
Citation: Wang, Z.; Zhang, Z.;

Zhu, W.; Hu, X.; Deng, H.; He, G.;

Kang, X. A Robust Planar

Marker-Based Visual SLAM. Sensors

2023, 23, 917. https://doi.org/

10.3390/s23020917

Academic Editor: Srikanth Saripalli

Received: 11 December 2022

Revised: 1 January 2023

Accepted: 11 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Robust Planar Marker-Based Visual SLAM
Zhoubo Wang 1, Zhenhai Zhang 1,*, Wei Zhu 1,*, Xuehai Hu 1, Hongbin Deng 1, Guang He 1 and Xiao Kang 2

1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 UV Center, China North Vehicle Research Institute, Beijing 100072, China
* Correspondence: zhzhang@bit.edu.cn (Z.Z.); wei.zhu@bit.edu.cn (W.Z.)

Abstract: Many visual SLAM systems are generally solved using natural landmarks or optical flow.
However, due to textureless areas, illumination change or motion blur, they often acquire poor camera
poses or even fail to track. Additionally, they cannot obtain camera poses with a metric scale in the
monocular case. In some cases (such as when calibrating the extrinsic parameters of camera-IMU),
we prefer to sacrifice the flexibility of such methods to improve accuracy and robustness by using
artificial landmarks. This paper proposes enhancements to the traditional SPM-SLAM, which is a
system that aims to build a map of markers and simultaneously localize the camera pose. By placing
the markers in the surrounding environment, the system can run stably and obtain accurate camera
poses. To improve robustness and accuracy in the case of rotational movements, we improve the
initialization, keyframes insertion and relocalization. Additionally, we propose a novel method to
estimate marker poses from a set of images to solve the problem of planar-marker pose ambiguity.
Compared with the state-of-art, the experiments show that our system achieves better accuracy in
most public sequences and is more robust than SPM-SLAM under rotational movements. Finally, the
open-source code is publicly available and can be found at GitHub.

Keywords: visual SLAM; planar markers; pose ambiguity

1. Introduction

Multi-sensor fusion has attracted the interest of SLAM researchers in the field of
autonomous robots. VINS [1], ORB-SLAM3 [2], and Smart Markers [3] are excellent
visual–inertial systems. However, the precise extrinsic parameters of camera-IMU are a pre-
requisite for these systems. Although some systems (such as VINS and VI-ORB-SLAM [4])
provide online calibration methods, they often fail to calibrate the extrinsic parameters
of a camera-IMU mounted on vehicles. This is because the vehicle generally drives on a
flat surface and does not generate enough excitation. In this case, accurate camera poses
are beneficial, allowing for us to calibrate the external parameters of camera-IMU using
the hand–eye method [5]. Many outstanding visual SLAM systems can be used to obtain
camera poses, such as ORB-SLAM2 [6], LSD-SLAM [7], and LDSO [8]. However, these
methods, based on natural features or optical flow, could fail under illumination condi-
tions, or instances with high dynamics, vigorous rotation, or a low-texture environment [9].
Additionally, they cannot obtain camera poses with a metric scale in the monocular case.
Therefore, we prefer to sacrifice the flexibility of such methods to improve accuracy and
robustness using artificial planar landmarks.

The planar marker is an easy-to-obtain artificial mark. We can easily print the
ArUco [10,11] or AprilTag [12] markers in our laboratory. Therefore, planar-marker-based
SfM or SLAM are very popular [13–17]. Although marker-based SLAM is much simpler
than feature-based SLAM, a challenging problem is that the planar marker contains ambigu-
ity. The pose is the relative pose between the camera and the marker. Due to the noise in the
four corners of the detection marker, two different solutions will be estimated in practice,
and ambiguity only occurs in the rotational components of the pose [18–20]. Generally, we
use the ’infinitesimal plane-based pose estimation’ (IPPE) method [20] to obtain the two
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solutions, which include the correct one. Figure 1 shows two solutions ξ′ (the red bounding
box) and ξ′′ (the green bounding box), which are returned by IPPE method for a planar
marker with ID 205. The red bounding box is the correct solution. The literature [14,15] has
proposed several means to distinguish the correct solution. Nevertheless, these methods
are still not robust enough and have difficulties in rotational movements.

