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CROMOSim: A Deep Learning-based
Cross-modality Inertial Measurement Simulator

Yujiao Hao, Xijian Lou, Boyu Wang, and Rong Zheng, Senior Member, IEEE

Abstract—With the prevalence of wearable devices, inertial measurement unit (IMU) data has been utilized in monitoring and
assessing human mobility such as human activity recognition (HAR) and human pose estimation (HPE). Training deep neural network
(DNN) models for these tasks require a large amount of labelled data, which are hard to acquire in uncontrolled environments. To
mitigate the data scarcity problem, we design CROMOSim, a cross-modality sensor simulator that simulates high fidelity virtual IMU
sensor data from motion capture systems or monocular RGB cameras. It utilizes a skinned multi-person linear model (SMPL) for 3D
body pose and shape representations to enable simulation from arbitrary on-body positions. Then a DNN model is trained to learn the
functional mapping from imperfect trajectory estimations in a 3D SMPL body tri-mesh due to measurement noise, calibration errors,
occlusion and other modelling artifacts, to IMU data. We evaluate the fidelity of CROMOSim simulated data and its utility in data
augmentation on various HAR and HPE datasets. Extensive empirical results show that the proposed model achieves a 6.7%
improvement over baseline methods in a HAR task.

Index Terms—deep learning, IMU, simulation, human activity recognition, human pose estimation
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1 INTRODUCTION

Nowadays, inertial measurement units (IMUs) have become
ubiquitously available in wearable and mobile devices. An
important category of IMU-enabled applications is moni-
toring and assessing human mobility, which aims to con-
tinuously track people’s daily activities, analyze motion
patterns and extract digital mobility bio-markers such as
gait parameters in the wild. Increasingly, data-driven deep
learning models have been developed for human activity
recognition (HAR) [1], [2] and human pose estimation
(HPE) [3]. Despite their impressive performances, these
models generally require a large amount of sensory data
for model training. Unfortunately, it is challenging to collect
high-quality IMU data in the wild. Moreover, data collected
from controlled settings where subjects are asked to perform
certain activities often have very different characteristics
from those in freestyle motions [4]. On the other hand,
annotating IMU data post hoc is challenging as raw IMU
signals are hard to interpret even by domain experts.

The scarcity of IMU data for human mobility assess-
ment is evident when compared with the richness of other
data sources. PAMAP2 [5], a benchmark dataset for HAR,
consists of 8 subjects with only 59.67 minutes of samples
per person. In contrast, AMASS [6], a motion capture
(MoCap) dataset, includes 2420.86 minutes of data and is
still growing; not to mention YouTube videos, which offer
a practically infinite amount of action data. Therefore, to
mitigate the “small data” problem, one possible solution
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is to convert data from other modalities to IMU, a process
called cross-modality simulation.

Though several previous works explored the feasibility
of simulating IMU sensor data from other data modalities
(see Section 2), two fundamental challenges remain. First,
sensors are attached to human skin rather than directly
to bone joints during data collection. Skeleton models are
inadequate in representing human poses and shapes. Sec-
ond, even with state-of-the-art (SOTA) solutions in com-
puter vision, the extracted 3D human motion trajectories
from monocular video clips remain inaccurate. Analytically
compute IMU readings on such imperfect input sequences
will result in large errors. However, if a deep learning model
is adopted to learn the mapping between noisy motion
trajectories and measured sensor readings, it is unclear how
well such models generalize to arbitrary unseen on-body
positions.

To tackle the aforementioned challenges, we design and
implement CROMOSim, a cross-modality IMU sensor sim-
ulator that simulates high fidelity virtual IMU sensor data
from motion capture systems and monocular RGB cameras.
It differs from existing work in two important aspects. First,
it is based on the 3D skinned multi-person linear (SMPL)
model [7], which serves as an intermediate representation
of motion sequences and entitles our CROMOSim for an
arbitrary on-body simulation. SMPL has been widely used
in HPE tasks [8], [9], [10], [11], which is capable of mod-
elling muscle and soft tissue artifacts. In contrast, the 2D
or 3D skeleton representations adopted by other works are
segment models without volumetric information. Second,
we empirically demonstrated that the direct computation
of IMU readings from motion trajectories extracted from
videos is unreliable (in Section 4), even with filtering and
interpolation techniques as the case of IMUSim [12]. We
instead design and train a neural network to learn the
relationship between measured IMU readings and the noisy
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motion trajectories. Special cares have to be given to ensure
the trajectories are represented in a consistent global coordi-
nate frame even if the videos are captured by moving cam-
eras. Compared to existing IMU simulators, experiments
show that CROMOSim achieves higher fidelity and superior
performance in various HAR tasks. HPE tasks are also
evaluated to demonstrate the utility of simulated data in
downstream applications.

In summary, we make the following contributions in this
paper:

1) CROMOSim is the first work that utilizes SMPL full-
body tri-mesh as an intermediate representation for
IMU data simulation.

2) CROMOSim offers a generic pipeline for generating
IMU readings at arbitrary on-body locations from
either MoCap or monocular RGB data. It is readily
extensible to other input modalities and configura-
tions.

3) CROMOSim mitigates imperfection in intermediate
body pose and shape estimations through a super-
vised learning approach.

4) Compared to SOTA IMU simulators, CROMOSim
achieves higher fidelity and superior performance
in HAR tasks.

5) We are the first to empirically show the utility of
simulated IMU data in HPE tasks under a deep
learning context.

The rest of the paper is organized as follows. Section 2
describes related work. In Section 3, we introduce the CRO-
MOSim pipeline and details of each component. In Section
4 we present the implementation details and performance
evaluation of CROMOSim standalone and in downstream
tasks. Finally, we conclude the paper in Section 5 with
discussion and future work.

2 RELATED WORK

The proposed cross-modality simulation framework is a
type of data augmentation technique, which is broadly used
in machine learning to compensate for data scarcity, to
improve data diversity, and boost the generalization of a
trained model. In the context of augmenting IMU data, we
categorize existing methods into three groups: transforming
real IMU recordings, generative models for IMU data, and
cross-modality simulators.

