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An Optimal Fusion Method of Multiple Inertial
Measurement Units Based on Measurement

Noise Variance Estimation
Hongliang Huang , Hai Zhang , and Liuyang Jiang

Abstract—At present, most inertial systems generally only
contain a single inertial measurement unit (IMU). Considering
the low cost and low accuracy of the micro-electromechanical
system (MEMS)-IMU, it has attracted much attention to fuse
multiple IMUs to improve the accuracy and robustness of the
system. In this article, two online noise variance estimators
based on second-order-mutual-difference (SOMD) algorithm
are proposed for two redundant measurements and multiple
redundant measurements, respectively. In addition, the unbi-
asedness and consistencyof the estimators are proved.Using
the proposed noise variance estimators, measurement noise
variances of each sensor can be estimated in real time when
multiple IMUs exist. Based on the estimated noise variance of
each sensor, the weighted least squares (WLS) estimation method is used to generate the optimal virtual IMU (VIMU)
in the observation domain. Finally, comparative simulations and the real-world experiment were conducted to evaluate
the proposed online noise estimation algorithm. The simulation results demonstrate its superiority compared with other
noise variance estimation methods, and the real-world experiment results show the effectivenessof the IMU fusion method
based on the proposed noise variance estimation algorithm.

Index Terms— Inertialmeasurement unit (IMU) fusion, noise varianceestimation, redundant IMUs, second-order-mutual-
difference (SOMD).

I. INTRODUCTION

W ITH the development of hardware design and man-
ufacturing, the cost and size of inertial measure-

ment unit (IMU) based on micro-electromechanical system
(MEMS) technology have been greatly reduced. As a result,
MEMS-IMUs have been widely used in various applications,
such as the vehicle positioning [1], [2], [3], virtual reality
(VR) [4], augmented reality (AR) [5], etc. However, compared
with the high-precision IMU, the reduction in the cost of
the MEMS-IMU has also led to a drop in the performance.
Though it can still provide remarkable accuracy in predicting
short-term dynamic motion by measuring angular velocity and
linear acceleration at high rates. Its accuracy will decrease in
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the long time due to the complex noises contained in the raw
measurements.

Considering the low cost and small size of the MEMS-IMU,
it is possible to integrate multiple IMUs into the system to
improve the robustness and accuracy of the system [6], [7].
Compared with a single IMU configuration, redundancy can
improve the performance of the system in several aspects.
First, sensors fault and spurious measurements can be detected
and isolated, which improves the robustness of the system.
Second, intrinsic noise can be estimated directly using the
readings from the IMUs. Thus, the overall noise level can
be reduced and the inertial measurements are closer to reality,
which correspondingly improves the accuracy of system [8].
The performance of redundant IMUs and their potential ben-
efits in inertial navigation have been studied in the past with
higher order IMUs [9]. The experimental results with mul-
tiple MEMS-IMUs showed that the navigation performance
could be improved by 30%–50% when using four IMUs [8].
Bancroft proposed a centralized filter method that fused
multiple IMUs to generate the final navigation solutions in
global positioning system (GPS) degraded areas. This method
reduced the position drift in the outage of the GPS information
using the relative updates between the IMUs [10]. Recently,
multiple IMUs have also been used in visual-aided navigation.
Ecken hoff et al. [11] proposed a real-time visual-inertial navi-
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gation system (INS) that utilized the measurements from mul-
tiple IMUs. Like [10], the relative-pose constraints between
the IMUs were utilized to mitigate the navigation drift accu-
mulated over propagation. However, the proposed algorithm
was computationally intensive, which is infeasible for low-
computing platforms. Zhang et al. [12] proposed an algorithm
for probabilistically fusing measurements from all the IMUs
onto a virtual IMU (VIMU) through stochastic estimation
with least-squares estimator and probabilistic marginalization
of inter-IMU rotational accelerations. The experimental results
showed that the performance of the fused IMU outperformed
a single IMU.

In general, the redundant IMU fusion strategies can be
divided into three categories: VIMU observation fusion
method, the method based on centralized filter design, and
the method based on federated filter design [13]. Compared
with the other two methods, the VIMU observation fusion
method requires less calculation and does not need to modify
the existing INS and INS/GPS software since the redundant
IMU output is synthesized into the usual IMU output. The
prominent method of the observation fusion maps each IMU
raw observations to the VIMU frame using least squares
estimation. Theoretically, the optimal weight of each IMU
is related to the measurement noise variance. However, the
measurement noise of the same type of IMU is assumed to be
the same in most literature. Then the least-squares estimation
is just the average of all IMUs’ measurements. The research
in [14] showed that the assumption of assigning equal weights
to all sensors was unreasonable since the noise powers across
sensors might vary significantly. Though it is possible to
estimate the noise of the sensor by some offline methods, such
as Allan variance under static IMU condition, the noise level
of the IMUs may evolve during the processing in response
to particular situations (e.g., increase vibrations) [15]. The
fixed noise parameters are also inappropriate during the whole
process, which may lead to a suboptimal estimate of the fusing
measurement, and even cause the divergence of the filter in
severe cases. Therefore, the online noise variance estimation
algorithm of MEMS-IMU is necessary. Guerrier [15] proposed
a direct real-time estimation method of the VIMU process
noise under the assumption that all the measurements had the
same noise level. However, the algorithm could not estimate
the noise variance of each sensor, and the assumption was
unreasonable as mentioned above. Waegli et al. [14] applied
the generalized autoregressive conditional heteroskedasticity
(GARCH) [16] employed for studying the volatility of finan-
cial markets to estimate the variance for the individual sensors.
However, this method is very complicated and requires more
computational effort. In addition, the parameters used in the
GARCH should be set carefully [14]. Another noise variance
estimation method was proposed in [17], which could also
achieve the noise variance estimate of a single IMU. However,
it cannot track variance changes due to its algorithmic limi-
tations. Meanwhile, when biases in the measurement model
could not be ignored, the method would no longer be applica-
ble. In [18], an online variance estimation method based on the
minimum norm quadratic unbiased estimation (MINQUE) [19]
was proposed, which can estimate the variances of sensors

at each time step. However, this method requires that the
number of sensors is strictly greater than two times the
number of signals to measure. In addition, similar to [17],
it is also invalid when the baises of measurements exist.
Recently, a relatively new noise estimation algorithm, second-
order-mutual-difference (SOMD) algorithm, was proposed to
estimate measurement noise variance in real time based on
redundant measurements [20]. This method has been used
in the adaptive Kalman filter to improve the stability and
consistency of the filters [21], [22], [23], [24].

