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A B S T R A C T   

Freezing of Gait (FOG) is an episodic lower extremity movement disorder that is highly susceptible to falls and 
carries a serious risk of disability. Monitoring of FOG can assist in the diagnosis and treatment of FOG. Providing 
appropriate gait guidance along with monitoring can help reduce the frequency and duration of freezing epi
sodes. This study aims to improve the robustness of the monitoring model using multimodal fusion methods. The 
gait signals from 32 FOG patients are collected by the inertial measurement unit (IMU) and force-sensitive insole 
(FSI) simultaneously. A multimodal fused FOG monitoring model was constructed by using deep neural networks 
to extract complementary features from IMU and FSI signals respectively, and feature-level fusion of the two 
modalities by an adaptive weighting method. Experimental results show that the proposed multimodal fusion 
approach improves the F1 value by 0.029 in the FOG detection task compared to the unimodal model. In 
addition, to construct the pre-FOG dataset more accurately, an automatic labeling method of pre-FOG events 
based on the FOG index ratio is also proposed in this paper. Compared to directly labeling the data 2.5 s before 
the freezing episode as the pre-FOG event, the proposed labeling method obtained more samples and improved 
the freezing prediction accuracy by 1.4 %.   

1. Introduction 

Freezing of Gait (FOG) is an episodic lower extremity movement 
disorder that carries a serious risk of disability. During a freezing 
episode, the patients feel like they are “glued” to the floor, their gait is 
stagnant, and they cannot move. After a while, the patient may return to 
a normal gait. FOG events may appear suddenly at any time and place 
and last randomly for seconds to minutes [1,2]. This inadvertent onset of 
symptoms can easily cause patients to fall, severely impairing their 
mobility and posing a great threat to their lives [3]. At the same time, 
FOG is widely prevalent, with Parkinson’s disease, for example, 
affecting about 6.1 million people worldwide, of whom more than 63 % 
have symptoms of FOG [4,5]. However, until today the clinical detection 
of FOG has been based on scales and questionnaires, this kind of sub
jective assessment method relies on the experience of the physician, the 
description of the patients and their families, as well as the patient’s 
performance during the assessments. Due to the paroxysmal and random 
nature of FOG, doctors cannot accurately grasp the frequency and 
duration of freezing episodes, which causes great problems in the 
treatment and in-depth research of FOG [6]. FOG wearable monitoring 
aims to enhance the effect of intervention by using wearable devices to 

monitor FOG during daily activities in real time and give gait guidance 
when needed, which is important for clinical diagnosis and treatment of 
FOG. 

1.1. The FOG detection method based on the inertial measurement unit 

As a type of wearable device, the inertial measurement unit (IMU) 
has attracted much attention due to its small size, low power con
sumption, easy integration, and low price. In 2008, Moore et al. [7] 
performed a windowed Fourier analysis of the vertical acceleration 
signal at the patient’s ankle and found that the amplitude peaks of the 
power spectrum during freezing episodes were distributed between 3 
and 8 Hz and within 3 Hz during normal walking, thus the ratio of the 
power in the “freezing” band (3–8 Hz) to the power in the “motion” band 
(0.5–3 Hz) was defined as the Freezing Index (FI). Since then, FI has 
gradually become a “benchmark” for assessing the severity of FOG, and 
various improvement methods based on FI have emerged [8–10]. 
However, such linear decision planes delineated by rule- or threshold- 
based methods are often difficult to cope with the complex and vari
able task of FOG monitoring. Subsequently, machine-learning-based 
methods were proposed and Mazilu et al. [11] used the methods for 
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the first time to build a FOG detection model and finally obtained a 
sensitivity of 0.663 and specificity of 0.954 under a model using the 
random forest as the classifier. Pepa et al. [12] designed features such as 
rhythm variation and energy derivative ratio and developed a fuzzy 
rule-based FOG detection algorithm that was able to reduce false- 
negative detection. Ashour et al. [13] used the infinite feature selec
tion (IFS) technique to rank 135 features, eliminate redundant features, 
and achieve the highest individual accuracy of 0.944 for detection on 
the Daphnet dataset [14]. Nevertheless, due to the random start and end 
of FOG events, it is often difficult for hand-designed features to capture 
the inherent properties hidden in various time-series data, which leads 
to the lack of performance of traditional machine learning methods. El- 
Attar et al [15] implemented a patient-independent approach using the 
signals recorded by vertical acceleration sensors only. The discrete 
wavelet transform (DWT) was used to extract the main features inherent 
in the FOG detection of key motion metrics and then, the ability to 
evaluate the recognition of these features using support vector machines 
and artificial neural networks was compared. Using these two different 
machine learning techniques, FOG was detected with 87.50 % and 93.8 
% accuracy, respectively. After that, they [16] considered three types of 
transformations and applied the features extracted from these trans
formations to machine learning methods such as artificial neural net
works (ANN) to detect FOG. they integrated the features extracted from 
1D DWT and FFT in the proposed hybrid system and achieved an ac
curacy of 96.28 % for PD detection established using the ANN. 

The latest techniques use deep learning methods, which can be used 
to obtain more abstract feature representations by increasing the layers 
and depth of the network. Ashour et al, 2020 [17] used signals from 
accelerometers of wearable devices placed in different positions (on the 
hip, knee, and ankle) for the detection of FOG. They developed this 
model using a Long Short-Term Memory (LSTM) network, designed by 
considering patient dependency, and then compared this model to 
traditional machine learning techniques such as support vectors. They 
found that the LSTM network performed better, which achieved 83.38 % 
in terms of the average accuracy in comparison with the SVM which 
achieved 79.48 %. 