IMU transformations: Simple operations such as flipping,
rotation, scaling and changes in brightness can be applied
to augment image data. Similar ideas are applicable to IMU
data as well. In [13], [14], random relative rotations between
a sensor and human body were added within a prede-
fined range, to make the trained model robust to subject
divergence. In [15], the authors proposed a systematic way
to augment the IMU data via rotation, permutation, time-
warping, scaling, magnitude-warping and jittering. Eyobu
et al. went even further in [16] to transform handcrafted
features rather than the raw recordings of wearable sensors.
Though easy to implement, IMU transformation methods
require the availability of sufficient real sensor data as their
source.

Generative models for IMU data: Generative adversar-
ial networks (GAN) use two neural networks, pitting one
against the other in order to generate new, synthetic in-
stances of data that are indistinguishable from real ones [17].
Researchers designed GANs to generate IMU data in [18],
[19], [20]. In [19], a conceptual solution was proposed.
SensoryGANs [18] adopt adversarial learning in generating
diverse yet realistic IMU sensor readings for locomotion.
However, this method is highly complex: a different neural
network architecture is devised for each activity. More-
over, due to the large variances in the generated data,
simulated data can not be translated back to meaningful
human motion trajectories, thus making it only suitable for
relatively simple HAR tasks with easily separable patterns.
For example, both SensoryGANs and ActivityGANs [20]
simulate only stay still, walk, jog activities in their evaluation.
Another limitation of GAN-based methods is that they tend
to generate data that is similar to real data in the training
set and are not reliable to produce data for new subjects or
new activities.

Cross-modality IMU simulation: Given motion trajecto-
ries in a global frame, acceleration can be calculated by
taking the second derivatives of positions over time. Re-
searchers may take advantage of this simple computation
strategy to simulate accelerometer data from MoCap se-
quences. The resulting data has been used in recent works
to pre-train human pose estimation (HPE) [21] and HAR
models [22], [23]. One drawback of this method is that
none of these researches targets to simulate realistic IMU
sensor readings, and gyroscope data is omitted. For a more
systematic IMU simulation, IMUSim [12] is among the first
open-source tool to simulate IMU data from either MoCap
data in the Biovision Hierarchy (BVH) format or a user-
provided 3D position and orientation sequence. Though
employs data smooth and filtering techniques to tackle
outliers, this method is built upon analytically calculation
with low data fidelity (see Section 4.2).

After that, simulating IMU readings from monocular
RGB videos for data augmentation has attracted some at-
tention in recent years. ZeroNet [24] extracted finger motion
data from videos, then transformed them into acceleration
and orientation information measured by IMU sensors. The
authors of [25] and its follow-up work [26], [27] simulated
acceleration norms and/or angular velocity norms from
human 2D poses for a HAR purpose. In their latest work
[27], Rey et al. skipped the video processing steps and di-
rectly mapped vision data to IMU readings with placement
specific neural networks. These works avoid the video-
based global motion tracking by limiting human subjects‘
movement to a fixed camera scene (in-place motion), and
thus cannot be applied to handle in-wild video data with
moving cameras. Closest to our work are IMUTube [28] and
its extension in [29], which aim at simulating full-body IMU
data from moving camera videos captured in the wild. But
limited by the skeleton body representation adopted, neither
work can simulate realistic sensor readings from arbitrary
on-body locations. Moreover, in IMUTube, the estimation of
view depth and camera ego-motion is in two independent
steps though the two are intrinsically coupled [30], [31].
A wrongly predicted camera pose can lead to inaccurate
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view depth estimation and vice versa [32]. In addition, the
lifting of 2D postures to 3D module in IMUTube pipeline
is more compute-intensive and error-prone, as it is a simple
combination of existing technologies.

3 METHOD

Before introducing the proposed method, the notations used
in this chapter are defined as follows. There are four dif-
ferent coordinate frames involved in this work: FG for the
global tracking frame, which is a fixed coordinate system for
representing objects in the world; FB for a bone coordinate
frame, which originates at the bone’s distal joint with x-
axis along the bone pointing to its proximal joint and y-
axis in the medal-lateral direction; FS is the sensor frame
that is fixed on the sensor and is determined by its manu-
facturer; FC for the camera frame that takes the center of
the camera’s image plane as its origin and the optic axis as
the Z-axis (Fig. 1). Rotation matrix RS

B denotes the rotation
from bone frame to sensor frame. For simplicity, amongst
camera intrinsic parameters, we assume the optical centers
of the camera in pixels on the x and y axis cx = cy = 0, and
only estimate the focus length in the x and y axis fx and
fy . Camera extrinsic parameters include rotation matrix R
and translation vector t, respectively. R and t are fixed for
fixed cameras and need to be updated for moving cameras.
During movements, both FB and FS changes relative to
FG and are placement or device specific. Therefore, it is
necessary to transform representations of motions into a
unified global coordinate first.

Fig. 1: An example of different coordinate frames involved
in this work.

3.1 Overview
CROMOSim is designed with several requirements in mind:
i) allowing arbitrary user-specified placement and orienta-
tion of target sensors, ii) extensibility to different input data
modalities and configurations, iii) flexibility to incorporate
SOTA models to extract motion trajectories, and iv) high fi-
delity. To meet these requirements, the CROMOSim pipeline
consists of three function modules as shown in Fig. 2 : an
input data processing module that extracts global human
motion sequences from source data, a human body model
that fully represent the extracted sequences and can be sam-
pled from any on-body location, and a simulator module
that transforms noisy motion sequences into high-fidelity

3-axis accelerometer and gyroscope readings. Though the
pipeline is extensible to other possible input data modalities
such as millimetre wave radar and depth camera, we will
focus on MoCap and monocular camera video here. Each
component will be discussed in detail in the remaining
section.