Considering the effectiveness and simplicity of the SOMD
algorithm, in this article, two online variance estimators based
on SOMD algorithm are proposed for two redundant mea-
surements and multiple redundant measurements, respectively.
And the detailed proof of the unbiasedness and consistency
of the estimators are also provided. The optimal fusion
of redundant IMU measurements is realized based on the
weighted least squares (WLS) estimator using the estimated
measurement noise variances, and the measurement equation
of the VIMU is also derived. Finally, the proposed algorithms
are validated in both simulations and real-world experiments.

The rest of this article is organized as follows. The noise
variance estimators based on SOMD algorithm are proposed
and the statistical properties of the estimators are studied in
Section II. The VIMU generation method based on WLS
estimation method are derived in detail in Section III. The
performance of the proposed noise variance estimators is
evaluated by both the simulation and real-world experiments
in Section IV. Then we conclude the article.

II. NOISE VARIANCE ESTIMATION ALGORITHM

A. Motivation for Noise Variance Estimation
Let Z denote the true value of the signal to be estimated,

and Z1, . . . , Zn be a set of n independent measurements with
zero-mean white noise and the noise variance of the i th mea-
surement is denoted as σ 2

i . Theoretically, the optimal estimate
Ẑ of the signal Z with the n independent measurements can
be computed as a weighted average of them as

Ẑ =
n∑

i=1

wi Zi

(
n∑

i=1

wi = 1

)
(1)

where wi is the i th weight.
By linearity, we have E[Ẑ ] = Z and since we assume

Cov(Zi , Z j ) = 0 for all 1 ≤ i < j ≤ n, we have

Var(Ẑ) = σ 2 =
n∑

i=1

w2
i σ

2
i . (2)

It can be seen from (2) that σ 2 is a multivariable quadric
function of weights wi (i = 1, 2, . . . , n). Then, the optimal
fusion results can be obtained by minimizing the σ 2 subject
to
∑n

i=1 wi = 1. When σ 2 is minimized, the corresponding
weights can be obtained by the constraint optimization method
as

w∗
i =

1
σ 2

i∑n
i=1

1
σ 2

i

(i = 1, 2, . . . , n). (3)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 02,2023 at 06:43:52 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: OPTIMAL FUSION METHOD OF MULTIPLE INERTIAL MEASUREMENT UNITS 2695

Thus, σ 2 is

σ 2
min = 1∑n

i=1
1
σ 2

i

. (4)

It can be seen from (3) that the weights are the function of
the variances of all the measurements. Thus, it is essential to
estimate the noise variance reasonably to obtain the optimal
estimate of the signal.

B. SOMD Algorithm for Two Redundant Measurements
The SOMD algorithm was proposed to address the problem

that the measurement noise variance in the Kalman filter can-
not be effectively estimated. It can realize the real-time noise
variance estimate of each measurement using the redundant
measurements of the same signal. By constructing the first-
order-self-difference (FOSD) of each measurement and SOMD
between the measurements, it can eliminate the effect of the
biases of each measurement and the changes in the observed
signal on the estimate of noise variance.

Let Zi (t) represent a measurement process which can be
described as

Zi (t) = Z(t) + εi (t) + Vi (t) (5)

where Z(t) ∈ R
q denotes the deterministic signal to be

measured, εi (t) ∈ R
q is the unknown bias which is modeled

as the Gaussian random walk process, and Vi (t) ∈ R
q is white

Gaussian measurement noise. Then the following theorem
holds.

Theorem 1: Assume that Z1(t) and Z2(t) are two indepen-
dent measurement processes of the same signal Z(t). Z1(k)
and Z2(k) are the samples of Z1(t) and Z2(t) at time t = k�t
respectively, which can be given as{

Z1(k) = Z(k) + ε1(k) + V1(k)

Z2(k) = Z(k) + ε2(k) + V2(k)
(6)

where k is the discrete time index, �t is the sampling period,
V1(k) and V2(k) are mutually independent discrete noise and
satisfy {

E[V1(k)V1( j)T ] = R1δkj

E[V2(k)V2( j)T ] = R2δkj
(7)

where δkj is the Kronecker delta function.
Then, the covariance matrix R1 and R2 can be expressed as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R1 = E
[∇Z12(k)∇Z12(k)T

]+E
[
�Z1(k)�Z1(k)T

]
4

−E
[
�Z2(k)�Z2(k)T

]
4 − E

[
�ε1(k)�ε1(k)T

]
2

R2 = E
[∇Z12(k)∇Z12(k)T

]−E
[
�Z1(k)�Z1(k)T

]
4

+E
[
�Z2(k)�Z2(k)T

]
4 − E

[
�ε2(k)�ε2(k)T

]
2

(8)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�Z1(k) = Z1(k) − Z1(k − 1)

�Z2(k) = Z2(k) − Z2(k − 1)

∇Z12(k) = �Z1(k) − �Z2(k)

�ε1(k) = ε1(k) − ε1(k − 1)

�ε2(k) = ε2(k) − ε2(k − 1).

(9)

Fig. 1. Construction process of FOSD sequence of Z1(t) in the sliding
window.

Considering the limitation of the length of main context, the
detailed proof of Theorem 1 is given in Appendix A-A.

In real applications, the noise covariance can be estimated
approximately by utilizing the FOSD and SOMD samples.
Then a sliding window is used to collect these samples
as shown in Fig. 1 where the construction process of the
FOSD sequence of Z1(t) is demonstrated. The blue points
represent the measurements at each sampling moment, and the
red points denote the FOSD sample sequence in the sliding
window. Based on the samples, estimators can be constructed
as described by the following theorem.

Theorem 2: Assume that{
E
[
�ε1(k)�ε1( j)T

] = Q1δkj

E
[
�ε2(k)�ε2( j)T

] = Q2δkj .
(10)

Let ⎧⎪⎨
⎪⎩

L1 = R1 + Q1

2

L2 = R2 + Q2

2
.

(11)

Based on (8), the estimators of L1 and L2 can be constructed
as

L̂1 = μn2,∇Z12
− μn2,�Z2

+ μn2,�Z1

4
(12)

L̂2 = μn2,∇Z12
+ μn2,�Z2

− μn2,�Z1

4
(13)

where μn2,X is defined as

μn2,X = 1

n

n∑
i=1

Xi XT
i (14)

where n is the number of samples in the sliding window, and
Xi represents the ith sample in the sliding window. And the
estimators are unbiased and weakly consistent.