Figure 1. (a): A detected marker with ID 205 from an image. (b): The two pose solutions, ξ′ (red
bounding box) and ξ′′ (green bounding box), returned by IPPE. The blue bounding box is the camera
pose.

To avoid or alleviate the difficulties in rotational movements, we propose enhance-
ments to the traditional SPM-SLAM system [15]. We present an improved version of this
existing algorithm. We mainly improve four steps in SPM-SLAM. First, in the one-frame
initialization, the correct maker pose is only chosen by IPPE if the marker is within a
suitable view of the camera and the ratio from Equation (4) is lower than the threshold
(Section 4.1). The two-frame initialization is successful if the distance or angle between
two frames is greater than the corresponding threshold (Section 4.1). This makes it easier
for the initialization to succeed under rotational movements. Second, the current frame
can be inserted into the map as a keyframe if the angle between the current frame and
the reference keyframe is greater than the threshold. This ensures that our system inserts
enough keyframes under the rotation movements to continue tracking (Section 4.2). Third,
we present a new approach to select the best marker pose from a set of images by mini-
mizing the M2M error (Section 4.3). Finally, during the relocalization process, when one
marker is detected, its correct pose is chosen using the same method as the one-frame
initialization approach. When multiple markers are detected, their correct poses are chosen
by minimizing the M2M error (Section 4.4). We tested our system on the public dataset
and our dataset. Compared with SPM-SLAM [15], UcoSLAM [16], and TagSLAM [17], our
system achieves better accuracy in most public sequences, and the speed of our system is
much faster than that of UcoSLAM and TagSLAM. The results of our dataset show that
our method is more robust and obtains more planar markers in the map than SPM-SLAM
under rotational movements. Additionally, the open-source code is available on GitHub.

2. Related Research

As our work is dedicated to the planar marker-based SLAM system, a review of the
natural feature-based SLAM literature is beyond the scope of this paper. Both Ref. [9] and
Ref. [21] contain detailed reviews of natural feature-based SLAM systems. This section will
focus on the marker-based SLAM and the problem of marker pose ambiguity.

SPM-SLAM [15] is the first real-time marker-based SLAM system. It is able to deal
with ambiguity problems and operate in large indoor environments. The SLAM system
sequentially runs the tracking, mapping, and loop-closing processes in a single thread
and achieves a good performance in most environments. However, our experiments
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(Section 5.2) indicated that SPM-SLAM often failed to locate in certain situations where the
camera’s motion included rotational movements. UcoSLAM [16] is an extended version
of SPM-SLAM and fuses the keypoints with squared fiducial markers. When disabling
keypoints, it is similar to SPM-SLAM. However, it needs more computational resources
and the addition of keypoints did not significantly improve SPM-SLAM’s tracking accuracy
in our experiments.TagSLAM [17] is also a visual SLAM with AprilTag fiducial markers.
It considers every frame to be a keyframe and relies on iSAM2 [22], which uses a factor
graph to represent the pose optimization problems. However, TagSLAM cannot run in
real-time unless a trusted map of tag poses is already available, because the graph grows
over time and the CPU load increases. Our experiments indicated that TagSLAM is unstable.
MarkerMapper [14] is an offline method that obtains a map of fiducial markers and then
obtains camera poses. It has several limitations. The most serious one is that the proposed
method cannot run in real-time.

Additionally, the ratio test [20] is a general method to resolve the planar-marker’s pose
ambiguity. Marker-based SfM [14], SPM-SLAM [15], and UcoSLAM [16] also apply this
method. The ratio test means that if the ratio from Equation (4) is below a certain threshold,
the IPPE solution with lower reprojection errors is the correct one. However, this was
proved to not always be correct. Unlike the ratio test, which used one frame to solve marker
pose ambiguity, S. -F. Ch’ng [23] exploited multi-view constraints for disambiguation. This
method can efficiently choose the correct pose from two ambiguous poses by formulating a
clique-constrained rotation averaging problem and a maximum weighted clique problem.
However, the method consumes a high amount of computing resources and is not suitable
for SLAM running in real-time.

3. System Overview

The enhanced marker-based SLAM is a monocular SLAM system. It is an accurate
and real-time system used to estimate camera poses and create a map of planar markers.
To describe the improvements that we have made, Section 3.1 explains some notations that
were employed in this work. For completeness, Section 3.2 provides a brief description of
the operational information of SPM-SLAM. Section 3.3 describes some improvements that
we made.