3.2 SMPL Model

An SMPL model represents 3D human body poses and
shapes with a fine-grained full-body tri-mesh. Unlike skele-
ton or cylinder models that only capture joint poses, this
parametric 3D representation provides a widely applicable
and differentiable way to visualize a realistic 3D human
body. There are three reasons to choose SMPL over other
body models in CROMOSim. First, instead of measuring the
movements of bones, IMU readings reflect the soft tissue
dynamics at the location to where a sensor is attached.
Second, SMPL provides a pose and shape-dependent full-
body tri-mesh that can be sampled at any on-body location.
Third, since it is widely used in HPE research, many off-the-
shelf models are available to extract SMPL representations
from different data sources.

To see the difference between movements of joints in
a skeleton model and SMPL skin mesh, we compare ac-
celerations computed by taking second-order derivatives
of the corresponding motion trajectories and ground-truth
accelerometer readings over time. In Fig. 3, red curves de-
note the calculated 3-axis accelerations while the black ones
are accelerometer ground truth. Figures in the left column
compare the accelerations at the pelvis joint in a skeleton
model while figures in the right column compare those at
SMPL lower back skin mesh vertices. Clearly, the use of
the SMPL skin mesh provides better agreements with the
ground truth (e.g., in the interval [100,300]). Simulated data
from the pelvic joint, on the other hand, fails to capture high-
frequency acceleration components, which are most likely
due to muscle and soft issue movements. SMPL enables
users to sample from any on-body position on the skin
surface while the skeleton model represents the motion of
bones only. In most cases, IMUs are attached to body sur-
faces rather than directly to bones or anatomical landmarks.
Thus, SMPL is a good candidate for an intermediate data
representation of the CROMOSim pipeline.

3.3 Input Data Processing

3.3.1 From MoCap Data to SMPL Models
MoCap data consists of raw marker sequences collected by
an optical motion capture system of high precision (usually
with a position error < 1 mm). With commercial Mocap
systems like OptiTrack [33] and Vicon [34], both body shape
and pose data can be captured. Such data have been widely
used as ground truth labels in markerless human pose
estimation with cameras or wearable sensors [3]. MoSH++
[6] allows the fit of an SMPL model to MoCap data from
a set of sparse markers. Prior to motion capture, a global
tracking coordinate system needs to be established during
the calibration phase. As a result, the collected motion
trajectories are expressed in the defined global frame. Under
the assumption that the global frame is aligned with the
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Fig. 2: The proposed CROMOSim pipeline. It takes either MoCap or monocular camera video data as input and converts
them into SMPL represented global motion and body shape. The simulator then takes the SMPL model, specified sensor
placement and orientation as input; predicts simulated IMU readings and transforms them back to the sensor coordinates
frame.

Fig. 3: Comparison between analytically computed 3-axis
accelerations from a skeleton representation and an SMPL
model. Left: taking the motion sequence of pelvis joint
positions as input, right: taking the motion sequence of
SMPL lower back skin mesh positions as input.

inertial frame1 , the SMPL mesh model can be used directly
in subsequent processing.

3.3.2 From Video Clips to SMPL Models

Extracting 3D human poses and shapes from monocular
RGB videos is not trivial, especially when they are captured
from moving cameras with unknown parameters, which is
common in a locomotion-related video recorded in the wild.
We propose to decompose such a problem into two sub-
problems: a reconstruction of human global displacement
and rotation; and an estimation of 3D in-place human mo-
tion and body shape.

Estimating root joint global trajectory: A precise cal-
culation of global displacement for the human subject is
essential for a high-fidelity simulation of IMU data from
RGB videos. This requirement can be achieved by recon-
structing the 3D motion trajectory of a fixed body position
(a.k.a, the root joint), which can be inferred from the per

1. Such an assumption is not restrictive as a random rotation can be
applied in further data augmentation to obtain data if the global and
inertial frames differ.

frame depth map of the human subject and known camera
parameters [35].

In CROMOSim, we adopt robust consistent video depth
estimation (Robust CVD) method [30], a SOTA model to
estimate consistent dense depth maps and camera poses
from a monocular video. Robust CVD jointly estimates
both outputs by solving an optimization problem over
the entire video sequence. It is advantageous as the two
outputs are intrinsically coupled and thus lead to higher
accuracy (compared to the pipeline adopted by IMUTube).
In the implementation, we locate the 2D torso joint posi-
tions in video frames using OpenPose [36], and designate
the pelvis as our root joint. With the detected 2D joint
position and depth map per video frame, we can calculate
the global 3D torso coordinates as follow. Denote the 3D
coordinates of the root joint in the camera frame and the
global frame at time k by PC(k) = [XC(k), Y C(k), ZC(k)]
and PG(k) = [XG(k), Y G(k), ZG(k)] respectively. Let its
corresponding 2D pixel coordinates in the camera image be
[x(k), y(k)]. Given the camera intrinsic parameters fx and
fy from robust CVD, we have

XC(k) =
(x(k)− W

2 )× ZC(k)

fx

Y C(k) =
(y(k)− H

2 )× ZC(k)

fy

ZC(k) = d(x(k), y(k)),

(1)

where d(x, y) is a depth retrieving function with a 2D pixel
coordinates x, y, and W and H are the width and height of
the pixel image. Next, using the camera extrinsic parameters
Rk and tk, we transform the root joint position from the
camera frame FC to global frame FG at time k follows:

PG(k) = RT
k × (PC(k)− tk) (2)

In addition, depth reconstructed by robust CVD is rea-
sonably accurate up to scale. To resolve scale ambiguity,
an object of known size (its real height hr or real width
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wr) in the scene is needed, as real depth at time k can be
calculated with dr(k) = (fy ×hr)/hp(k), where hp(k) is the
object height in pixels. The scale factor can be estimated with
s = dr(k)/d(x(k), y(k)), and it is a constant value per video
clip processed by Robust CVD. Prior knowledge regarding
heights of subjects in the video, or dimensions of fixtures
(e.g., street lamps, road lanes) can be utilized. Subsequently,
the predicted depth of the pelvis joint is re-scaled by the
estimated scale factor to recover the real global root joint
trajectory.