The detailed proof of Theorem 2 is given in Appendix A-B.
Remark 1: In real applications, when the biases of mea-

surements are constant, i.e.,{
E
[
�ε1(k)�ε1(k)T ] = Q1 = 0

E
[
�ε2(k)�ε2(k)T ] = Q2 = 0.

(15)

Then {
L1 = R1

L2 = R2.
(16)

The discrete noise covariance R1 and R2 can be estimated
with the proposed estimator. When the change of biases of
measurements are extremely slow, i.e., the following condi-
tions are met:{

E
[
�ε1(k)�ε1(k)T ]� E

[
V1(k)V1(k)T ]

E
[
�ε2(k)�ε2(k)T ]� E

[
V2(k)V2(k)T ] . (17)
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Then, the discrete noise covariance R1 and R2 can be esti-
mated approximately with the proposed estimator ignoring the
effect of Q1 and Q2.

C. SOMD Algorithm for Multiple
Redundant Measurements

The covariance estimator based on SOMD algorithm pro-
posed above can be used to estimate the noise covariance
when there are two redundant measurements. For the situation
where multiple redundant measurements exist, to estimate
noise covariance of each measurement, we can select any
measurement as Z1 which is used as a reference, and any
other measurement is selected as Z2 when its noise covariance
needs to be estimated. By this way, the noise covariances of all
measurements can be estimated with the proposed estimator.
However, as mentioned above, in practice, the second raw
moments of the FOSD sequence and SOMD sequence are esti-
mated using the samples in the finite-length sliding window.
These statistics cannot be exactly equal to their true value.
As a result, when different measurement is selected as Z2,
the noise covariance estimates of Z1 are usually inconsistent.
Especially when the statistics of the reference measurement
deviate seriously from the true value, the noise variance esti-
mates of all the measurements may be unreliable. To address
these problems, a new covariance estimator based on SOMD
algorithm is proposed when multiredundant measurements
exist. Compared with the estimator above, the new estimator
can realize the consistent noise covariance estimation of all
the measurements. At the same time, it has better robustness
and the formula is more concise.

Theorem 3: For a given system with n-independent mea-
surements (n ≥ 3) where the measurement equation can
be described as (6) and (18), (shown at the bottom of the
page), holds, where A+ is the Moore–Penrose inverse of the
matrix A.

The detailed proof of Theorem 3 is given in Appendix B-A.
Similar to the case where two redundant measurements

exist, the noise covariance of each measurement can also
be estimated approximately using the FOSD and SOMD
samples in the sliding window when multiple redun-
dant measurements exist. Thus, the following theorem is
given.

Theorem 4: Assume that

E

[
�εi (k)�εi ( j)T

]
= Qiδkj , (1 ≤ i ≤ n). (19)

Let

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

...

Rn

⎤
⎥⎥⎥⎥⎥⎥⎦

+ 1

2
A+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1 + Q2

Q1 + Q3

...

...

Qn−1 + Qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Based on (18), the estimator of L can be constructed as

L̂ = 1

2
A+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μn2,∇Z12

μn2,∇Z13
...

μn2,∇Z1n

μn2,∇Z23
...

μn2,∇Z2n
...
...

μn2,∇Z(n−1)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

And the estimator is unbiased and weakly consistent.
The detailed proof of Theorem 4 is given in Appendix B-B.
Remark 2: In real applications, when the biases of all

measurements are constant, i.e.,

E

[
�εi (k)�εi (k)T

]
= Qi = 0, (1 ≤ i ≤ n). (22)

Then

L =

⎡
⎢⎢⎢⎢⎢⎣

R1
R2
R3
...

Rn

⎤
⎥⎥⎥⎥⎥⎦ . (23)

The discrete noise covariance Ri , i = 1, . . . , n can be
estimated with the proposed estimator. When the change
of baises of measurements are extremely slow, the discrete

⎡
⎢⎢⎢⎢⎢⎣

R1
R2
R3
...

Rn

⎤
⎥⎥⎥⎥⎥⎦ = 1

2
A+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2,∇Z12(k)

μ2,∇Z13(k)
...

μ2,∇Z1n(k)

μ2,∇Z23(k)
...

μ2,∇Z2n(k)
...
...

μ2,∇Z(n−1)n(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2
A+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2,�ε1(k) + μ2,�ε2(k)

μ2,�ε1(k) + μ2,�ε3(k)
...

μ2,�ε1(k) + μ2,�εn (k)

μ2,�ε2(k) + μ2,�ε3(k)
...

μ2,�ε2(k) + μ2,�εn(k)
...
...

μ2,�εn−1(k) + μ2,�εn (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq Iq

Iq Iq
...

. . .

Iq Iq

Iq Iq
...

. . .

Iq Iq
...

. . .

· · ·
Iq Iq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n−1)nq
2 ×nq

(18)
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noise covariance Ri , i = 1, . . . , n can be estimated approx-
imately with the proposed estimator ignoring the effect of
Qi , i = 1, . . . , n.

In practice, to adapt to the variation of noise in time,
the length of the sliding window should be limited. But
the estimated noise variance of the measurement may jump
suddenly due to insufficient samples. To ensure the smoothness
of the variance, a fading memory calculation is implemented
as below ⎧⎨

⎩
R̂k = (1 − dk) Rk−1 + dkRk

dk = 1 − b

1 − bk+1

(24)

where b is the fading factor, 0 < b < 1.

III. OPTIMAL REDUNDANT IMUS FUSION

Considering that the proposed noise variance estimators
can realize real-time noise variance estimation of all the
measurements, the optimal weight of each measurement can
be obtained directly based on the estimated variances. Based
on this, the redundant IMU fusion method in the observation
domain is used in this article, whereby the raw observations of
each IMU are fused to generate a single VIMU measurement.
The term VIMU is used here to describe the fusion architec-
tures in the observation domain. By projecting each IMU’s
measurement to the VIMU frame {V }, we can estimate the
noise variance of each IMU by the proposed noise variance
estimation method. Then the optimal fusion of redundant IMU
measurements can be realized with the WLS estimator using
the estimated noise variances.

A. Virtual Gyro Generation
The gyro’s measurements can be described by

ωm = ωI + bg + ng, ng ∼ N
(

0, σ 2
g I3

)
(25)

where ωm represents the gyro’s measurements, {I } represents
the IMU frame, ωI is the angular velocity of the IMU
expressed in the {I } frame, bg is the measurement bias, and
ng is the zero-mean white Gaussian noises. The bias bg can
be approximated as a constant in a short time.

Assuming that N IMUs are fixed to a rigid body, their angu-
lar velocity readings may be different since they are expressed
in different IMU frames. To estimate the measurement noise
variances of the gyros, all the measurements must be projected
to the same frame.