3.1. Concepts and Notations

Figure 2 shows the relationship between the three reference systems and defines some
terms employed in this work. Let us denote f t as a frame captured by a camera at the time
t. The equations of pose transform between the three reference systems are represented by

T t
cw = T t

cm · (Twm)
−1

Twm = (T t
cw)
−1 · T t

cm

T t
cm = T t

cw · Twm

, (1)

where T t
cw ∈ SE(3) is the pose that transforms points from the world reference system

(wrs) to the camera reference system (crs) at the time t. SE(3) [24] is the group of rigid
transformations in 3D space and a 4× 4 matrix. Twm ∈ SE(3) is the pose that transforms
points from the marker reference system (mrs) to the world reference system. T t

cm ∈ SE(3)
is the pose that transforms points from the marker reference system to the camera reference
system at the time t.
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Figure 2. The relationship between three coordinate systems and terms.

We also denote the three-dimensional point pi ∈ R3(i = 1, 2, 3, 4) as the four corners
of marker m in the marker reference system, and ut

i ∈ R2 as the pixel locations observed in
a frame f t. Let us denote ũt

i as the projection that can be represented by

ũt
i = Ψ(K, D, T t

cm, pi), (2)

where K and D are the camera-intrinsic parameters and distortion coefficients. Naturally,
given the transform matrix Tt

cm, the reprojection error of a marker’s corners in a frame f t is
calculated as:

et
m(T

t
cm) =

4

∑
i=1
‖Ψ(K, D, T t

cm, pi)− ut
i‖2. (3)

As mentioned earlier in Section 1, the pose of the marker m observed in the frame f t

has two solutions because of marker pose ambiguity. We denote Ṫ t
cm and T̈ t

cm as the two
solutions returned by the IPPE method. The reprojection error ratio caused by the poses
Ṫ t

cm and T̈ t
cm is represented by

ratio =
min (et

m(Ṫ
t
cm), et

m(T̈
t
cm))

max (et
m(Ṫ

t
cm), et

m(T̈
t
cm))

. (4)

We denote the angle θt
m as the view angle by which the marker m is observed in the

frame f t. Considering the translation components tt
cm of the pose T t

cm, we calculate the
angle θt

m by

θt
m = arccos

zt
m√

(xt
m)

2 + (yt
m)

2 + (zt
m)

2
. (5)

where tt
cm = (xt

m, yt
m, zt

m). Since marker pose ambiguity only exists in the rotational
components of the pose, the translation components of two solutions (Ṫ t

cm and T̈ t
cm) are

available in (5). Then, the angle θ12 between the two frames is represented as:

θ12 =
∑n

i=1 |θt1
i − θt2

i |
n

. (6)

where i refers to n markers that can be observed in both frames.
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3.2. SPM-SLAM

In this section, we review some of the SPM-SLAM algorithms, which are essential to
the proposed improvements in this paper. As we can observe from Figure 3, SPM-SLAM
runs in a single thread. Firstly, it localizes the camera with every frame by finding ArUco
tag matches and minimizing the error that derives from reprojecting these tags to the
previous frame.Then, it localizes the new tags from a set of ambiguous observations. After
that, it uses local bundle adjustment to optimize a set of keyframes and ArUco tags. Finally,
once a revisited tag is detected, the system corrects the accumulated drift using pose-graph
optimization with the g2o framework [25]. After pose-graph optimization, it performs
global optimization and optimizes the poses of tags and keyframes.

Figure 3. Pipeline for SPM-SLAM and our system. The green bounding boxes are the methods that
we improved.