Since in some frames, the root joint is not visible or can-
not be located accurately due to occlusion or poor lighting,
we only extract root joint coordinates from the frames with
high confident scores by OpenPose. Root joint coordinates
in the remaining frames are then interpolated from the
estimated ones, and a Kalman filter is applied to further
smooth the resulting trajectory.

Body pose and shape estimation in camera frames: We
adopt VIBE [9], a SOTA method to directly estimate real-
istic 3D human poses and shapes from monocular videos.
In the implementation, we make two extensions to VIBE.
First, VIBE assumes a fixed camera configuration and in-
place human motion only, losing track of human subjects’
global motion trajectory. Fig. 4 shows the difference between
motion trajectories of a lower back SMPL mesh vertex near a
subject’s pelvis. The figures are extracted by VIBE only, and
by our proposed pipeline, respectively, when the straight-
line running subject was captured by a handheld camera.
Clearly, the trajectory in the left figure fails to reflect the
actual motion. As elaborated in the previous paragraph,

x

Fig. 4: Extracted motion trajectories of a subject’s low back
from a 4-seconds running outdoor video clip captured with
a handheld camera. The subject in the video runs along
a straight line. Left: results from VIBE only, right: results
from the proposed pipeline. Each plot was generated by
projecting 3D trajectory on the ground plane.

robust CVD is adopted to complete the missing information.
It helps to estimate the 3D global translation of the subject’s
root joint per video frame even when there is relative motion
between the camera and the human subject. We acquire a
full 3D human pose representation by adding the global
translation to the translation parameters of the SMPL model
from VIBE outputs. Second, VIBE estimates body shapes for
every video frame and a frequent re-scaling of the human
subjects can be observed when there are drastic motions or
the camera is fast moving. This is unnecessary since people’s
body shapes are unlikely to change in a short period and
such rescaling is prone to errors. Instead, we assume that
the estimated body shape can be modeled as a ground truth

shape plus zero-mean random noise. Thus, shape estimation
errors can be mitigated by averaging the estimated body
shapes for the same subject over multiple frames in a 10-
second video sequence.

Finally, by combining the aforementioned steps, we can
extract 3D body poses in a global frame and shape param-
eters from monocular RGB video, which can serve as input
to generate SMPL body meshes.

3.4 From SMPL Models to IMU Data

Given the 3D human pose and shape represented by SMPL
tri-mesh over time, accelerations and angular velocities in
a global frame can be computed analytically. In particular,
accelerations can be calculated by taking second derivatives
of positions over time; angular velocities can be determined
from the changes in the normal vector of a plane associated
with three non-collinear mesh points (e.g., the vertices of
a mesh triangle). However, SMPL tri-meshes generated by
the models in Section 3.3.2 tend to be noisy, erroneous and
incomplete. Furthermore, accelerations and angular veloci-
ties measured by IMUs are subject to hardware imperfection
such as noises, biases, and non-orthogonal axes, which are
not easily replicated by analytical calculation.

To address the aforementioned issues, we design two
neural network models, an accelerometer and a gyroscope
network, to learn the mapping between motion trajectories
of SMPL tri-mesh points and actual acceleration or angular
velocity measured by IMUs in a global frame, respectively.
The neural networks are capable of generating data from
any arbitrary unseen region over the human body by train-
ing with real data from some selected on-body positions of
various motion ranges (such as the head, chest, one side of
the wrist, and ankle). Both models take the same design,
with three convolutional and two bidirectional long-short
term memory (LSTM) layers as the feature extractor, and
a following linear layer for regression output. The model
is fed a user-specified skin area, with three mesh triangles
chosen near the area’s center as input. In each triangle, the
vertices are traversed counter-clockwise to ensure the norm
direction always points outside of the human body.

The collected IMU data are usually in the local sensor
frame while the predictions of CROMOSim are in the global
frame. Therefore, a coordinates transformation step is re-
quired. A user needs to select the skin region a virtual sensor
affixes to and define its alignment represented as a rotation
matrix (RB

S ). With the rotation matrix from the bone frame
to the sensor frame (RB

S )
−1, we can transform IMU data

into the sensor frame from the accelerations aG and angular
velocities ωG in the global frame as follows:

aS = (RB
S )

−1 × (RG
B)

−1 × (aG + g), (3)

and
ωS = (RB

S )
−1 × (RG

B)
−1 × ωG, (4)

where g is the gravity acceleration and RG
B is obtained from

the SMPL model for the corresponding skin region.
Due to noisy data sources and modelling errors, domain

gaps exist between simulated and real data. Such gaps
are more pronounced in the simulated data from videos.
To mitigate these gaps, we adopt the same distribution
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mapping technique [37] as IMUTube. Let G(X ≤ xr) and
F (X ≤ xs) be the cumulative density functions (CDF) for
real IMU xr and simulated data xs, respectively. Under the
assumption that G(·) is invertible, it can be proven that
x′
s = G−1(F (X ≤ xs) follows the same distribution as xr .

To apply distribution mapping, we need to estimate the
CDF of simulated and real data along each axis, then apply
the mapping separately. Empirical results from IMUTube
show that a small number of real data (∼ 1000 samples
per class or equivalently 33-second long at a sampling rate
of 30 Hz) are sufficient to give a good estimation of G(·).

4 EVALUATION

In this section, we will evaluate CROMOSim in two sets of
experiments. Firstly, we evaluate the fidelity of simulated
sensor data both qualitatively and quantitatively. Then, we
evaluate the utility of CROMOSim in data augmentation for
downstream HAR and HPE tasks.