By projecting the gyro measurements to the VIMU frame,
the following transformation can be obtained:

ωV
m = RV

I ωI
m (26)

where RV
I is the direction cosine matrix from {I } to {V }.

Substituting (25) into (26) leads to

ωV
m = RV

I (ωI + bg + ng)

= RV
I ωI + RV

I bg + RV
I ng

= ωV + bV
g + ng, ng ∼ N

(
0, σ 2

gI3

)
. (27)

It is noted that the mean and covariance matrix of
the gyro noise are invariant upon rotations (proof:

E[Rng] = RE[ng] = 0 and E[(Rng)(Rng)
T ] =

RE[ngnT
g ]RT = Rσ 2

g I3RT = σ 2
g I3).

In practical applications, the bias bV
g can be approximated

as a constant in a short time. Compared with the measurement
noise, the difference of the bias between every two adjacent
moments can be neglected. Hence, the condition in (17) is well
satisfied. Then the noise variances of gyros can be estimated
with the proposed noise variance estimator when multiple
measurements exist.

For the N IMUs, the following equation can be obtained:⎡
⎢⎣

ωm1
...

ωmN

⎤
⎥⎦ =

⎡
⎢⎣

RI1
V
...

RIN
V

⎤
⎥⎦ωV +

⎡
⎢⎣

bg1
...

bgN

⎤
⎥⎦+

⎡
⎢⎣

ng1
...

ngN

⎤
⎥⎦ . (28)

The optimal estimate of the virtual angular velocity based on
WLS estimator can be expressed as

ω̂
V = arg min

w

∥∥∥∥∥∥∥
⎡
⎢⎣

ωm1
...

ωmN

⎤
⎥⎦−

⎡
⎢⎣

RI1
V
...

RIN
V

⎤
⎥⎦ωV −

⎡
⎢⎣

bg1
...

bgN

⎤
⎥⎦
∥∥∥∥∥∥∥

2

W−1

(29)

where ‖ · ‖2
W−1 is defined as ‖X‖2

W−1 = XT W−1X, W is the
covariance matrix of measurement noise of N gyros.

By solving (29), the estimate of virtual angular velocity can
be given by

ω̂
V = PH

⎡
⎢⎣

ωm1
...

ωmN

⎤
⎥⎦− PH

⎡
⎢⎣

bg1
...

bgN

⎤
⎥⎦ (30)

where

PH =
(

HT W−1H
)−1

HT W−1, H =
⎡
⎢⎣

RI1
V
...

RIN
V

⎤
⎥⎦ . (31)

In addition, by substituting (28) into (30), we obtain

ωV − ω̂
V = −PH

⎡
⎢⎣

ng1
...

ngN

⎤
⎥⎦ . (32)

Then the measurement of virtual gyro can be given by com-
bining (30) and (32) as

ωmV = ωV + bgV + ngV , ngV ∼ N (
0, QgV

)
(33)

where ωmV , bgV , and ngV are the measurement, bias, and
noise of the virtual gyro respectively, and can be defined as

ωmV = PH

⎡
⎢⎣

ωm1
...

ωmN

⎤
⎥⎦ , bgV = PH

⎡
⎢⎣

bg1
...

bgN

⎤
⎥⎦

ngV = PH

⎡
⎢⎣

ng1
...

ngN

⎤
⎥⎦ . (34)
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B. Virtual Accelerometer Generation
Corresponding to (25), the measurement of the accelerom-

eter can be given as

am = RI
G

(
aG − gG

)
+ ba + na, na ∼ N

(
0, σ 2

a I3

)
(35)

where {I } and {G} represent the IMU frame and global frame,
respectively, am is the accelerometer measurements, RI

G is
the direction cosine matrix from {G} to {I }, aG is the linear
acceleration of the IMU expressed in frames {G}, ba is the
bias, na is the white Gaussian noises, and gG is the known
gravity vector.

Different from (26), the transformation between the virtual
accelerometer and the real accelerometer needs to consider
the extra terms caused by the noncoincidence of their frame
origins and the rotation of the rigid body. Let a I and aV

represent the true acceleration at the origin of the frame {I }
and {V }, respectively, then the following equation holds:

aG
I = aG

V + RG
V

(
ωV ×

(
ωV × pV

I

))
+ RG

V

(
αV × pV

I

)
(36)

where ωV , αV are the angular velocity and the angular
acceleration of the rigid body expressed in the VIMU frame,
respectively, and pV

I is the lever arm between the IMU and
the VIMU frame origins.

The combination of (35) and (36) leads to

aV
mI = RV

I amI

= RV
G(aG

V − gG) +
(
ωV ×

(
ωV × pV

I

))
+
(
αV × pV

I

)
+ RV

I ba + RV
I na. (37)

It can be seen from (37) that the second and third terms on the
right side include the lever arm vector, which may be different
for each IMU. If we regard them as biases, the condition in
(17) may not be satisfied. However, in practical applications,
when the rotation maneuverability is not strong or the lever
arm vectors from the IMUs to the VIMU are small, these two
terms can be neglected [13]. Then the noise variance of the
accelerometer can also be estimated with the proposed noise
estimation method. Then the simplified virtual measurement
can be written as

amV ≈ RV
G

(
aG

V − gG
)

+ baV + naV , naV ∼ N (0, QaV )

(38)

where amV , baV , naV are the measurement, bias, and noise of
the virtual accelerometer, respectively, and can be defined as

amV = PH

⎡
⎢⎣

am1
...

amN

⎤
⎥⎦ , baV = PH

⎡
⎢⎣

ba1
...

baN

⎤
⎥⎦

naV = PH

⎡
⎢⎣

na1
...

naN

⎤
⎥⎦ . (39)

IV. EXPERIMENTS AND RESULTS

Both numerical simulations and real experiments were con-
ducted to illustrate the effectiveness of the proposed algorithm.
In the simulation, the proposed noise variance estimator based
on the SOMD algorithm are compared with other noise
variance estimation methods. In the real-world experiment,
the noise estimation algorithm is applied to an IMU array
board with five Bosch BMI088 IMUs to generate a VIMU
by the redundant IMU fusion method. Then the VIMU is
integrated into the GPS/INS/odometer integrated navigation
algorithm with nonholonomic constraints for land vehicle [25].
The performance of the VIMU is evaluated using the dead
reckoning position error of the vehicle under the condition of
GPS outage.

A. Noise Variance Estimation Simulation
In this section, the comparative simulations with random

weighting method [17] and MINQUE [18] were conducted to
demonstrate the superiority of the proposed noise covariance
estimation method.