3.3. Improvements in Our System

This section mainly describes the operational process of the system and the improve-
ments we made. Figure 3 describes the system’s operational information. The green
bounding boxes are the improvement methods that we proposed. ArUco or AprilTag mark-
ers can be detected in our system by the ArUco library [10,11] or AprilTag 3 library [26].
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At first, the initialization process establishes the world reference system for the map
and adds marker(s) and keyframe(s) to the map. Our improved initialization method
(Section 4.1) keeps the process more robust in terms of its rotational movement. After
successful initialization, the system enters tracking mode. The tracking process aims to
estimate the current frame pose T t

cw by minimizing the reprojection error of the visible
markers’ corners for each new captured frame f t [15]. When tracking failure occurs,
relocalization is started. Subsequently, the system performs the keyframe decision process.
The method of inserting the keyframe and makers to the map is introduced in Section 4.2.
The pose(s) Twm of new marker(s) will be estimated later by a new method. This is one
of the contributions of this paper. The method estimates the marker pose from multi-
view frames by minimizing the average rotation between markers (Section 4.3). After the
insertion of keyframes and markers, a keyframe culling process is run to delete unnecessary
keyframes in the map, which is reduces the processing time of local optimization and
global optimization. Local optimization aims to simultaneously optimize the keyframe and
marker poses by minimizing the markers’ reprojection errors.

The loop closing process is run after the tracking process. It effectively eliminates
the errors accumulated along the path [27]. The final step before a new frame is captured
is selecting a reference keyframe f w from the map for the current frame f t. The process
of tracking, loop closure, and local optimization for the next frame f t+1 will use the
reference keyframe. This is the one that is nearest to the current frame f t. Finally, the global
optimization process is run at the end of the system. All the keyframes and markers of the
map are employed in this.

4. Enhanced Methods
4.1. Initialization

The initialization process aims to establish a world reference system for the map, and
add keyframes and markers with correct poses to the map, which is vital to an SLAM
system. As in SPM-SLAM, we adopt one-frame and two-frame initialization. However, we
set different conditions to decide whether the process succeeds.

One-frame initialization succeeds if the ratio of at least one marker is lower than the
threshold τe in SPM-SLAM [15]. However, when the marker is on the edge of an image,
it is sometimes misjudged. In our system, the following two conditions must be met for
one-frame initialization to succeed.

ratio < τe, and θt
m < τθ , (7)

where θt
m is calculated by (5). The condition (θt

m < τθ) means that a marker m must be
observed within a proper scope of view. The value τθ is related to the camera’s angle of
view (FOV). This is set to 0.4–0.6 times the camera FOV used in our experiment.

For two-frame initialization, our method is the same as that of SPM-SLAM, which
estimates the pose of frames and markers that are ambiguously observed in the two
frames [15]. Two-frame initialization is successful if one of the following two conditions is
met.

d( f 0, f 1) > τb, or θ12 > ∆θ, (8)

where d( f 0, f 1) is the distance between f 0 and f 1. The angle θ12 between f 0 and f 1 is
calculated by (6). In contrast to SPM-SLAM’s method, the condition θ12 > ∆θ helps our
system to successfully initialize under rotational movements.

4.2. New Keyframes and Markers Insertion

When a frame pose T t
cw is successfully estimated in the tracking process, we need to

decide whether the frame can be judged as a keyframe and inserted into the map. The
insertion of keyframes has a heavy influence on local optimization and tracking. Too
many keyframes may cause local optimization to consume a high amount of computational
resources, while fewer keyframes may lead to a poor tracking performance, or even tracking
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failure. Therefore, keyframes can be inserted into the map when one of the following
conditions are satisfied:

1. If at least one new marker is detected in a frame, the frame is spawned as a new
keyframe and added to the map with the new marker(s). Notably, the pose(s)
of the new marker(s) are set to zero. Later, these are estimated from multiple
views (Section 4.3).

2. If the distance between the current frame f t and the reference keyframe f w is larger
than the threshold τb, the frame is added to the map.

3. If the angle between the current frame f t and the reference keyframe f w is larger than
the threshold ∆θ, the frame is added to the map.

Unlike SPM-SLAM, which only uses conditions 1 and 2, the use of condition 3 en-
sures that our system instantly inserts new keyframes during rotational movements. This
improves the robustness of the system, allowing for it to adapt to more environments.