4.1 Experimental Setup
4.1.1 Datasets
To train the simulator network and evaluate the fidelity of
simulated data, we use the TotalCapture dataset, a bench-
mark for 3D HPE from marker-less multi-camera capture
[38] which has all three data modalities (MoCap, IMU and
video). For HAR evaluation, Realworld [39], the Physical
Activity Monitoring version 2 (PAMAP2) [5] and Opportu-
nity [40] datasets are used in task model training and testing.
For knee angle estimation tasks, we also take Totalcapture
in our experiments. A detailed description of each dataset is
listed below:

1) TotalCapture [38]: It is the first dataset to have
fully synchronized multi-view video collected from
eight RGB cameras at a frame rate of 60Hz, 12 IMU
sensors (affixed to a subject’s head, right and left
upper arms, right and left wrists, right and left
upper legs, right and left lower legs, right and left
feet and pelvis) sampled at 60Hz and Vicon labels
for a large number of frames (∼1.9M). It contains 5
subjects performing acting, walking, rolling arms, and
freestyle motions indoor.

2) Realworld [39]: It has 8 activities including climbing
stairs down and up, jumping, lying, standing, sitting,
running/jogging, and walking performed by 15 sub-
jects. Each subject wore mobile devices on 7 body
positions (chest, forearm, head, shin, thigh, upper
arm and waist). Videos were recorded by a moving
handheld camera followed the subjects. Each activ-
ity lasted 10 minutes, except for jumping, which
was around 2-minute long. Data was collected nat-
urally. In some indoor trials, the light conditions
were poor. In some outdoor trials, the videos contain
passers-by not part of the subject pool.

3) PAMAP2 [5]: The Physical Activity Monitoring ver-
sion 2 (PAMAP2) consists of data collected from
IMU sensors (accelerometer and gyroscope) on sub-
ject’s chest, dominant ankle and wrist during 8 ac-
tivities, i.e., lying, sitting, walking, running, standing,
rope jumping, ascending stairs and descending stairs.

Eight subjects performed these activities freely with-
out time constraints and had the option to skip
some activities. There exist missing classes in some
subjects’ data and the data samples are unbalanced
across the classes. During data collection, IMU sen-
sors are instrumented on different subjects at a
sampling rate of 100Hz.

4) Opportunity [40]: The Opportunity dataset con-
tains IMU measurements from 4 subjects during 5
mobility-related activities. The activities are sitting,
standing, lying, walking and null, where ‘null’ include
any activity outside the first four. Data was collected
from 7 body-mounted sensors (left and right fore-
arms, left and right arms, back, left and right feet)
at a sampling rate of 30Hz.

4.1.2 Data Preprocessing
In the fidelity evaluation, we divide data from TotalCapture
with all modalities into 2-seconds sliding windows with
80% overlapping for model training and without overlap-
ping for prediction. For HAR, to make the results directly
comparable to baseline approaches, we follow the same
procedure described in IMUTube, where simulated and real
IMU data are low-pass filtered, normalized and divided into
sliding windows with 1-second length and 50% overlap-
ping. In the case of HPE, the real and simulated IMU data
are standardized, and then divided into 1-second windows
without overlapping.

4.1.3 Evaluation Metrics
To evaluate the fidelity of CROMOSim, we compute the root
mean square error (RMSE) between simulated IMU data and
ground truth. In HAR tasks, as the classes in datasets are
imbalanced, we use F1 score to evaluate the random single-
subject-out experiments. In multi-class classification, the F1
score is computed as the weighted average of the F1 score of
each class. In 3D HPE tasks, we measure the RMSE between
predicted knee angles against the ground truth in the unit
of degrees.

4.1.4 Baseline Methods
We consider IMUSim and an analytical method as baselines
to compare the fidelity of our simulated data because IMU-
Tube also utilizes IMUSim to generate IMU data from 3D
global motion trajectories. The analytical method we adopt
to compute linear acceleration is Richardson’s extrapolation
[41], [42]. Compared to taking second-order derivatives, Eq.
(5) gives a more accurate estimation with a 4th order error
term (as opposed to 2nd order).

acc =
−p(t− 2) + 16p(t− 1)− 30p(t) + 16p(t+ 1)− p(t+ 2)

12∆t2
(5)

The angular velocity of a selected skin region on an
SMPL body mesh is calculated by tracking the rotation
of its norm vector. The tri-mesh of SMPL model follows
the right hand rule, which ensures that the norm vectors
of the triangles always point out of the corresponding
subject’s body. Rotations between consecutive frames are
expressed in unit quaternions. Angular velocities in rad/s
are computed by multiplying the rotation vector of each
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frame with the sampling rate. To reduce jitters, we take
the average angular velocities of three nearby triangles on
the tri-mesh centred in the designated skin region. Lastly,
a 4th order ButterWorth low-pass filter is applied to both
simulated accelerometer and gyroscope readings for noise
reduction [43].

For HAR tasks, we take IMUTube as the baseline, but
due to the lack of open source implementations, we include
the reported performance on PAMAP2 and Opportunity
datasets from [28].

4.2 Fidelity of CROMOSim
In this section, we first provide qualitative and quantitative
comparisons between CROMOSim and two baseline meth-
ods, namely, the analytical method (IMUCal) and IMUSim
in terms of fidelity. We use TotalCapture in this experiment
since it contains data from all three required modalities.
Two sets of CROMOSim models are trained using MoCap
and video data from Subjects 1 – 3 with sensor positions
at their right wrist, right foot and pelvis. The models are
used to predict accelerometer and gyroscope data on both
left and right wrists of Subject 5 from the respective data
sources. Next, we analyze the sources of errors in video-
based simulations.

(a) IMUSim

(b) IMUCal

(c) CROMOSim

Fig. 5: Simulated IMU readings on the right wrist of Subject
5 from the MoCap data in TotalCapture. Left: accelerometer
data. Right: gyroscope data.

Figures 5 and 6 show the simulated IMU readings from
different methods with MoCap and RGB video data, re-
spectively. In these cases, the sensor placement is known

(a) IMUSim

(b) IMUCal

(c) CROMOSim

Fig. 6: Simulated IMU readings on the right wrist of Subject
5 from monocular RGB camera video in TotalCapture. Left:
accelerometer data. Right: gyroscope data.