In our previous studies [18], we constructed a novel FOG detection 
model SEC-ALSTM based on the characteristics of FOG, using IMU sig
nals as input, deep learning techniques were used to design the neural 
network structure, compressed activation blocks, and attention mecha
nisms were introduced to enhance the feature representation capability 
of the network, and the accuracy of detection was significantly 
improved. However, since the IMU signals only capture gait kinematic 
parameters, the model still suffers from a lack of robustness in patient- 
independent generic model testing. 

1.2. The FOG detection method based on force-sensitive insole 

Force-sensitive insole (FSI) captures both gait kinetic and gait kine
matic parameters, making it ideal for monitoring FOG at home. How
ever, international research on FOG monitoring based on FSI is still in its 
infancy. Howcroft et al. [19] performed fall detection work for the 
elderly based on an array of FSIs (F-Scan 3000E, Tekscan) using Relief-F. 
Shalin et al. [20] also used F-Scan to obtain foot pressure distribution 
signals, and they stitched the left and right foot pressure distribution 
data into a 60 × 42 matrix, and extracted features such as Centre of 
Pressure (COP) location, COP velocity, COP acceleration and GRF from 
the matrix, and then designed a FOG detection model with a 2-layer 
LSTM network. Thus, preliminary studies using FSI signals for gait 
analysis and related detection tasks have shown promising applications, 
and FSIs are expected to be a key to improve the performance of FOG 
monitoring. The information between the FSI signals and the IMU sig
nals are complementary, thus it can be speculated that combining the 
FSI distribution signals with the IMU signals may be an effective way to 
improve the robustness of the FOG monitoring model. 

1.3. The prediction method of FOG 

In addition, it has been shown that freezing episodes are a 
“sequential effect” of progressive gait deterioration [21,22]. Clinical 
studies have observed impaired gait cycles such as increased cadence, 
decreased rhythm, increased left–right asymmetry, and gait distur
bances, before the FOG episodes [23]. These characteristics offer the 
possibility to predict FOG, and if cues can be provided before the onset 
of freezing, it may be possible to break the “sequence effect” of gait 
deterioration and effectively prevent the occurrence of FOG. However, 
the transition from normal to FOG is subtle and often not visually 
discernible, so the best pre-FOG segment is often difficult to determine 
[24]. Most of the existing studies have directly labeled the fixed time 
window before the freezing episode as pre-FOG [25–27], a simple but 
poorly accurate method. Since the duration of pre-FOG varies both 
within and between patients. It is difficult to convincingly label the pre- 
FOG events directly using a fixed length of time. Some investigators have 
also automatically determined the duration of the pre-FOG based on the 
progressively worsening gait characteristics before FOG. For example, 
Zhang et al. [28] segmented the gait signal according to the gait period 
and labeled the pre-FOG in walking based on the accelerated cadence 
before the FOG episode. Nevertheless, this kind of method is also 
limited, because the segmentation of the gait period sometimes does not 
work when FOG is about to come, as the gait patterns of the patient are 
impaired and the periodic features become more and more confusing. 
How to identify abnormal signals before freezing episodes to mark pre- 
FOG, and how to extract key features from signals before freezing epi
sodes to improve the accuracy of FOG prediction models are worth 
further study. 

1.4. Contributions 

In order to further improve the accuracy of FOG wearable moni
toring, this paper adopts the strategy of multi-sensor fusion to carry out 
the detection and prediction of FOG respectively. The main work of this 
paper includes the following two points:  

(1) To enhance the robustness and accuracy of the FOG monitoring 
model, this paper uses a multimodal fusion approach to combine 
IMU signals and FSI signals for FOG monitoring. Firstly, the IMU 
signals feature expression method was designed based on the 
SEC-ALSTM model proposed in our previous study; then the 
plantar pressure partitioning was performed according to the 
characteristics of the plantar pressure signal, and the plantar 
pressure distribution feature map was constructed, and a 2D 
convolutional neural network was used for feature representa
tion; finally, the adaptive weighting method was used to fuse the 
IMU signals and the feature vector of the FSI signals to construct a 
multimodal fused FOG monitoring model. 

(2) To improve the marking accuracy of pre-FOG, a pre-FOG auto
matic marking method is proposed based on the FI. The results 
show that the quality of the marked data obtained by this method 
is improved, and the multimodal fusion model proposed in this 
paper is used to perform the FOG prediction task with improved 
prediction. 

The rest of the paper is organized as follows. Section 2 describes the 
data acquisition process, data preprocessing, and the procedure for the 
construction of the multimodal fusion model. Section 3 describes the 
situation of the acquired dataset and the performance of the FOG 
detection model and the prediction model. Section 4 is a discussion and 
analysis of the model detection and prediction results, as well as several 
limitations of this study. Finally, in Section 5, the work and contribu
tions of this study are summarized. 
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2. Materials and methods 

2.1. Data acquisition 

2.1.1. Subject screening criteria 
The subjects in this study were all patients with FOG, whose inclu

sion criteria were a FOG-Q questionnaire score greater than 6 and at 
least one FOG event experienced in the past week. Before the subjects 
are assessed with the questionnaire, a FOG video will be shown to help 
them establish a correct perception of FOG symptoms. The participants 
were excluded according to the following criteria: (a) Suffering from 
gait-limiting syndromes, such as orthopedic conditions; (b) Suffering 
from a serious mental illness, such as major depressive disorder. (c) 
Inability to complete the required movements or to cooperate well with 
the doctor to complete the test. 

