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Fusing WiFi fingerprint localization and pedestrian dead reckoning (PDR) on smartphones is attractive because of their obvious
complementarity in localization accuracy and energy consumption. Although fusion localization algorithms tend to improve
localization accuracy, extra hardware and software involved will result in extra computations, such that energy consumption is
inevitably increased. Thus, in this study, we propose a novel fusion localization scheme based on fuzzy logic, which aims to
achieve ideal localization accuracy by consuming as little energy as possible. Specifically, energy-efficient inertial measurement
unit (IMU) sensors are routinely called to provide the displacement of a smartphone user in the manner of PDR, whereas a
fuzzy inference system is employed to adaptively schedule energy-hungry WiFi scans to fulfill WiFi fingerprint localization
according to a coarse metric for fusion localization errors and the remaining energy of the smartphone, so as to achieve a
trade-off between localization accuracy and energy consumption. Moreover, in order to mitigate the effect of drift errors
induced by PDR, straight trajectories of the user are further identified using a series of WiFi localization results to calibrate
heading estimates of PDR. Extensive experimental results demonstrate that the proposed scheme achieves the same accuracy as
the complementary filter, but consumes 38.02% energy than the complementary filter, confirming that the proposed scheme
can effectively balance the localization accuracy and energy consumption.

1. Introduction

With the rapid development of mobile internet and the
internet of things, location-based service (LBS) applications
become pervasive and rely on the location information of
people in indoor environments [1]. Presently, the WiFi fin-
gerprint localization method [2, 3] has been favored because
of widespread wireless infrastructures and low costs. On
account of many random factors, such as diffraction, reflec-
tion, and refraction, WiFi localization results suffer severe
localization errors, but keep stable in the long term. In
contrast, pedestrian dead reckoning (PDR) aims to infer a
pedestrian’s displacement by using inertial measurement
unit (IMU) sensors embedded in a smartphone, including
accelerometer, gyroscope, and magnetometer [4] and offers
accurate displacement information in the short term, but
incurs significant cumulative errors over time. Considering
the fact that WiFi localization and PDR are complementary

in localization [5], various multisensor fusion algorithms
based on, say Kalman filter (KF) [6, 7], particle filter [8],
and complementary filter [9], they have been applied to fur-
ther improve overall localization accuracy.

Nevertheless, multisensor fusion often drains a smart-
phone’s battery quickly. First, WiFi scan is energy-hungry
[10], so that frequently running WiFi scans as well as WiFi
localization will result in a rapid drop in the power of the
smartphone’s battery. Second, although IMU sensors con-
sume little energy in reading sensor data every time, a
high-frequency setting of IMU sensors (which affects the
accuracy of PDR [11, 12]) and a long time execution of
PDR will definitely consume a significant amount of energy.
Hence, both the localization accuracy of a localization
system and its energy consumption are key performance
metrics that restrict each other.

In real life, trade-off methods have been adopted to
implement energy-efficient localization. However, efficiently
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managing the energy consumption of a fusion localization
system using WiFi and PDR remains a significant challenge
for battery-limited smartphones. Few recent studies have
been published on the energy-accuracy trade-off for fusion
localization systems using WiFi and PDR. However, in a real
situation, the energy-accuracy trade-off is an effective energy
saving method. Therefore, we propose an energy-adaptive
fusion localization scheme on the basis of fuzzy logic. Specif-
ically, without establishing explicit localization error and
energy consumption models, we measure a coarse fusion
system error and the remaining energy of a smartphone as
two fuzzy variables. Then, a fuzzy inference system (FIS) is
developed to formulate trade-off strategies between localiza-
tion accuracy and energy consumption. On these grounds,
the proposed scheme dynamically switches the duty cycle
of energy-hungry WiFi scans, achieving the self-adaptation
of energy consumption in the fusion. Additionally, we incor-
porate a novel WiFi-assisted heading estimation method in
the fusion localization scheme to mitigate the influence of
drift errors incurred by PDR. Particularly, we identify
straight trajectories by using WiFi localization results to
calibrate the pedestrian’s heading in the fusion, thereby
improving the overall localization accuracy.

Extensive experiments in a real-world environment and
comparisons with well-known methods in the literature are
conducted to verify the proposed scheme’s performance.
The experiments demonstrate that the proposed scheme
can effectively balance localization accuracy against energy
consumption in the fusion system, thereby achieving good
energy efficiency.