TABLE 1: RMSEs of simulated IMU readings on Subject 5’s
left wrist across all data trials.

Acceleration (m/s2) Angular velocity (rad/s)
IMUSim IMUCal CROMOSim IMUSim IMUCal CROMOSim

MoCap
extracted
SMPL

4.606 1.785 1.602 1.500 1.272 0.801

Video
extracted
SMPL

6.158 11.824 3.342 1.848 2.578 1.104

but the subject is unseen to the simulator model. From
the figures, we observe that the fidelity of IMUSim is low
across the board. It is because the default setting of IMUSim
filters out too much high-frequency components. IMUCal
works well for simulating accelerometer and gyroscope data
with MoCap inputs. However, its performance significantly
degrades when monocular RGB videos are taken as the
source modality. This can be attributed to large noise and
relative low accuracy of extracted SMPL body tri-mesh.
In contrast, CROMOSim consistently outperforms baseline
methods for both data modalities.

4.2.1 Qualitative and quantitative results
Table 1 reports the case where both subject and sensor
position are unseen to the simulator networks. The quan-
titative results are consistent with those in qualitative ones
shown in Fig. 5 and 6. With MoCap data, the accuracy of
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TABLE 2: The analysis of error sources with monucular
camera video data.

VIBE only Robust CVD GT global
motion

MPJE PVE PVE PVE
(rad) (m) (m) (m)

RMSE MAE RMSE MAE RMSE RMSE
ROM 0.2203 8.3634 0.8099 1.7451 / /
walking 0.1972 7.9263 1.3741 1.9215 1.1679 0.5046
freestyle 0.2087 8.3627 1.1930 2.1327 0.9607 0.5015

(a) VIBE only (b) Robust CVD (c) Ground truth

Fig. 7: Simulated accelerometer readings on the left foot of
Subject 5 from monocular RGB camera video in TotalCap-
ture.

CROMOSim is 187.5% and 11% higher than that of IMUSim
and IMUCal for accelerations, respectively, and 87% and
58% for angular velocities. The advantage of CROMOSim
is more pronounced with monocular RGB videos, outper-
forming the next best method (IMUSim) by 84% and 67%
for accelerometer and gyroscope data.

4.2.2 Error Analysis
From Table 1, we see that simulated IMU readings from
video extracted SMPL have larger errors than those from
MoCap. To understand the sources of errors, we conduct
further empirical study. Specifically, we analyze the effec-
tiveness of the global trajectory estimation module for root
joint, and present the results here. Table 2 summarizes
the quality of extracted human pose data on TotalCapture
dataset by three approaches, namely, VIBE indicates when
the estimation of global trajectory is unavailable, Robust
CVD denotes a global motion estimate by the CVD method,
while GT global motion refers to align the root node posi-
tion per video frame with MoCap ground truth. We take
the mean per joint error (MPJE, in rad) and per vertex
error (PVE, in meters) between the estimated SMPL body
mesh from videos and from MoCap data as metrics here.
Three types of activities are analyzed: the range of motion
sequence (ROM) contains in-place motions with human
subjects standing at the center of a laboratory field; the
walking sequence involves a person walking around the
laboratory; the freestyle sequence corresponds to a freestyle
acting and roaming around the room. Clearly, ROM is not
affected by global motion trajectory estimations, while the
other two are. As the joint angles are extracted by VIBE
only, they remain the same with Robust CVD or GT global
motion.

From Table 2, there exists a clear gap between the PVE
calculated with VIBE only and GT global motion for walk-
ing and freestyle, indicating the need to accurately estimate
global motion trajectories when motions are not in-place.
PVE dropped ∼20% when the Robust CVD is used in video
data pre-processing. Fig. 7 shows the probability density

function of 3-axis accelerations in a global frame from the
two methods in comparison to ground truth. The plots
further demonstrate that simulated data are more similar
in distribution to the ground truth when global trajectories
of the root node are incorporated.

The differences between the estimated global trajectory
from Robust CVD and the ground truth can be attributed
to two factors. First, we use OpenPose to detect the root
node of human subjects in each video frame. OpenPose fails
when the resolution is low and the background is complex.
Two examples are shown in Fig. 8, where in the left figure
a person is running on a trail and in the right figure he
is climbing downstairs. Both fail cases are captured from
Realworld dataset. The wrongly detected root node will

Fig. 8: Typical fail cases of OpenPose in our video data
preprocessing, with downscaled video frames, background
objects are wrongly recognized as human.

lead to errors in extracted global motion trajectories. Second,
calculation of the scale factor is another potential source of
errors. To recover real world global motion trajectories from
the output of robust CVD, a scale factor is required. In our
experiments, it is calculated for 10-seconds video clips. If
the human subject in the first video frame is not standing
up straight, the scale factor computed using the method in
Section 3.3.2 will be larger than the actual values.

4.3 Applications of CROMOSim in downstream Tasks
4.3.1 HAR Tasks
In this section, we evaluate the utility of CROMOSim in data
augmentation for training HAR models. Here we consider
three settings: i) R2R, where models are both trained and
tested with real IMU data; ii) V2R, where models are trained
with simulated data but tested with real data; iii) Mix2R,
where models are trained using a mixture of real and
simulated data while tested with real data.

We adopt the DeepConvLSTM network proposed in [44]
as the task model, while the same simulator neural network
trained on the TotalCapture dataset is used here to simulate
sensor readings from videos. Evaluations are made on the
Realworld, PAMAP2 and Opportunity datasets respectively,
with data simulated from the same video source (Realworld
dataset). An ablation study was conducted by removing
robust CVD from the proposed pipeline, and the resulting
approach is called CROMOSim Lite. To make the result
directly comparable, we followed the experiment protocol
in IMUTube [28].