To ensure the validity of data collection, all experiments were per
formed after approval by the hospital’s ethical research committee and 
with the cooperation of physicians. Before the experiments, basic in
formation of participants was recorded and all participants underwent a 
clinical assessment using the UPDRS and the FOG-Q questionnaire. The 
experimental procedure strictly followed the Declaration of Helsinki and 
was approved by the Academic Ethics Committee of the University of 
Science and Technology of China, and subjects were informed of the 
purpose of the experiment as well as potential risks before proceeding, 
and then signed an informed consent form. 

2.1.2. Device wearing scheme 
As shown in Fig. 1, we use two IMUs and a pair of FSIs to obtain the 

patient’s gait signal simultaneously. The IMUs (LMPS-B2, a 9-axis 
miniature wireless transmission posture sensor with an integrated 3- 
axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer manu
factured by Guangzhou Alubi Electronic Technology Co.) were worn on 
the lateral side of the patient’s right and left ankles, respectively. F-Scan 
pressure insoles (Tekscan, Boston, MA) are used for foot pressure data 
recording. F-Scan insoles are thin (<1 mm) plastic film sheets with 3.9 
pressure sensing cells per cm2 and can be trimmed to fit every partici
pant to ensure accurate data acquisition. The data is collected while the 
video is recorded using a wide-angle camera for category tagging of gait 
signals. 

2.1.3. Experimental procedure 
As shown in Fig. 2, subjects were asked to complete two walking test 

tasks: (1) Free walking. Subjects were allowed to walk normally as they 
wished in a given experimental site, which was designed to simulate the 
walking patterns of patients in their daily lives, making the data 

collected in the study more consistent with the patients’ daily walking 
patterns. (2) Prescribed route walking. Subjects were asked to follow a 
pre-designed route, which could include a variety of FOG-inducing 
scenarios such as starting, stopping, 90◦, 180◦, and 360◦ turning, 
crossing narrow passages, dual tasks, and crossing obstacles, where the 
dual tasks were designed to perform additional tasks while walking, 
such as walking with a glass of water and asking them to spill the less 
water possible, and answering questions while walking (e.g., personal 
preferences, addition, and subtraction within 100, etc.). The purpose of 
the prescribed route walking is to induce FOG events during the walking 
test. Considering that different subjects are sensitive to different 
freezing-induced scenarios, the experiment was customized for each 
subject with the cooperation of a physician. IMU signals and FSI signals 
were collected simultaneously during the experiment. 

2.2. Data preprocessing 

Before fusing the data, we need to pre-process it, which includes 
labeling the FOG based on the video recording, data filtering, plantar 
pressure signal partitioning, sample segmentation, etc. 

2.2.1. FOG labeling 
The acquired data were marked by video playback for FOG onset 

time, and the video was played back by the Avidemux video editor. FOG 
events that occurred during the experiment were marked by three 
specialized physicians using a voting process. 

2.2.2. Outlier processing 
Although the data acquisition software of LMPS-B2 comes with a 

Kalman filter for noise reduction of the original data, there may still be 
outliers in the original IMU signals, and these outliers can seriously 
affect the energy distribution of the IMU signals. Since the frequency 
histogram of the IMU signal approximately follows the Gaussian distri
bution, the “4σ Criterion” can be used for outlier detection. Specifically, 
the sample data falling outside the 4σ interval are considered outliers. In 
previous studies, outliers were often replaced by the median [18], but 
this method may introduce a strong bias affecting skewness and kurtosis. 
For this reason, we adopt two outlier processing methods, median 
replacement, and direct removal, then compare the performance of the 
two methods. 

The plantar pressure distribution data is a time series pressure dis
tribution matrix. The single frame of plantar pressure distribution data is 
a two-dimensional matrix of size 60 × 21, containing a total of 955 valid 
pressure points, with each pressure point taking values in the range of 
0–255, and the left and right foot plantar pressure distribution data are 
stitched together as shown in Fig. 3. The raw plantar pressure data 
contained outliers, which could be derived from current noise, envi
ronmental noise, and anomalous values generated by the deformation of 
the insole during walking [29]. Here, a plantar pressure signals filtering 
method that we proposed in previous research was used [30]. First, go 
through each valid point in the single-frame pressure insole data matrix 
and calculate the number n of valid points in the 8 neighborhoods of 
each point. If n is less than the set threshold, the point is marked as an 
outlier, assuming the point is noted as ft(i,j), with i denoting the row and 
j denoting the column. Four frames of data before and after the frame 
where ft(i, j) is located are selected, as shown in Fig. 4, and the values in 
row i and column j of these data are put into Ft(i,j), Ft(i,j) = [ft− 4(i, j), ⋯,

ft+4(i, j)], if the number of valid points in Ft(i, j) is less than the set 
threshold, then ft(i, j) will be replaced with invalid points. 

2.2.3. Plantar pressure zone 
The plantar pressure distribution signal contains abundant infor

mation on gait dynamics, but at the same time the data scale is huge, and 
if the original data is directly used as the input signal for feature 
extraction or FOG detection, it will inevitably bring a high number of 
network parameters and floating points operations, which in turn makes 

 

12 IMU
Plantar pressure insole

 

Fig. 1. Diagram of device wearing solution. Two IMUs are worn on each side of 
the patient’s shank (just above the ankle) by elastic straps, and the FSIs are cut 
to the suitable size and placed directly in the patient’s shoes. 
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the model more complicated. Clinically, a partitioning approach is 
usually used to process plantar pressure distribution data [31–33], as 
shown in Fig. 5, where we divide the plantar pressure matrix into 10 
regions corresponding to the anatomical structure of the foot [30] and 
use the average pressure in each region to represent the abstract features 
of the plantar pressure distribution in that region. 