4.3. Marker Pose Estimation

Once a new marker m is added to the map, the marker poses Twm should rapidly be
obtained. We propose a novel method to estimate the marker pose from a set of keyframes
that observe that marker m. Let us denote F as the set of keyframes. The poses of F
with keyframes are represented by (T1

cw, T2
cw, · · · , Tn

cw), which are known after the tracking
process. Considering the pose ambiguity of marker m in the set of keyframes F , we can
obtain possible poses for the marker m according to (1), which is denoted by:

Φ(m) = {Ṫ1
wm, T̈1

wm, · · · , Ṫn
wm, T̈n

wm} (9)

Our goal is to choose the best pose Twm of the marker m from Φ(m). Given a set of
F , the relative rotations from marker i to marker j (M2M) have four solutions, which are
represented by 

Rt,00
i,j = (Ṙt

j)
T · Ṙt

i

Rt,01
i,j = (R̈t

j)
T · Ṙt

i

Rt,10
i,j = (Ṙt

j)
T · R̈t

i

Rt,11
i,j = (R̈t

j)
T · R̈t

i

, (10)

where {Ṙt
i , R̈t

i} are the rotational components of the two ambiguous poses of marker i in
the frame f t. They have a 3× 3 matrix. Let us denote {Mi}

p
i=1 as the observed markers

with the correct poses from the set of keyframes F . Remember that these poses are known,
and that we denote {Rw1, · · · , Rwp} as the rotational components.

Our method is to select the best pose Twm from Φ(m) by minimizing the M2M error
between marker m and markers {Mi}

p
i=1 in the set of keyframes F . The M2M error is

represented by

e(Twm) =
n

∑
t=1

p

∑
i=1

min


‖(Rwi)

T · Rwm − Rt,00
m,i ‖

2
F

‖(Rwi)
T · Rwm − Rt,01

m,i ‖
2
F

‖(Rwi)
T · Rwm − Rt,10

m,i ‖
2
F

‖(Rwi)
T · Rwm − Rt,11

m,i ‖
2
F

 (11)

where Rwm is the rotational components of Twm, and ‖ � ‖2
F denotes the Frobenius norm.

The best solution is the one that minimizes the M2M error e(Twm) in the set of keyframes
F . Note that the translation component is already included in Twm. Therefore, we can
find a correct pose for marker m by (11). Furthermore, the angle or distance between
the keyframes in F must be larger than threshold ∆θ or threshold τb, respectively. This
could make (11) more effective. Note that the parameters ∆θ and τb are the same as those
mentioned in Section 4.2.
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4.4. Relocalization

The relocalization is run when the system fails to track. Let us denoteM as a marker
with the correct pose Twm detected in current frame f t, and n is the number of markers in
M.

If n < 1, the process will fail.
If n = 1, two methods can be used to obtain a solution. One is that, if the marker

satisfies condition (7), we can obtain the marker’s unambiguous pose T t
cm. Then, we can

successfully compute the current frame pose T t
cw using (1). The other method is that, if

the marker is not satisfied with the condition (7), we can obtain the marker’s ambiguous
poses Ṫ t

cm and T̈ t
cm using (1). Naturally, the two poses (Ṫ t

cw and T̈ t
cw) of the current frame

are computed. Then, the two distances between the current frame and the reference frame
are calculated using the two poses. Finally, the pose with the smaller distance is the correct
one.

If n > 1, let us denote

Ω(T t
cn) = {Ṫ

t
c1, T̈ t

c1, · · · , Ṫ t
cn, T̈ t

cn}, (12)

as the ambiguous poses of markersM in current frame f t, and denote

Υ(Twn) = {Tw1, · · · , Twn}, (13)

as the correct poses. The M2M error inM is represented by:

e < i, j >
i<j<n

= ‖(Rci)
T · Rcj − (Rwi)

T · Rwj‖2
F, (14)

where Rci (3 × 3 matrix) is the rotational component of Tt
cn ∈ Ω(Tt

cn), and Rwi is the
rotational component of Twn ∈ Υ(Twn). Here, note that if the right rotational component
is selected, the translation component is also selected. Accordingly, our goal is firstly to
select a pair of poses T t

ci and T t
cj from Ω(T t

cn) by minimizing the M2M error (14), and
then calculate the pose with (1). As the correct poses ({Twi, Twj} ∈ Υ(Twn)) are known,
we can obtain two solutions (T t

cwi
and T t

cwj
) for the current frame pose. If the distance

between T t
cwi

and T t
cwj

is lower than the threshold σe (default is 0.01m in our system),

the relocalization process will succeed and the two poses (T t
cwi

and T t
cwj

) are available.
Otherwise, relocalization will fail.