Table 3 reports the average F1 scores of five single-
subject-hold out experiments on the RealWorld dataset.
Since the authors of IMUTube provide their simulated data
on this dataset, we directly replicated their experiments and
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TABLE 3: Average and standard deviation of the F1-score
of random single subject hold out experiments on the Real-
World dataset. IMUTube⋆ corresponds the scores reported
in [28]

R2R V2R Mix2R
IMUTube⋆ 0.730±0.007 0.546±0.008 0.778±0.007
IMUTube 0.729±0.007 0.552±0.005 0.781±0.011
CROMOSim Lite 0.729±0.007 0.580±0.047 0.802 ±0.013
CROMOSim 0.729±0.007 0.593±0.012 0.821±0.003

TABLE 4: Random single subject hold out evaluation on
PAMAP2 dataset with mean F1-score. IMUTube⋆ corre-
sponds to the scores reported in [28]

R2R V2R Mix2R
IMUTube⋆ 0.700±0.016 0.552±0.017 0.702±0.016
CROMOSim Lite 0.702±0.021 0.638±0.009 0.726±0.014
CROMOSim 0.702±0.021 0.689±0.012 0.769±0.009

TABLE 5: Random single subject hold out evaluation on
Opportunity dataset with mean F1-score. IMUTube⋆ corre-
sponds to the scores reported in [28]

R2R V2R Mix2R
IMUTube* 0.887±0.007 0.788±0.010 0.884±0.007
CROMOSim Lite 0.862±0.008 0.778±0.013 0.870±0.008
CROMOSim 0.862±0.008 0.803±0.011 0.879±0.008

the results are in the second row. For comparison purposes,
we also include the scores reported in [28] as the first row.
It can be seen the two are quite similar to one another. Even
CROMOSim Lite outperforms IMUTube in V2R and Mix2R
experiments, while CROMOSim works the best. Moreover,
Mix2R achieves much higher F1 scores compared to R2R
and V2R, demonstrating the utility of data augmentation
with simulated data.

Table 4 and 5 summarize the results from CROMOSim
and those reported in [28]. Due to the different sensor
placements in the PAMAP2 and the Opportunity datasets,
the simulated data provided by the authors of IMUTube
cannot be used, so we take their reported performance here.
Similar to the RealWorld dataset, CROMOSim outperforms
IMUTube for the PAMAP2 datasets but with a more promi-
nent margin; the HAR model trained from Mix2R is still
superior to those from R2R and V2R. With the Opportu-
nity data, however, the improvement of Mix2R over R2R
is marginal while IMUTube⋆ reports negative results for
Mix2R. Although the Mix2R results are lower than those
of IMUTube⋆, the difference is consistent with that for R2R.
Therefore, one may consider the two perform comparably
for this dataset. The reason for the small benefit of Mix2R
in CROMOSim can be attributed to the small number of
subjects in Opportunity. With a small number of training
subjects, the DeepConvLSTM model does not generalize
well to unseen subjects. Despite of the higher level of subject
diversity in RealWorld, distribution mapping in IMUTube
and CROMOSim in fact forces the distribution of simulated
data to be close to the two subjects in the training set.
Therefore, the benefit of data augmentation is diminished.

To verify the effect of distribution mapping, we have

TABLE 6: Average and standard deviation of the F1-score
of different domain adaptation methods on the RealWorld
dataset, for randomly held-out single subjects.

V2R Mix2R
DANN [45] 0.156±0.022 0.488±0.074
ADDA [46] 0.180±0.079 0.607±0.023
CROMOSim 0.593±0.012 0.821±0.003

also implemented two unsupervised domain adaptation
(UDA) methods, namely, domain adaptive neural network
(DANN) [45] and Adversarial discriminative domain adap-
tation (ADDA) [46] as baseline algorithms. Taking simulated
data as the source domain and data collected by real sensors
as the target domain, UDA models can be applied to HAR
tasks. Table 6 shows the results of the baseline domain
adaptation methods against distribution mapping in con-
junction with CROMOSim. The UDA methods in V2R and
Mix2R scenarios are evaluated by holding out one random
subject as the test set. In the V2R case, simulated data
from training subjects are combined as the source domain.
The 1000 unlabeled real IMU readings per class from each
training subject form the target domain. Similarly, in the case
of Mix2R, we combine real IMU readings and the simulated
ones from training subjects as the source domain, and take
the real data from validation subject as the target domain.
Each evaluation is repeated 5 times with randomly sampled
target domain to report the mean and the standard deviation
of F1-score.

From Table 6, it is clear that both UDA methods perform
poorly in V2R and achieve much lower F1-scores than
distribution mapping. The failure of these two methods can
be attributed to the large divergence in IMU data across dif-
ferent subjects. These UDA methods work on a single pair
of source and target domains, and assume small distribution
gap within the source or target domain. Such assumptions
are violated due to subject differences (in V2R) as well as
domain gaps between simulated and real data (in Mix2R).
Thus, UDA methods failed to learn a feature representation
that can properly match the source and target domains. In
contrast, distribution mapping is conducted between the
data from each subject in the training set (simulated or
mixture of real and simulated) and test subject, and thus
it is robust to gaps within the source domain.

4.3.2 HPE Tasks
Unlike HAR tasks that are essentially pattern recognition
on sensory data, HPE aims to estimate the joint angles of a
human body, and requires accurate IMU sensor readings.
Therefore, in this section, only MoCap simulated data is
utilized.

We have previously designed a DeepBiLSTM network
for knee joint estimation. It takes accelerometer and gyro-
scope readings from sensors on one’s thigh and shank to
predict 3D knee joint angles. In this set of experiments, We
use Subject 1 – 3 in the TotalCapture dataset for HPE model
training, and Subject 4’s data for validation and real IMU
data from Subject 5 for testing. Two sensors (virtual or real)
are placed on proximal thigh (ProxTh) and right tibial (RTib)
(see Fig. 9). Similar to the HAR tasks, three DeepBiLSTM
networks are trained using real data only, virtual data only
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TABLE 7: Knee angle estimation. Average RMSE and stan-
dard deviation are measured per each axis in degrees.