2.2.4. Sample segmentation 
The IMU and plantar pressure distribution signals were segmented 

using a sliding window, and since the physician’s marker had been 
added to each frame of data, i.e., each frame of data had a gait label, the 
gait label that appeared most times in each of the samples segmented by 
the window was used as the label for that window sample. 

2.3. Freezing gait detection model based on multimodal fusion 

2.3.1. Characteristic expression of IMU signal 
In our previous study, we construct a novel FOG monitoring model 

based on the characteristics of IMU signals, which consists of a deep 
convolutional neural network containing SE blocks and an attention- 
enhanced LSTM network (ALSTM), which we call SEC-ALSTM [18]. 
The specific structure of the SEC-ALSTM model is shown in Fig. 6. In this 
paper, we use the SEC-ALSTM network with the Fully Connected layer 
removed as a feature representation network for IMU signals and 
construct an IMU feature vector of length 128. 

2.3.2. Characteristic expression of FSI signal 
Plantar pressure during normal walking in humans shows cyclic 

D ual tasks

W alk w ith a glass of water, 97- 4= ?

C hair
(Start and end) N arrow  hallw ay

O bstacles 360 degrees turns

90 
degrees 
turns

90 
degrees 
turns

180 
degrees 
turns

180 
degrees 
turns

W alking tasks:

(a) designated route

(b) random  w alk

 
Fig. 2. Walking path planning sketch.  

Fig. 3. Splicing of plantar pressure data of both feet. The matrix size of a single 
insole is 60 * 21, and the matrices of two insoles are stitched together to form a 
60 * 60 matrix, with a 60 * 18 zero matrix filling in between. 

Fig. 4. Instructions for removing outliers along the time dimension.  

Fig. 5. Plantar pressure distribution. Where T1 and T2 are the regions of the 
toes, M1-M5 are the regions of the sole, MF is the region of the arch, and MH 
and LH are the regions of the heel. 
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changes. By dividing the plantar pressure distribution data into ten re
gions according to the anatomical definition, and then analyzing the 
cyclic characteristics of foot pressure during walking, as shown in Fig. 7, 
it can be seen that the force areas always cycle between the regions in a 
fixed order. 

Therefore, we partitioned all frames of data within a 4-second sliding 
window into ten regions using the foot pressure partitioning algorithm 
described in the previous section and then stitched the average pressure 
of all partitions in a fixed order of T1-T2-M1-M2-M3-M4-M5-MF-MH- 
LH, and finally stitched the partitioned average pressure signals of 
both feet in the order from left to right to obtain the combined signals as 
shown in Fig. 8, which is the input feature map of the mixed stream. 

Based on the characteristics of the plantar pressure signal feature 
map, we designed the feature representation network, called Insole- 
ConvNet, using deep learning techniques. As shown in Fig. 9, the 
designed Insole-ConvNet is based on a 2D convolutional structure, and 
the main body of the network consists of five convolutional modules, 
each of which contains a convolutional layer, a Batch Normalization 
(BN) layer [34], and an activation layer with ReLU as the activation 
function. The convolutional layer has the characteristics of local 
connection and weight sharing, which can reduce the scale of network 
parameters and accelerate the convergence of the network; the batch 
normalization layer can make the output data of convolution distributed 
in the sensitive interval of activation function to prevent “gradient 
dispersion”, accelerate the convergence and avoid gradient 

disappearance or explosion; ReLU activation can make the output of 
some neurons zero, which makes the network structure more sparse and 
reduces the interdependence between network parameters, and effec
tively alleviates the overfitting problem of convolutional neural 
network. The size and step length of the convolution kernel is designed 
according to the feature map size. In addition, a Max Pooling layer is 
added between the first four convolution modules to compress the 
number of model parameters and prevent overfitting. The number of 
output feature map channels of the last convolution module is 128, and a 
feature vector of length 128 is obtained by Global Average Pooling 
(GAP). To verify the effectiveness of the Insole-ConvNet network, a Fully 
Connected (FC) layer is added after the GAP layer of Insole ConvNet, and 
a softmax activation function is used for FOG detection. 

2.3.3. Feature-level integration of IMU and FSI 
As shown in Fig. 10, feature-level fusion was used to construct a 

multimodal fusion freeze gait monitoring model. However, since the two 
modalities, plantar pressure distribution signal and IMU signal, 
contribute differently to the freezing gait detection task, and there may 
be redundant or complementary relationships between the two features, 
directly concatenating the feature vectors is not the best strategy. 
Therefore, feature fusion is placed in a deep neural network framework, 
which performs an adaptive fusion of feature parameters by automati
cally masking redundant features and highlighting complementary 
features through network training. 

Fig. 6. The architecture of SEC-ALSTM. Conv 1D is a one-dimensional convolutional layer, LSTM is a long short-term memory recurrent neural network, squeeze- 
and-excitation block is used to converge the global information of each channel of the network. “Bn”, “ReLU” and “MP” are the abbreviations of “Batch normali
zation”, “Rectified Linear Unit”, and “Max pooling layer” respectively. T is the length of data instance in the temporal dimension, d is the dimension, T′ is the hidden 
state vector length of LSTM, and n is the number of hidden units of LSTM. 