5. Experiments and Results

This section evaluates our method’s performance in the publicly available SPM
dataset [15] and our dataset. The SPM dataset has eight sequences and provides ground
truth trajectories for each sequence. Our dataset contains six indoor sequences and two
outdoor sequences, which include more rotational movements. We aim to evaluate the
tracking accuracy and robustness of our methods. Since the SPM dataset offers the ground
truth, it was used to evaluate the tracking accuracy. We assessed the robustness of our
system on our dataset, which includes many rotational movements. All tests were run on
an Intel Core i5-11600K 3.9 GHz desktop computer.

In addition, our method can be compared with other marker-based SLAM systems,
which include SPM-SLAM, TagSLAM, and UcoSLAM, as SPM-SLAM, UcoSLAM, and our
system have the same parameters. In order to be comparable, these same parameters must
be equal. The parameters τb and τe (Section 4) employed in all three systems were set at
7 mm and 0.333 in the two datasets. The other parameters ∆θ and σe, which were only
employed in our system, were set at 5° and 0.01 m, which proved to be good values in most
of our experiments.
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5.1. SPM Dataset

The SPM dataset contains eight video sequences, with fiducial markers recorded in a
laboratory, and provides a ground truth. The camera works at 60 Hz with a resolution after
rectification of 1920 × 1080 pixels. The sequences 01, 02, 03, 07, and 08 were recorded by a
camera pointed toward the walls, and others were recorded by a camera pointed towards
the ceiling. We evaluated the accuracy of the trajectory using the Absolute Trajectory Error
(ATE) measure, which is the translational RMSE. In addition, the system’s mean speed was
also considered as an evaluation indicator.

SPM-SLAM, TagSLAM, and UcoSLAM were selected for comparison in the experi-
ments. Table 1 shows the ATEs and Trck of the methods tested on the eight sequences.
Figure 4 shows the trajectories for ground truth (dash gray), SPM-SLAM (blue), TagSLAM
(green), UcoSLAM (red), and ours (purple). As can be observed, TagSLAM’s accuracy was
the worst, especially in sequence 01, where its ATE was 0.43 m. Compared with SPM-SLAM
and UcoSLAM, our method’s accuracy was slightly better in most sequences. Figure 5
shows the mean speed of the four systems. The graph shows that TagSLAM and UcoSLAM
are much slower than other methods. This is because TagSLAM considers every frame to
be a keyframe and UcoSLAM combines keypoints and markers, forming the CPU load. In
contrast, our method and SPM-SLAM can run at about 145 frames per second (fps) on the
SPM dataset.

Table 1. Absolute trajectory errors on the SPM dataset.

Dataset Length [m]
SPM-SLAM TagSLAM UcoSLAM Ours

ATE [m]

sequence 01 19.5 0.060 0.430 0.084 0.059
sequence 02 23.3 0.046 0.054 0.079 0.045
sequence 03 23.1 0.055 0.233 0.058 0.054
sequence 04 32.8 0.014 0.027 0.037 0.013
sequence 05 26.9 0.017 0.023 0.070 0.016
sequence 06 33.2 0.017 0.026 0.028 0.016
sequence 07 18.9 0.048 0.246 0.094 0.050
sequence 08 26.1 0.064 0.066 0.131 0.063
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Figure 4. SLAM trajectories in SPM dataset. The dashed gray line is the ground truth. The blue line
is SPM-SLAM. The green line is TagSLAM. The red line is UcoSLAM. The purple line is ours.
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Figure 5. The mean speed of four systems (higher is better).

5.2. Our Dataset

The test on the public dataset showed that our method significantly outperforms
TagSLAM and UcoSLAM in accuracy and speed. However, the accuracy of our method
is slightly better than SPM-SLAM in most sequences, and the speed is almost the same
as SPM-SLAM. Therefore, to further evaluate that our method is more robust than SPM-
SLAM in terms of rotational movements, it was tested and compared with SPM-SLAM
on our dataset.