Assume that the true value of the signal was generated by
the following equation:

Z = sin(2t) + cos(t) + log(0.5 + t/2) + 10 (40)

which includes the trigonometric term, logarithmic term, and
constant term. The measurement equation could be modeled
as

Zi = Z + bi + ni , (i = 1, . . . , 5) (41)

where bi and ni represent the bias and the measurement
noise of the i th measurement, and the bias is assumed to
be constant in the simulation. The sampling frequency of the
measurements is 100 Hz, and the total simulation time is 50 s.

To evaluate the proposed noise estimation method in the
case of two and multiple redundant measurements. The sim-
ulations were carried out in two different cases. In case 1,
the number of measurements was two, the random weighting
method and SOMD method were compared when the bias
of each measurement was zero and nonzero, respectively.
In addition, these two methods were also compared when
the measurement noises were steady and time-varying, respec-
tively. It should be noted that the MINQUE method was not
compared in this case since it requires that the number of
the measurements is strictly greater than twice the number
of measured signals, i.e., the number of the measurement
process is at least three. In case 2, the comparative simulations
similar to case 1 were also conducted. But the number of
measurements was increased to four.

Case 1: The number of measurements was two.

1) The bias of each measurement was set as zero, and
the noise covariance remained unchanged during the
simulation. Let σ 2

1 and σ 2
2 represent the discrete noise

variance of these two measurements, respectively, which
were set as σ 2

1 = 1, σ 2
2 = 2. The measurements and the

true value of the signal are shown in Fig. 2(a). The noise
variance estimate of each measurement with SOMD
method and random weighting method are shown in
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Fig. 2. Noise variance estimate of measurements by SOMD method and
random weighting method. (a) Measured signal and the measurements
of Z1, Z2 with zero bias and constant noise variance. Variance estimate
of (b) Z1 and (c) Z2.

Fig. 2(b) and (c), respectively. It can be seen from Fig. 2
that the convergence time of variance estimation of
random weighting method is much longer than that of
SOMD method. One can also see that at the beginning
of simulation, the estimation accuracy of the individual
variances with the random weighting method is much
lower than that of SOMD method, and the noise variance
estimate with the random weighting method is unstable;
even zero and negative value are obtained.

2) The noise variances remained unchanged during the
simulation, but the bias of each measurement was set to
nonzero. The values of σ 2

1 and σ 2
2 were set as the same

as 1). And the biases of these two measurements b1 and
b2 were set as b1 = 0.2, b2 = 0.5. The measurements
and the true value of the signal are shown in Fig. 3(a).
The noise variance estimates of each measurement are
shown in Fig. 3(b) and (c), respectively. It can be seen
that the biases have no effect on the noise variance
estimation for the SOMD method. Instead, the random
weighting method fails to estimate noise variance of
each measurement when the biases of the measurement
processes exist, which limits its application in practical
applications.

3) The noise variances of the measurements were changed
during the simulation to further investigate the ability of
these two methods to estimate the time-varying noise.
The noise variance of each measurement was changed
during 20–40 s as shown in Table I. The bias of each
measurement was set as zero. The simulation results
are shown in Fig. 4, which illustrates that the estimated

Fig. 3. Noise variance estimate of measurements by SOMD method and
random weighting method. (a) Measured signal and the measurements
of Z1, Z2 with nonzero bias and constant noise variance. Variance
estimate of (b) Z1 and (c) Z2.

TABLE I
NOISE VARIANCE OF TWO MEASUREMENTS OVER TIME

TABLE II
NOISE VARIANCE OF FOUR MEASUREMENTS OVER TIME

noise variance by the SOMD method can effectively
track the true variance with a small delay, which depends
on the factor b in (24). However, random weighting
method cannot track variance changes due to its algo-
rithmic limitations.

Case 2: The number of measurements was four.

1) The bias of each measurement process was set as zero,
and the noise covariances remained unchanged during
the simulation, which were set as σ 2

1 = 1, σ 2
2 = 2,

σ 2
3 = 3, and σ 2

4 = 4, respectively. The noise variance
estimates of each measurement with these three different
methods are shown in Fig. 5(a)–(d), respectively. One
can see that the convergence time of SOMD method and
MINQUE method are significantly shorter than that of
random weighting method. Like case 1, the estimation
accuracy of the individual variances with the random
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Fig. 4. Noise variance estimate of measurements by SOMD method and
random weighting method. (a) Measured signal and the measurements
of Z1, Z2 with zero bias and time-varying noise variance. Variance
estimate of (b) Z1 and (c) Z2.

Fig. 5. Noise variance estimate of measurements with zero bias and
constant noise variance. Variance estimate of (a) Z1, (b) Z2, (c) Z3, and
(d) Z4.

weighting method is much lower than that of MINQUE
method and SOMD method, and the estimated noise
variance with the random weighting method is unstable.

2) The noise covariances remained unchanged during
the simulation, but the biases were set randomly as
b1 = 1, b2 = 3, b3 = 0.5, b4 = 5. In this
case, only SOMD method and MINQUE method are
compared since random weighting method has been
shown to be invalid when biases exist in case 1. The
simulation results are shown in Fig. 6. It can be seen

Fig. 6. Noise variance estimate of measurements with nonzero bias and
constant noise variance. Variance estimate of (a) Z1, (b) Z2, (c) Z3, and
(d) Z4.

Fig. 7. Noise variance estimate of measurements with zero bias and
time-varying noise variance. Variance estimate of (a) Z1, (b) Z2, (c) Z3,
and (d) Z4.

that the MINQUE method cannot also estimate the noise
variance of each measurement correctly like the random
weighting method when the biases of the measurements
exist. However, the SOMD method is still valid.

3) The bias of each measurement process was zero, but the
noise variance of each measurement was changed during
20–40 s as shown in Table II. The simulation results
are shown in Fig. 7. One can see that both the SOMD
method and MINQUE method can track the variance
change. But random weighting method is invalid in this
case.

In general, when redundant measurements exist, compared
with the other two methods, the SOMD method can effectively
estimate the noise variance of each measurement regardless of
whether the biases are zero. The estimation accuracy and the
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Fig. 8. Experiment setup. (a) Autonomous land robot. (b) IMU array
board with five Bosch BMI088 IMUs.

stability of SOMD method are also the best. Compared with
random weighting method, the SOMD method can effectively
track the change of the noise variance, which can be used to
estimate the time-varying noise. Compared with the MINQUE
method, the SOMD method requires fewer measurements.