Fig. 7. Periodic changes in plantar pressure distribution during normal walking. The solid black dots (●) represent the main distribution areas of pressure.  
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The computation process of adaptive weighted fusion features is 
illustrated in Fig. 11, where we assign a weight to each feature param
eter to indicate how important that feature parameter is for the FOG 
detection task. The size of the weights can be learned automatically by 
neural network training. Feature parameters are automatically assigned 
larger weights if they reduce model loss and vice versa. Suppose FI is the 
inertial feature vector output by the SEC-ALSTM model after removing 
the last layer, FP is the feature vector output by the Insole-ConvNet 
network after removing the Fully Connected Layer, and F is the 
feature vector after concatenating the two feature vectors. Then F can be 
obtained as: 

F = concat(FI,FP) =

[
FI

FP

]

(1) 

Next, the weights are assigned to the feature vectors F after the 
concatenation to obtain the fused feature vector FF, which is calculated 
as follows: 

FF = αF =

[
αIFI

αPFP

]

(2) 

Where α, αI, and αP denote the weight vectors. After obtaining the 
fused feature vector FF, the category score P is calculated as: 

P = softmax(WFF + b) (3) 
Where W ∈ RC*F and b ∈ RC are the learnable weight matrix and bias 

Fig. 8. Comparison of mixed flow characteristics during normal walking and freezing. The bottom half of the figure is a time series plot formed by partitioning and 
stitching the pressure distribution data of a normal Participant, while the top half is a time series plot of a FOG patients. 

Fig. 9. Feature representation network of FSI data.  

Fig. 10. Processing flow of IMU and FSI signals.  
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vector, respectively. C is the number of classification categories and F is 
the dimensionality of the fused feature vector. softmax function is 
defined as: 

softmax(zj) =
ezj

∑C
i=1

ezi
, j = 1, 2,⋯,C. (4) 

Finally, the final predicted categories are calculated as: 
y = argmax(P) (5) 
The net loss in the feature fusion model is calculated by the cross- 

entropy loss function as: 

loss =
1
N
∑

i
lossi = −

1
N
∑

i

∑C
c
yiclog(pic) (6) 

where N is the total number of samples and pic denotes the proba
bility that sample i belongs to category c. yic is a symbolic function and 
can be expressed as follows: 

yic =

{
0,The true category of sample i is c

1,The true category of sample i is not c
(7) 

Suppose fi denotes the i th characteristic parameter of F, αi denotes 
the weight of the characteristic parameter fi, and the weighted charac
teristic parameter is αifi in error backpropagation with the following 

equation: 
∂loss
∂fi

= αi
∂loss

∂(αifi)
(8) 

2.3.4. Pre-FOG marking method 
Real-time detection of FOG certainly helps physicians to have a more 

complete picture of the condition, but it does not reduce the number of 
freezing episodes. For patients, predicting FOG events before they occur 
allows interventions to improve gait patterns and thus inhibit the onset 
of FOG, which is of great importance in preventing falls and improving 
the quality of life of patients. Previous studies have shown that FOG 
occurs as a gradual deterioration of gait, characterized by a gradual 
reduction in stride length and increased energy of the “freezing” band 
[23]. Thus, we improved on the previous studies by using the FI [7], 
which is widely recognized by researchers, for the pre-FOG category 
labeling task. The FI can be calculated as: 

FI =
Powerin ′ freeze′band

Powerin ′ locomotor′band
(9) 

where the frequency range of the ’freeze’ band is 3 Hz–8 Hz and the 
frequency range of the ’locomotor’ band is 0.5 Hz–3 Hz. 

Fig. 11. Adaptive weighting-based feature fusion.  

Fig. 12. Freeze index and freeze index ratio calculated from a segment of the accelerometer signal. The left border of the light blue vertical bar is the location of the 
start of pre-FOG, which is determined by where the red line breaks the threshold. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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As shown in Fig. 12, before the onset of FOG, the FI gradually in
creases until it reaches its maximum during the freezing episode, which 
is the basis for our labeling of the pre-FOG category. First, the inflection 
point of the rising FI curve needs to be found as the starting point of the 
pre-FOG phase. For this purpose, we define the Freeze Index Ratio (FIR) 
and use the point in the signal where the FIR (the red line in Fig. 12) first 
rises above a preset threshold as the inflection point of the rising FI 
Curve. In this paper, we use the “trial and error method” to find the 
optimal threshold, and use the optimal value as the FIR threshold. 
Similarly, we add windows to the signals, and the FIR for the ith window 
is defined as follows: 

FIR(i) =

∑i+n
j=i+1

FI(j)
∑i− 1

j=i− n
FI(j)

(10) 

where FI(j) denotes the FI of the j th window. Here, we choose a 
sliding window length of 2 s, a step length of 0.5 s, and n is taken as 4. 
Based on the experience of previous studies [25–27], we believe that the 
maximum period from the beginning of the freezing signs to the start of 
FOG will not exceed 6 s. Therefore, the 6 s before each freeze step onset 
is considered as the period in which pre-FOG may appear, and then the 
FIR of the signal is calculated during this period, and the period from the 
moment when the FIR is first above a preset threshold to the start of the 
FOG is labeled as pre-FOG. 

3. Results 

3.1. Description of the dataset 

Participants were recruited from three hospitals: the Affiliated Hos
pital of the Institute of Neurology, Anhui University of Traditional 
Chinese Medicine; the First Affiliated Hospital of the University of Sci
ence and Technology of China, and the Second Affiliated Hospital of 
Anhui Medical University. As shown in Table 1, gait data were collected 
from 32 patients (21 males and 11 females) with FOG, with a total data 
duration of 526 min, during which there were 770 FOG events, as shown 
in Fig. 13. The duration of freezing events ranged from 1 to 264 s, with 
more than 50 % of freezing events lasting <4 s, and the vast majority of 
freezing events (91.7 %) lasted <20 s. 

A sliding window was used to construct the sample set with a win
dow length of 4 s and a step size of 0.5 s, and a total of 16,524 cases were 
obtained. 