For this test, we recorded eight video sequences. Sequences 01–06 were recorded in
a laboratory, and 22 markers were placed on the wall in an approximated dimension of
1.5 × 1.5 square meters. Sequences 07 and 08 were recorded outdoors, and 48 markers were
placed on the ground in an approximated dimension of 20 × 15 and 30 × 20 square meters.
Figure 6 shows the markers on the ground for sequences 07 and 08. It is worth noting
that outdoor sequences 07 and 08 were recorded with a camera mounted on a vehicle.
The camera captured images at a 1920 × 1080 pixel resolution and a frame rate of 30Hz.
For sequences 01 and 02, the camera was pointed towards the wall and was spinning.
Furthermore, sequence 01 was rotated about 270 degrees, and sequence 02 started and
ended at the same position to facilitate loop-closure detection. Different from sequences 01–
02, sequences 03–06 have more positional movements and only have rotational movements
at the corners. For outdoor sequences, sequence 08 showed more rotational movement
than sequence 07. Sequences 02–08 can facilitate the detection of loop closure. Although we
could not obtain the ground truth for the camera poses, the tracking success rate (Trck) and
the number of markers reconstructed in the mapping were used to evaluate the system’s
robustness. The Trck is the ratio of the number of tracked frames to the total number of
frames in a sequence.

(a) sequence 07 (b) sequence 08

Figure 6. (a,b) show the markers on the ground for outdoor sequences 07 and 08.

Table 2 shows the number reconstructed markers and the tracking rate. As can be
observed, the SPM-SLAM Trcks were lower than 55% on sequences 01–03 and 05–06, while
the proposed method achieved over 99% on all sequences. Additionally, SPM-SLAM only
reconstructed all markers in sequence 07. In contrast, our method reconstructed all markers
in all sequences. Figure 7 shows the reconstruction results of both methods for sequences
01 and 02. This clearly shows that more markers were reconstructed by our method than
SPM-SLAM. Figure 8a–h show the reconstructed trajectory of both methods for sequences
03–06. We can observe that our method outperforms SPM-SLAM, especially in sequences 03
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and 06, where SPM-SLAM almost completely failed to reconstruct the trajectory. Figure 8i–l
show the reconstructed trajectory of both methods for sequences 07 and 08 (outdoors). As
can be observed, our method was slightly better than SPM-SLAM on sequence 07 and
much better than SPM-SLAM on sequence 08. This is not unexpected, since sequence 08 has
more rotational movement than sequence 07. In summary, the experiments show that the
robustness of our system is better than that of the SPM-SLAM under rotational movements.

(a) sequence 01 (b) sequence 02 (c) sequence 01 (d) sequence 02

Figure 7. (a,b) mapping results of SPM-SLAM on sequences 01 and 02. (c,d) results for our dataset.
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Figure 8. Trajectories on sequences 03-08 in our dataset. (a–d,i,k) are generated by SPM-SLAM.
(e–h,j,l) are generated by ours.
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Table 2. The number of markers reconstructed in the mapping results and tracking success rate of
frames.

Dataset Total Number of Markers
SPM-SLAM Ours

Num of Reconstructed Markers/Trck

sequence 01 12 8/72.6% 12 /99.8%
sequence 02 22 6/13.4% 22/99.9%
sequence 03 22 8/16.1% 22/99.9%
sequence 04 22 20/86.2% 22/99.5%
sequence 05 22 11/54.7% 22/99.9%
sequence 06 22 2/5.2% 22/99.9%
sequence 07 48 48/99.4% 48/99.9%
sequence 08 48 47/93.7% 48/99.2%

6. Conclusions

This paper presents an improved version of the existing SPM-SLAM. To improve the
robustness and accuracy, we improved the initialization, keyframe insertion and relocal-
ization algorithms based on the SPM-SLAM dataset and proposed a method to solve the
problem of planar-marker pose ambiguity. Our system was compared with the state-of-the-
art, such as SPM-SLAM, TagSLAM, and UcoSLAM. The results on public datasets show
that our system achieves better accuracy in most sequences, and the speed of our system is
much faster than that of UcoSLAM and TagSLAM. The results of our datasets show that
our method is more robust than SPM-SLAM under rotational movements and reconstructs
more planar markers in the map. Additionally, our system runs at approximately 145 Hz
using a single thread, which benefits UAVs and mobile robots, as they require fewer compu-
tational resources. It is worth mentioning that the open-source code is available on GitHub
(https://github.com/BIT-wangzb/Marker-based-SLAM) (accessed on 10 December 2022).
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