X Y Z
R2R 15.4550±0.6217 8.3279±0.4751 3.1384±0.0403
V2R 20.8303±1.2644 7.7459±0.3409 3.4441±0.1727

Mix2R 13.9236±0.5875 8.2440±0.6053 3.0355±0.2971

and a mixture of virtual and real data. The size of real data
samples from the three training subjects is around 143k,
which is 39 minutes long. MoCap simulated data is on the
same scale. In R2R and V2R we have 143k real or simulated
data for model training, while in Mix2R the training data
doubled by mixing the two.

Table 7 summarizes the average RMSEs and stan-
dard deviations of 3D knee joint angles in different set-
tings. Note that the RMSEs should be put in the con-
text of range of motions in the TotalCapture dataset,
which are [−11.5220, 152.4866], [−44.3173, 41.3192] and
[−17.9953, 30.6022] around the x-, y- and z-axes.

Fig. 9: The sensor placement of knee angle estimation task.
Real sensor readings are only available at ProxTh and RTib
positions.

From Table 7, we observe that in general Mix2R gives
the most accurate estimations followed by R2R. Though the
model trained on V2R has lower accuracy in the x-axis, its
predictions are comparable to that from R2R in y-axis and
z-axis. This phenomenon implies that MoCap generated vir-
tual data using CROMOSim can produce reasonable good
HPE models. The observation is consistent with the high
fidelity of MoCap simulated data in Section 4.2.

5 CONCLUSION AND FUTURE WORK

In this paper, we implemented CROMOSim, a pipeline that
simulates accelerometer and gyroscope readings at arbi-
trary user-designated on-body positions from MoCap and
monocular RGB camera videos. A pair of DNN models are
trained to learn the functional mapping between imperfect
trajectory estimations in a 3D body tri-mesh to IMU data.
Experiments showed that CROMOSim can generate higher

fidelity data than baseline methods and is useful for down-
stream HAR and HPE tasks. As part of the future work, we
are implementing a graphical user interface and wrapping
up CROMOSim as an easy-to-use tool now. Hopefully, it
will be open-sourced to the public by this summer. Other
directions of further improvements include accelerating the
video data processing, proposing a better domain adaption
solution to bridge the gap between the distribution of
simulated and real data, and experimenting CROMOSim
with other data modalities as input such as millimetre wave
radar.

ACKNOWLEDGEMENT

This project is in part supported by NSERC Discovery and
CREATE programs.

REFERENCES

[1] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for
sensor-based activity recognition: A survey,” Pattern Recognition
Letters, vol. 119, pp. 3–11, 2019.

[2] F. Gu, M.-H. Chung, M. Chignell, S. Valaee, B. Zhou, and X. Liu,
“A survey on deep learning for human activity recognition,” ACM
Computing Surveys (CSUR), vol. 54, no. 8, pp. 1–34, 2021.

[3] C. Zheng, W. Wu, T. Yang, S. Zhu, C. Chen, R. Liu, J. Shen,
N. Kehtarnavaz, and M. Shah, “Deep learning-based human pose
estimation: A survey,” arXiv preprint arXiv:2012.13392, 2020.

[4] Y. Vaizman, K. Ellis, and G. Lanckriet, “Recognizing detailed
human context in the wild from smartphones and smartwatches,”
IEEE pervasive computing, vol. 16, no. 4, pp. 62–74, 2017.

[5] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset
for activity monitoring,” in 2012 16th International Symposium on
Wearable Computers. IEEE, 2012, pp. 108–109.

[6] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J.
Black, “Amass: Archive of motion capture as surface shapes,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 5442–5451.

[7] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“Smpl: A skinned multi-person linear model,” ACM transactions
on graphics (TOG), vol. 34, no. 6, pp. 1–16, 2015.

[8] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-
end recovery of human shape and pose,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 7122–
7131.

[9] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference
for human body pose and shape estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 5253–5263.

[10] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis, “Learning to
estimate 3d human pose and shape from a single color image,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 459–468.

[11] J. Li, C. Xu, Z. Chen, S. Bian, L. Yang, and C. Lu, “Hybrik: A hybrid
analytical-neural inverse kinematics solution for 3d human pose
and shape estimation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 3383–3393.

[12] A. D. Young, M. J. Ling, and D. K. Arvind, “Imusim: A simulation
environment for inertial sensing algorithm design and evalua-
tion,” in Proceedings of the 10th ACM/IEEE International Conference
on Information Processing in Sensor Networks. IEEE, 2011, pp. 199–
210.

[13] H. Ohashi, M. Al-Nasser, S. Ahmed, T. Akiyama, T. Sato,
P. Nguyen, K. Nakamura, and A. Dengel, “Augmenting wearable
sensor data with physical constraint for dnn-based human-action
recognition,” in ICML 2017 times series workshop, 2017, pp. 6–11.

[14] X. Lin, Y. Chen, X.-W. Chang, X. Liu, and X. Wang, “Show: Smart
handwriting on watches,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1–23,
2018.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3230370

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 02,2023 at 06:11:45 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX 2022 11

[15] T. T. Um, F. M. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fi-
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G. Tröster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al.,
“Collecting complex activity datasets in highly rich networked
sensor environments,” in 2010 Seventh international conference on
networked sensing systems (INSS). IEEE, 2010, pp. 233–240.

[41] L. F. Richardson, “The approximate arithmetical solution by finite
differences with an application to stresses in masonry dams,”
Philosophical Transactions of the Royal Society of America, vol. 210,
pp. 307–357, 1911.

[42] L. F. Richardson and J. A. Gaunt, “Viii. the deferred approach to
the limit,” Philosophical Transactions of the Royal Society of London.
Series A, containing papers of a mathematical or physical character, vol.
226, no. 636-646, pp. 299–361, 1927.

[43] S. Butterworth et al., “On the theory of filter amplifiers,” Wireless
Engineer, vol. 7, no. 6, pp. 536–541, 1930.
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