3.2. Experimental setup 

The leave-one-out method cross-validation was used to evaluate the 
model performance by randomly dividing all samples into five groups 
according to subjects, selecting one of the groups as the test set and using 
the rest of the samples for training and validation, repeating the pro
cedure until all subjects’ samples were tested, and taking the average of 
the five cross-validations as the final evaluation result. The model per
formance was measured using the metrics of sensitivity, specificity, 
accuracy, AUC, EER, and F1 value, where the F1 value was calculated as 
follows: 

F1 =
2*Precision*Recall
Precision + Recall

(11) 

where Precision and Recall denote accuracy and recall, respectively, 
and the FOG category is considered as true. 

Models were built based on PyCharm 2019 and Tensorflow 1.13.1 
deep learning library and trained based on the minimized cross-entropy 
loss function. The computer hardware platform used for the experiments 
was configured with an Intel(R) Core(TM) i5-9400 CPU@2.90 GHz 
processor, an Nvidia GeForce RTX 2060 6 GB GPU graphics card, and 8 
GB dynamic memory. 

3.3. Performance of multimodal fusion FOG detection model 

3.3.1. Comparison of detection performance of different models 
To verify the effectiveness of the proposed multimodal fusion 

method, we compare the experimental results of four models: IMU- 
Model denotes the unimodal SEC-ALSTM model, Insole-Model denotes 
the unimodal Insole-ConvNet model, Feature-Fusion-Concat denotes the 
fusion model with the direct serial association of features, and Feature- 
Fusion-Weighted denotes the fusion model with feature adaptive 
weighting. Model training is performed based on minimizing the cross- 
entropy loss function. The experimental results are shown in Table 2, 
and the corresponding ROC curves are shown in Fig. 14. 

As it can be seen in Table 2, the Feature-Fusion-Weighted model has 
the best overall performance with a sensitivity of 0.924, a specificity of 
0.983, an accuracy of 96.3 %, and an F1 value of 0.943. The F1 value of 
the Feature-Fusion-Weighted model has improved by 0.008 compared to 
the Feature-Fusion-Concat model and compared to the unimodal IMU- 
Model model and Insole-Model model by 0.033 and 0.029, respec
tively. All evaluation metrics of the two feature fusion models out
performed the two unimodal models, with the F1 value improving by 
more than 0.02. In addition, the ROC curve shows that the AUC value of 
the Feature-Fusion-Weighted model is 0.992, which is not much 
different from that of the Feature-Fusion-Concat model, but the EER 
value is reduced by 0.6 %. The EER values of both feature-fusion models 
decreased by more than 1 % relative to the unimodal model. 

Further, to determine whether the results obtained by the proposed 
model are statistically different from those obtained by other methods, 
Wilcoxon signed-rank tests were performed between the accuracies, and 
F1-scores obtained by these models. In these tests, p-values were 
calculated after performing 6 experiments. If the p-value was less than 
the 0.05 significance level, there was a significant difference between 
these methods. Table 3 tabulates the average p-values of the proposed 
model when compared with other models. Obviously, the proposed 
Feature-Fusion-Weighted model is statistically different from other 
counterparts with a 5 % significance level in terms of accuracy and F1- 
score performance. 

3.3.2. Results of different outlier processing methods 
Considering that median replacement may introduce an important 

deviation that affects skewness and kurtosis, we compared the perfor
mance of two IMU signal outlier data processing methods, namely me
dian replacement and direct removal, for FOG detection. As shown in 
Table 4, there is no significant difference between the results obtained 
by the two outlier processing methods based on IMU Model. The FOG 
detection accuracy is higher than 94 %, and the F1-Score is higher than 
0.910. This proves that removing outliers directly will not reduce the 
performance of FOG detection. The reason why the detection perfor
mance of the model using the median replacement method does not 
decline significantly may be that there are fewer outliers in the experi
mental samples, so there is no significant impact on the overall data 
distribution. However, we need to beware of the potential threats 
associated with the direct use of median substitution in certain sce
narios. In addition, the results of this experiment show that in the actual 
scenario of FOG detection, an occasional small amount of data packet 
loss may have less impact on the results of detection, which is conducive 

Table 1 
Basic information of the participants.  

Group FOG 

Number of Patients 32 
Age (Years) 53.3 ± 19.7 
Gender 21M, 11F 
UPDRS III-item FOG 2.1 ± 1.2 
FOG-Q 13.9 ± 6.4 
Sampling Rate (Hz) 100 
Test duration (min) 526 
Number of Freeze Events 770  
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to the application of FOG detection equipment using Bluetooth 
communication. 

3.3.3. Results of the separate study for genders 
Considering the sexual dimorphism in the locomotion process (dif

ferences in weight, limb length, bone structure, etc.), a separate study 
was conducted for both. Two datasets were constructed using the signals 
of male and female subjects respectively, and the multimodal fusion 
FOG detection model was trained and tested. The experimental results 
are shown in Table 5. The F1 values obtained from the male samples, the 
female samples, and the mixture of male and female samples were 
similar, indicating that the detection effect of the proposed model was 
not affected by gender and had high FOG detection accuracy for both 
male and female subjects. The F1 values of the Female group were 
slightly lower than those of the Male group, but their Specificity and 
Accuracy values were higher. Analysis of the raw data showed that the 
FOG events in the Female group occurred more frequently and the data 
were more balanced, while the ratio of FOG : noFOG in the Male group 
was 670:5302, which had a serious imbalance, leading to more difficulty 
in model training and the model tended to identify the noFOG samples 

more. This is also the reason why the Accuracy value is higher in the 
Male group but the F1 value is slightly lower. In addition, the number of 
FOG samples in the Male group is less than one thousand, which may 
lead to insufficient training of the model and thus reduce the overall 

Fig. 13. IIM-FOG-IMU-Insole Dataset Freezing Event Duration Distribution Histogram.  