B. Real-World Experiment
To further evaluate the performance of the proposed noise

estimation method in the real application of multiple IMUs
fusion, the real-world experiments were conducted. The noise
estimation methods used in the experiment include the Allan
variance method, MINQUE method, and the proposed SOMD
method. Furthermore, the novel scalewise variance optimiza-
tion (SVO) method proposed in [27] is also compared here.
The SVO method is a nonparametric method that utilizes the
wavelet cross-covariance at different scales to combine the
measurements coming from an array of sensors. Since weights
are required for each of the scales, two different sets of weights
are considered in this experiment, which are denoted as w1 and
w2, respectively. Specifically, w1 represents that the weights
of the first half of scales are equal and the weights of the
second half are set as zero. On the contrary, w2 represents
that the weights of the first half of scales are set as zero
and the weights of the second half are equal. It should be
noted that the random weighting method was not used as a
comparative method since we found the estimated noise vari-
ance of some IMUs with the method was negative in the real
experiment.

The experimental setup consists of an autonomous robot
equipped with a GPS-real-time kinematic (RTK) system,
wheel speedometer and an IMU array board with five Bosch
BMI088 IMUs, as shown in Fig. 8. The definition of the robot
body frame {b} is shown in Fig. 8(a). The X-axis points to the
right side of the robot; the Y -axis points to the direction of the
robot traveling; and the Z -axis points to the up direction. In the
implementation of this experiment, the central IMU marked
with a red rectangle in Fig. 8(b) on the board was selected to
coincide with VIMU frame. The sampling frequency of IMU

Fig. 9. Allan variance plot of IMU BMI088. Allan variance of
(a) gyroscope and (b) accelerometer.

TABLE III
ESTIMATED DISCRETE NOISE VARIANCE OF GAUSSIAN WHITE NOISE

AND RANDOM WALK PROCESS IN THE ASSUMED MODEL OF

IMU FOR EACH AXIS

is 100 Hz. The 12 h of static data of the IMUs were collected
and the Allan variance plot of one IMU is given in Fig. 9,
where Fig. 9(a) and (b) illustrates the Allan variance plot of
gyroscope and accelerometer, respectively. The discrete noise
variances of Gaussian white noise and random walk processe
in the assumed model of gyroscope and accelerometer are
estimated using the generalized method of wavelet moments
(GMWMs) proposed in [26]. Table III lists the estimated noise
parameter values of gyroscope and accelerometer for each
axis, where σ 2

g and σ 2
a represent the discrete noise variance

of Gaussian white noise for gyroscope and accelerometer,
respectively while γ 2

g and γ 2
a represent the discrete noise
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Fig. 10. INS horizontal trajectory and the corresponding position error
of Test #1. (a) INS trajectory. (b) Position error of fused IMU based on
different methods.

variance of Gaussian random walk processes for gyroscope
and accelerometer, respectively. The RTK-fixed positioning
solution output frequency was 5 Hz, the wheel speedometer
output frequency was 20 Hz. All data were recorded with
timestamp synchronization. The RTK-fixed positioning solu-
tion was used as the ground truth of the robot’s position.

To test the performance of the VIMU under different driving
conditions, two different driving trajectories were tested in the
open-sky areas, as shown in Figs. 10(a) and 11(a). Considering
the specific application scenarios of the autonomous robot for
factory inspections, its driving area was limited. Therefore, the
GPS position coordinates of the robot were converted to the
Universal Transverse Mercator (UTM) coordinates. The fixed
local east-north-up (ENU) coordinates system was defined as
the navigation frame {n} and the starting point of the trajectory
was chosen as the origin of frame {n}. Since the low-cost IMU
cannot sense the rotation of the earth, the frame {n} could be
regarded as an inertial reference frame ignoring the earth’s
rotation.

The performance of the fused IMU is evaluated using the
dead reckoning position error under the condition of the GPS
outage, which is defined as

e =
√

(x̂ − xrtk)
2 + (ŷ − yrtk)

2 + (ẑ − zrtk)
2 (42)

where (xrtk, yrtk, zrtk) is the robot’s position obtained from the
RTK receiver, and (x̂, ŷ, ẑ) is the estimated robot’s position

Fig. 11. INS horizontal trajectory and the corresponding position error
of Test #2. (a) INS trajectory. (b) Position error of fused IMU based on
different methods.

TABLE IV
RMSE OF THE POSITION DURING THE GPS OUTAGE

from the integrated navigation algorithm. To mimic the loss
of the satellite signals, 1 min of the RTK-fixed position data
outage is deliberately added into the integrated navigation
algorithm. As shown in Figs. 10(a) and 11(a), the starting
points of every GPS outage are marked with green squares, the
endpoints are marked with yellow squares, and the horizontal
position of the robot from the navigation algorithm is plotted
with the red lines. The corresponding position error of the
robot based on the VIMU fused by different methods is
shown in Figs. 10(b) and 11(b), respectively. In addition, the
root-mean-square error (RMSE) of the position during the
GPS outage was also computed as the statistic comparison,
as shown in Table IV.

It can be seen from Figs. 10(b) and 11(b), and Table IV
that the experimental results of the other methods are at least
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as good as the Allan variance method. In particular, the per-
formance of SOMD method and MINQUE method are nearly
identical to SVO method with w2. Though the results of these
methods are comparable, there are some differences among
them. On the one hand, the SOMD method proposed in this
article relies on strong parametric assumptions where both the
white noise process and the random walk process are assumed
to be Gaussian. These underlying parameter assumptions may
not always hold in real applications, especially for the low-cost
MEMS IMUs with more complex stochastic structures. In con-
trast, the Allan variance-based methods and SVO method rely
on weaker parametric assumptions and in particular the SVO
method is a fully nonparametric method that does not rely on
any parametric assumption on the stochastic processes of the
individual signals, which provides considerable advantages in
real-world applications. Moreover, the SVO method is flexible
as the weight vector used for different wavelet scales can be
set by the users according to practical application requirements
for inertial sensor calibration. On the other hand, the main
advantage of the SOMD method resides in the fact that it is
adaptive and can adapt to changes of the noise characteristics,
which is suitable for the case where the noise level of the
MEMS-IMUs may evolve due to the external environmental
influences such as the vibration, whereas this is not possible
with the Allan variance-based methods and SVO method.

In general, all methods have their advantages and own
limitations due to arguably unrealistic assumptions. In prac-
tice, it is difficult to know if weaker parametric assumptions
are better or worse than adaptive capabilities. However, it is
interesting to incorporate these ideas in the future research to
open new research directions where nonparametric methods
(such as the SVO method) with adaptive capabilities (such as
the SOMD method) could be developed.

