comparison of tra-
jectory of one of the sequences named room6 is shown in
figure 8.

To further characterize the situation of the positioning error,
the box plot of the error is shown in figure 9. It can be
demonstrated that the compensated IMU reduces the error in
multi-sensor fusion.

8
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Figure 7. Images recorded during the indoor experiment.

Figure 8. Comparison of trajectory of room6. The blue line
represents the ground truth (GT) value. The red line represents the
VIO trajectory without the compensated IMU. The yellow line
represents the VIO trajectory of the IMU after compensation.

Figure 9. Box plot for positioning error. ATE represents the
absolute trajectory error.

Moreover, the Root Mean Square Error (RMSE) is sum-
marized in table 3, and the accuracy is improved by 9%− 15%.
The result verifies the effectiveness of the compensation IMU
algorithm and the improvement of themulti-sensor fusion pos-
itioning accuracy.

Table 3. RMSE of the indoor fusion positioning based on the
compensated MPU6050 and camera. ‘Time’ represents the duration
of the experiment. ‘Traj.L’ represents the distances traveled. ‘No
Calibr’ represents the RMSE results of multi-sensor fusion
positioning using an uncompensated IMU, and ‘with Calibr’
represents the RMSE results of multi-sensor fusion positioning
using the compensated IMU. ‘Improvements’ represents the
improvement of positioning accuracy.

Indoor
Time
(s)

Traj.L
(m)

No Calibr
(m)

With
Calibr (m)

Improvements
(%)

Room1 61.8 22.6 0.1585 0.1396 11.9
Room2 91.7 26.0 0.1519 0.1376 9.4
Room3 56.1 20.1 0.1690 0.1469 13.1
Room4 88.5 29.8 0.2076 0.1761 15.2
Room5 102.5 31.3 0.1621 0.1412 12.9
Room6 153.4 50.4 0.2021 0.1805 10.7
Room7 211.4 106.5 0.3406 0.2870 15.7

6. Conclusion

In this paper, we propose a method of compensation for low-
cost or poorly calibrated IMUbased on visual-aided algorithm,
which does not require external professional calibration equip-
ment. The visual and inertial information are fused by the
coarse-to-fine optimization process. The results in the time
domain are further optimized without considering the high-
frequency noise in the frequency domain. Our simulations and
experimental results in real-world scenarios demonstrate that
the calibration approach is effective and can improve the per-
formance of low-cost or poorly calibrated MEMS IMUs in
the VIO fusion algorithm. There are advantages in large-scale
robot positioning platform deployment and hardware costs.
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