Table 2 
Detection results of different models.  

Model TPR TNR NPV PPV ACC F1- 
Score 

IMU-Model  0.877  0.975  0.946  0.941  94.3 %  0.910 
Insole-Model  0.911  0.959  0.917  0.956  94.3 %  0.914 
Feature-Fusion-Concat  0.916  0.978  0.954  0.960  95.8 %  0.935 
Feature-Fusion- 

Weighted  
0.924  0.983  0.963  0.963  96.3 %  0.943  

Fig. 14. ROC curves of the detection results of different models.  

Table 3 
Summary of Wilcoxon’s signed ranks tests. The 5% level of significance is 
selected.  

Model Feature-Fusion-Weighted 

ACC F1-Score 

p-value Significant? p-value Significant? 

IMU-Model  <0.01 Yes  <0.01 Yes 
Insole-Model  <0.01 Yes  <0.01 Yes 
Feature-Fusion-Concat  <0.01 Yes  <0.01 Yes  

Table 4 
Detection results of different outlier processing methods.  

Method TPR TNR PPV NPV ACC F1-Score 

Median replacement  0.877  0.975  0.946  0.941  94.3 %  0.910 
Direct removal  0.894  0.972  0.949  0.940  94.6 %  0.917  

Table 5 
Detection results by gender.  

Modal TPR TNR PPV NPV Accuracy (%) F1-Score 

Male  0.919  0.970  0.965  0.913  94.6  0.941 
Female  0.922  0.992  0.935  0.990  98.4  0.929 
All patients  0.924  0.983  0.963  0.963  96.3  0.943  
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accuracy of the model. 

3.4. Performance of FOG prediction models with multimodal fusion 

The pre-FOG events labeling was performed using the pre-FOG la
beling method described in the previous section based on the resultant 
acceleration signal at the ankle on the side of the patient with more 
severe gait impairment. Fig. 12 shows an example of pre-FOG events’ 
labeling, and it can be seen that the proposed method based on the FIR 
can well capture the inflection point of the rising FI and realize the 
automatic labeling of pre-FOG. 

To further validate the effect of the FIR method, the data set was re- 
labeled using the fixed time length method, the data window with a 
fixed period before the freezing episode was re-labeled as the pre-FOG 
category, and the time lengths were chosen as 1.5 s, 2.5 s, 3.5 s, 4.5 s, 
and 5.5 s. A sliding window was used to construct the sample set, and to 
reduce the time delay of FOG prediction, the sliding window length was 
set to 1 s with a step length of 0.2 s. Data containing both events were not 
included in the sample set. The sample distribution of the re-labeled 
dataset is shown in Table 6. It should be noted that the number of pre- 
FOG samples is much less than the number of no-FOG samples, and 
directly training the unevenly distributed dataset would result in skewed 
class problems, so the no-FOG samples are randomly downsampled to 
ensure the robustness of the training model. 

Using the previously proposed Feature-Fusion-Weighted multimodal 
fusion model for FOG prediction, Table 7 demonstrates the FOG pre
diction results using FIR and fixed time length for pre-FOG category 
labeling, respectively. It can be seen that the best result is achieved by 
the method using a fixed duration of 1.5 s with an F1 value of 0.786 
followed by the method using FIR with an F1 value of 0.722. The pre
diction effect of marking using a fixed duration of 2.5 s is similar to that 
of the method using FIR with an F1 value of 0.721. However, the method 
using the FIR yields 3657 cases of pre-FOG samples, which were 
significantly more than the 2700 cases obtained with a fixed time length 
of 2.5 s. The mean duration of pre-FOG obtained using the FIR method 
was 3.22 s. In addition, the fixed duration method significantly 
decreased the prediction effect as the duration increased. When the set 
pre-FOG duration exceeds (equals to) 3.5 s, the F1 value is lower than 
0.7 and the sensitivity is<0.6. Fig. 15 shows the ROC curves of the 
prediction results using different pre-FOG labeling methods. Among 
them, the AUC value using the FIR labeling method is 0.817, which is 
second only to the labeling method using a fixed duration of 1.5 s. 

4. Discussion 

The plantar pressure distribution signals contain abundant infor
mation on gait dynamics and the IMU signals contain abundant infor
mation on gait kinematics. We used an adaptive weighting method to 
fuse the IMU signals and the plantar pressure distribution signals at the 
feature level and used it for the FOG detection task. The Feature-Fusion- 
Concat model with the direct concatenation of feature vectors performs 
significantly better than the two unimodal models, verifying that there is 
a complementary relationship between plantar pressure distribution 
information and inertial information. And that the fusion of the two 
makes the gait information for the FOG detection task more adequate so 
that the model performance is significantly improved. 

The Feature-Fusion-Weighted model with the adaptive weighting of 
features outperforms the Feature-Fusion-Concat model with the direct 
concatenation of feature vectors. As mentioned earlier, since the two 
modalities, plantar pressure distribution suction signals and IMU 

signals, contribute differently to the FOG detection task, there is a 
redundant or complementary relationship between the two features; 
directly concatenating the feature vectors in series implies that each 
feature has the same weight, ignoring the existence of this redundant or 
complementary relationship. The Feature-Fusion-Weighted model per
forms better than the Feature-Fusion-Weighted model by adding weights 
to each feature (as shown in Fig. 16) and automatically learning the 
weight parameters in the neural network, this redundant or comple
mentary relationship can be identified, which in turn improves the 
detection performance of the fusion model. 