V. CONCLUSION

In this article, two online noise variance estimators based
on SOMD algorithm are proposed for two redundant mea-
surements and multiple redundant measurements, respectively.
The detailed proof of the unbiasedness and consistency of the
estimators are also provided. Using the proposed noise vari-
ance estimator, the measurement noise variances of each IMU
sensor can be estimated in real time when multiple IMUs exist.
Based on the estimated noise variances of each sensor, the
measurement equation of the optimal VIMU in the observation
domain by the WLS estimation method is derived. Finally,
the performance of the proposed noise variance estimation
algorithm was verified through comparative simulations with
random weighting method, MINQUE method. The results
demonstrate the superiority of the proposed noise variance
estimation on steady noise and time-varying noise regardless
of whether there are measurement biases. Meanwhile, the
real-world experiment was also implemented to evaluate the
performance of the generated VIMU based on different meth-
ods such as Allan variance, MINQUE method, and the SVO
method. The experimental results show the effectiveness of
the IMU fusion method based on the proposed noise variance
estimation algorithm and the performance of the VIMU is
comparable to the other methods.

APPENDIX A
PROOFS OF THEOREMS IN SECTION II-B

In this appendix, we provide the detailed proofs of Theo-
rems 1 and 2 in Section II-B considering the limitation of the
length of the main context in the article.

A. Proof of Theorem 1
Proof: The FOSD items �Z1(k) and �Z2(k) of each

measurement process at time index k can be obtained by taking
the difference of measurements at two adjacent sampling
moments as

�Z1(k) = Z1(k) − Z1(k − 1)

= Z(k) − Z(k − 1) + ε1(k) − ε1(k − 1)

+V1(k) − V1(k − 1)

= �Z(k) + �ε1(k) + V1(k) − V1(k − 1)

�Z2(k) = Z2(k) − Z2(k − 1)

= Z(k) − Z(k − 1) + ε2(k) − ε2(k − 1)

+V2(k) − V2(k − 1)

= �Z(k) + �ε2(k) + V2(k) − V2(k − 1). (43)

Correspondingly, the SOMD item ∇Z12(k) at time index
k can be given by taking the difference of these two FOSD
items �Z1(k) and �Z2(k) as

∇Z12(k) = �Z1(k) − �Z2(k)

= �Z(k) + �ε1(k) + (V1(k) − V1(k − 1))

−�Z(k) − �ε2(k) − (V2(k) − V2(k − 1))

= �ε1(k) − �ε2(k) + (V1(k) − V1(k − 1))

− (V2(k) − V2(k − 1)) . (44)

Let μm,X denote the mth raw moment of the random vector
X. Then the first raw moments of �Z1(k), �Z2(k), and
∇Z12(k) can be given as

μ1,�Z1(k) = E [�Z1(k)] = �Z(k)

μ1,�Z2(k) = E [�Z2(k)] = �Z(k)

μ1,∇Z12(k) = E [∇Z12(k)] = 0. (45)

And the second raw moments of these items can be obtained
as

μ2,�Z1(k)

= E

[
�Z1(k)�Z1(k)T

]
= �Z(k)�Z(k)T + E

[
�ε1(k)�ε1(k)T

]
+E

[
V1(k)V1(k)T

]
+E

[
V1(k − 1)V1(k − 1)T

]
= �Z(k)�Z(k)T + E

[
�ε1(k)�ε1(k)T

]
+ 2R1 (46)

μ2,�Z2(k)

= E

[
�Z2(k)�Z2(k)T

]
= �Z(k)�Z(k)T + E

[
�ε2(k)�ε2(k)T

]
+E

[
V2(k)V2(k)T

]
+E

[
V2(k − 1)V2(k − 1)T

]
= �Z(k)�Z(k)T + E

[
�ε2(k)�ε2(k)T

]
+ 2R2 (47)
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μ2,∇Z12(k)

= E

[
∇Z12(k)∇Z12(k)T

]
= E

[
�ε1(k)�ε1(k)T

]
+E

[
�ε2(k)�ε2(k)T

]
+E

[
V1(k)V1(k)T

]
+E

[
V1(k − 1)V1(k − 1)T

]
+E

[
V2(k)V2(k)T

]
+E

[
V2(k − 1)V2(k − 1)T

]
= E

[
�ε1(k)�ε1(k)T

]
+E

[
�ε2(k)�ε2(k)T

]
+2R1 + 2R2. (48)

Let (47) subtract (46), the following equation can be obtained:
μ2,�Z2(k) − μ2,�Z1(k) = 2R2 − 2R1 + E

[
�ε2(k)�ε2(k)T

]
−E

[
�ε1(k)�ε1(k)T

]
. (49)

Let (48) subtract (49), R1 can be expressed as

R1 = μ2,∇Z12(k) − μ2,�Z2(k) + μ2,�Z1(k)

4

−E
[
�ε1(k)�ε1(k)T

]
2

. (50)

Similarly, let (48) add (49), R2 can be expressed as

R2 = μ2,∇Z12(k) + μ2,�Z2(k) − μ2,�Z1(k)

4

−E
[
�ε2(k)�ε2(k)T

]
2

. (51)

B. Proof of Theorem 2
Proof: The proof of the unbiasedness of the estimators is

given as follows.
By taking the expectation of L̂1, (52) as shown at the bottom

of the page, can be obtained.
Similarly

E

[
L̂2

]
= R2 + Q2

2
= L2. (53)

According to (52) and (53), the estimators are unbaised.
The proof of the weak consistency of the estimators are

given as follows.
It can be seen from (45) and (48) that all samples of

SOMD items ∇Z12 in the sliding window are identical
distribution, and the autocovariance of sequence ∇Z12 is
given as

cov (∇Z12(i),∇Z12(i + h))

=

⎧⎪⎨
⎪⎩

2 (R1 + R2) + Q1 + Q2, (h = 0)

− (R1 + R2) , (|h| = 1)

0, (|h| > 1)

(54)

which shows that sequence ∇Z12 is weakly stationary.
Let

Yi = ∇Z12(i)∇Z12(i)
T (55)

Yi, j,k represent the j , kth entry of the matrix Yi , and let σ 2
j,k =

var
(
Yi, j,k

)
, which is finite, and let σ 2 = max j,k σ 2

j,k , which
is finite as well. Then, for all j ,k we have

var

(
1

n

n∑
i=1

Yi, j,k

)
= 1

n2

n∑
i=1

n∑
l=1

cov
(
Yi, j,k , Yl, j,k

)
(56)

by stationarity. Thus, we have

var

(
1

n

n∑
i=1

Yi, j,k

)
≤ 3

n
σ 2

j,k ≤ 3σ 2

n
→ 0 (57)

as n → ∞. By Markov’s inequality, we have

1

n

n∑
i=1

Yi
P→ E [Yi ] (58)

which shows that μn2,∇Z12
converges in probability to

μ2,∇Z12(k), i.e.,

μn2,∇Z12

P→ μ2,∇Z12(k). (59)

For the FOSD items �Z1 and �Z2, it can be seen from
(45) that the first raw moments of them at each sampling
moment is the difference of Z(t) at the same moment. Since
the differences may be different at different sampling moment,
i.e., �Z(i) 
= �Z( j) (i 
= j), the sequences of �Z1 and
�Z2 may not be weakly stationary. However, we can define
�μn2 and �μ2 as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�μn2 =μn2,�Z1
− μn2,�Z2

= 1

n

n∑
i=1

[
�Z1(i)�Z1(i)

T −�Z2(i)�Z2(i)
T
]

�μ2 = μ2,�Z1(k) − μ2,�Z2(k).

(60)

Let Yi = �Z1(i)�Z1(i)T − �Z2(i)�Z2(i)T , then the same
argument used to obtain (59) can be used to show that �μn2
converges in probability to �μ2, i.e.,

�μn2
P→ �μ2. (61)

E

[
L̂1

]
= 1

4n

[
n∑

i=1

E

[
∇Z12(i)∇Z12(i)

T
]

−
n∑

i=1

E

[
�Z2(i)�Z2(i)

T
]

+
n∑

i=1

E

[
�Z1(i)�Z1(i)

T
]]

= 1

4n

[
n (2R1+2R2+Q1+Q2)−

n∑
i=1

[
�Z(i)�Z(i)T

]
−n (2R2+Q2)+

n∑
i=1

[
�Z(i)�Z(i)T

]
+n (2R1+Q1)

]

= 2n (2R1 + Q1)

4n
= R1 + Q1

2
= L1 (52)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 02,2023 at 06:43:52 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: OPTIMAL FUSION METHOD OF MULTIPLE INERTIAL MEASUREMENT UNITS 2705

Substitute �μn2 into (12) and (13), L̂1 and L̂2 can be
rewritten in the following form:⎧⎪⎨

⎪⎩
L̂1 = μn2,∇Z12

+ �μn2

4

L̂2 = μn2,∇Z12
− �μn2

4
.

(62)

It is noticed that L̂i (for i = 1, 2) are the linear function
of consistent quantities. By the continuous mapping theorem,
it can be concluded that the estimators L̂1 and L̂2 are consis-
tent for L1 and L2, respectively.

APPENDIX B
PROOFS OF THEOREMS IN SECTION II-C

In this appendix, we provide the detailed proofs of
Theorems 3 and 4 in Section II-C.

A. Proof of Theorem 3
Proof: According to (48), for any two different mea-

surements processes Zi (t) and Z j (t) (i 
= j) from the
n-independent measurements, the second raw moments of the
SOMD item ∇Zi j (k) between them at time index k can be
given as

μ2,∇Zi j (k) = E

[
∇Zi j (k)∇Zi j (k)T

]
= 2Ri + 2R j + Qi + Q j . (63)

When all the equations about any two different measurements
are stacked together, (64) as shown at the bottom of the page,
can be obtained. By solving (64), (18) can be obtained.

B. Proof of Theorem 4
Proof: The proof of the unbiasedness of the estimator can

be given as follows.
By the definition of μn2,∇Zi j

and (63), the following equa-
tion holds:

E

[
μn2,∇Zi j

]
= 1

n

n∑
i=1

E

[
∇Zi j (i)∇Zi j (i)

T
]

= 1

n
n
(
2Ri + 2R j + Qi + Q j

)
= 2Ri + 2R j + Qi + Q j . (65)

Then (66), as shown at the bottom of the page, can be obtained
by taking the expectation of L̂, which shows that the estimator
is unbaised

The proof of the consistency of the estimator can be given
as follows.

For any two different measurement processes Zi (t) and
Z j (t) (i 
= j), the first raw moments of SOMD item ∇Zi j (k)
between them at time index k can be given as

μ1,∇Zi j (k) = E
[∇Zi j (k)

] = 0. (67)

According to (63) and (67), all the samples of SOMD items
∇Zi j in the sliding window are identical distribution. In addi-
tion, the autocovariance of sequence ∇Zi j is independent
of time index, which means that the sequence is weakly

A

⎡
⎢⎢⎢⎢⎢⎣

R1
R2
R3
...

Rn

⎤
⎥⎥⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2,∇Z12(k)

μ2,∇Z13(k)
...

μ2,∇Z1n (k)

μ2,∇Z23(k)
...

μ2,∇Z2n (k)
...
...

μ2,∇Z(n−1)n(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2,�ε1(k) + μ2,�ε2(k)

μ2,�ε1(k) + μ2,�ε3(k)
...

μ2,�ε1(k) + μ2,�εn(k)

μ2,�ε2(k) + μ2,�ε3(k)
...

μ2,�ε2(k) + μ2,�εn(k)
...
...

μ2,�εn−1(k) + μ2,�εn(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iq Iq

Iq Iq
...

. . .

Iq Iq

Iq Iq
...

. . .

Iq Iq
...

. . .

· · ·
Iq Iq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n−1)nq
2 ×nq

(64)

E

[
L̂
]

= 1

2
A+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[μn2,∇Z12
]

E[μn2,∇Z13
]

...
E[μn2,∇Z1n

]
E[μn2,∇Z23

]
...

E[μn2,∇Z2n
]

...

...
E[μn2,∇Z(n−1)n

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2
A+

⎛
⎜⎜⎜⎜⎜⎜⎝

A

⎡
⎢⎢⎢⎢⎢⎣

2R1
2R2
2R3

...
2Rn

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

Q1 + Q2
Q1 + Q3

...

...
Qn−1 + Qn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

R1
R2
R3
...

Rn

⎤
⎥⎥⎥⎥⎥⎦+ 1

2
A+

⎡
⎢⎢⎢⎢⎢⎢⎣

Q1 + Q2
Q1 + Q3

...

...
Qn−1 + Qn

⎤
⎥⎥⎥⎥⎥⎥⎦

= L (66)
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stationary. Then by the same technique used to prove (59),
we have

μn2,∇Zi j

P→ μ2,∇Zi j (k). (68)

Moreover, it can be seen from (21) that L̂ is a linear function
of consistent quantities. By the continuous mapping theorem,
the estimator L̂ is consistent for L.
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