The onset of FOG is the process of gradual deterioration of gait 
pattern, and we carried out the work of FOG prediction based on this 
feature. The FIR was proposed based on the changing pattern of the FI 
before the freezing episode for automatic labeling of the pre-FOG cate
gory. This labeling method obtains higher quality data, a larger number 
of samples, and better model prediction performance compared to 
directly labeling fixed-time length data as pre-FOG categories before 
freezing episodes. The prediction effect of the pre-FOG events labeling 
method using fixed duration was affected by the pre-FOG duration. In 
general, the longer the pre-FOG duration, the worse the prediction ef
fect. When the pre-FOG duration exceeds (equals to) 3.5 s, the prediction 
effect is no longer acceptable. It indicates that most of the FOG 
appearing signs do not exceed 3.5 s, and the use of the fixed-length 
marker method requires special attention to the pre-FOG duration, 
otherwise it is difficult to obtain better results. In addition, the best 
prediction results were obtained throughout the experimental results 

Table 6 
Number of samples after data set relabeling.  

pre-FOG duration 1.5 s 2.5 s 3.5 s 4.5 s 5.5 s FIR 

Number of pre-FOG 1059 2700 4388 6050 7749 3657  

Table 7 
Prediction results of different pre-FOG labeling methods.  

pre-FOG duration TPR TNR PPV NPV Accuracy F1-Score 

1.5 s  0.756  0.831  0.817  0.773  0.794  0.786 
2.5 s  0.663  0.822  0.789  0.709  0.743  0.721 
3.5 s  0.545  0.809  0.741  0.640  0.678  0.628 
4.5 s  0.567  0.792  0.698  0.604  0.636  0.569 
5.5 s  0.438  0.672  0.672  0.583  0.612  0.530 
FIR  0.629  0.885  0.846  0.705  0.757  0.722  

Fig. 15. ROC curves of the predicted results of different pre-FOG label
ing methods. 

Fig. 16. Weight distribution of feature vectors after tandem.  
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when the pre-FOG duration was set to 1.5 s, with an F1 value of 0.786 
and an AUC value of 0.866. The information on gait abnormalities 
contained in the data closer to the onset of FOG became more and more 
obvious, and, understandably, the best results for FOG prediction were 
obtained using only the 1.5 s segment of data before the onset of 
freezing. However, it should be noted that the small number of samples 
obtained using the pre-FOG labeling method with a fixed duration of 1.5 
s is very unfavorable for conducting studies related to FOG prediction, 
which is the reason why we propose the FIR labeling method. When the 
pre-FOG duration was extended to 2.5 s, the prediction performance of 
the fixed-length tagging method was already lower than that of the FIR 
method, and the number of samples obtained was significantly less than 
that of the FIR method, indicating that some freezing signs with longer 
durations were not obtained by the 2.5-second fixed-length tagging 
method, and some of the pre-FOG category data obtained by the 2.5-sec
ond fixed-length tagging method were also of lower quality than that of 
the FIR method. 

This pilot study has several limitations that need to be recognized. 
Firstly, all experiments were conducted in a medical room, which may 
lead to slight differences between the patient’s gait and that of daily life. 
Secondly, Fig. 15 shows the weights assigned to each feature by the 
Feature-Fusion-Weighted model. The weights reflect the importance of 
the features, but we cannot yet provide clinical experts with the 
“interpretability” of these features, which requires a great deal of 
analytical work that we will carry out in subsequent studies. In addition, 
patients in different regions, age groups, and with different underlying 
diseases need to be added to the existing dataset to improve the 
robustness of the model. 

5. Conclusion 

Bächlin et al. [14] suggested in their study that sensor fusion might 
further improve the performance of FOG detection, so this paper pro
posed a new FOG detection method based on previous studies, which 
addresses the lack of gait kinematic information in the pure IMU signal, 
introduces the plantar pressure distribution signal, and fuses the two 
signals in a series of multimodal feature vectors to obtain a sensitivity of 
0.911 and a specificity of 0.959. Compared with the unimodal model, 
the multimodal fusion-based FOG detection method improved the ac
curacy by 1.5 % with the same data set. 

Since the features extracted from the plantar pressure distribution 
signal and the IMU signal do not contribute to the FOG detection to the 
same extent, an adaptive weighted feature fusion method was intro
duced to enhance the influence of important features on the detection 
results while weakening the influence of unimportant features on the 
detection results. The improved method has higher sensitivity, speci
ficity, and accuracy compared to the direct cascade method. 

In addition, FOG prediction work was conducted in this paper, and a 
method to automatically label pre-FOG categories by computing FIR was 
proposed. Compared with directly labeling the 2.5 s of data before the 
freezing episode as a pre-FOG event, this automatic labeling method 
obtained more samples and improved the prediction accuracy by 1.4 %, 
and at the same time, researchers no longer need to select the best la
beling time period by trying different pre-FOG labeling times several 
times, and the labeling of pre-FOG for different patients depends entirely 
on their walking status, which will greatly reduce the workload of the 
investigators. In addition, this approach is more convincing for clini
cians because it is determined based on the patient’s walking status. 

Finally, our detection and prediction methods can be well integrated 
into monitoring and intervention systems and hold great promise for 
long-term monitoring and telemedicine, which would certainly be very 
convenient for patients. 
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[9] M. Bächlin, J.M. Hausdorff, D. Roggen, N. Giladi, M. Plotnik, G. Tröster, Online 
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