The main contributions of this paper are summarized
as follows:

(1) We exploit a fuzzy logic controller to balance the
accuracy and energy consumption in the fusion
localization using WiFi and PDR

(2) We propose to utilize WiFi localization trajectory to
correct the drift error of the heading estimate

(3) In order to obtain the ground truths of the trajectory
of pedestrians, we obtain the real-time coordinates of
pedestrians at each step by the product of the step
length and the step count

The rest of the paper is organized as follows: Section II
describes the related works. Section III is the overview of
the proposed fusion localization scheme. The localization
error of the fusion scheme is described in Section IV. Section
V discusses the formulation of energy-accuracy trade-off. In
Section VI., a WiFi assisted pedestrian heading estimation
algorithm is proposed. The experimental setup as well as
the analysis and discussion of the experimental results are
presented in Section VII. Finally, we conclude our work in
Section VIII.

2. Related Works

Due to the complementarity of these methods, WiFi
localization and PDR are often integrated to achieve higher

localization accuracy [13–15]. However, the fusion method
causes high energy consumption. In order to achieve energy
efficient localization, trade-off methods have been adopted
to implement energy-efficient localization [16–20]. For
instance, in [16, 17], the authors assumed that WiFi received
signal strength (RSS) follows the log-normal distance path
loss (LDPL) model and established mathematical models to
build a fusion localization system for energy-accuracy
trade-off. In [18], the authors proposed cluster heading
selection algorithms using the localization accuracy and
energy consumption models of mobile nodes for the
energy-accuracy trade-off. In [19], the authors developed
an energy-efficient localization system by adjusting the num-
ber of reference localization according to the environment.
In [20], the authors proposed a dynamic multicluster header
selection method based on an energy model in a HetNet-
based indoor localization framework for energy-accuracy
trade-off.

The only existing study [16] mainly relies on the corre-
sponding LDPL-based localization error model and energy
consumption model. But, the LDPL model only accounts
for large-scale fading and ignores small-scale fading induced
by multipath propagation, resulting that various empirical
models are, respectively, established in regards to different
environments [21, 22]. The error models of PDR in [16]
mainly focus on the noise and offset error induced by accel-
erometer, as well as the drift error from gyroscope. There-
fore, model-based localization error models are difficult to
be applied in real applications.

More importantly, the energy consumption model
essentially varies across different smartphones and is hard
to be established. On the other hand, existing trade-off
methods suffer from limited performance due to the fact that
only a few scheduling strategies involving WiFi scanning are
adopted. For instance, the authors in [16] aim to optimize
the number of RSS measurements used in each localization
round for energy-accuracy trade-off. In other words, existing
fusion methods do not sufficiently exploit the advantages of
WiFi and PDR, due to the fact that a high level fusion is con-
ducted without considering the intrinsic relationship
between WiFi localization and PDR. Therefore, we propose
to exploit the fuzzy logic controller to adaptively balance
the accuracy and energy consumption.

3. Framework of the Proposed Fusion
Localization Scheme

In this section, the framework of the proposed fuzzy logic-
based fusion localization scheme is introduced.

As shown in Figure 1, the proposed scheme comprises
two modules, namely, the sensor module and indoor local-
ization module. In the sensor module, IMU sensors collect
motion data of a user carrying a smartphone in real time,
and the WiFi adapter collects WiFi RSS measurements from
nearby WiFi access points (APs). In the indoor localization
module, four submodules, namely, PDR, WiFi localization,
formulation of energy-accuracy trade-off, and distance-
based fusion algorithm, are, respectively, included to achieve
energy-accuracy trade-off and are described as follows.
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(1) The component of PDR is in charge of detecting
steps of a user and further inferring the step length
and heading. Although various fusion algorithms
like KF are often used to estimate a pedestrian’s
heading, we use the energy-efficient asynchronous
KF (AKF) heading estimation method proposed in
our previous work [12] in this study

(2) The component of WiFi localization returns the
localization results of using a specific WiFi localiza-
tion algorithm, say KNN based fingerprint localiza-
tion algorithm. However, when to trigger a WiFi
scan for the purpose of localization is controlled by
the other components of the fusion localization
scheme, so as to avoid unnecessary energy-hungry
WiFi scans

(3) The component of the formulation of energy-
accuracy trade-off develops energy-accuracy trade-
off strategies using FIS. The FIS is used to fulfill the
mapping from the real-time coarse fusion localiza-
tion error, termed Et , and the remaining energy of
smartphones, termed Pt , to the running of energy-
hungry WiFi scans based on fuzzy logic. Its output
is further used in the trade-off strategies. As a result,
the localization accuracy and energy consumption
can be balanced against based on fuzzy rules
without establishing precise localization accuracy
and energy models

(4) The component of the distance-based fusion algo-
rithm is to integrate WiFi localization results with
PDR, so as further to improve the localization
accuracy of the fusion localization scheme. It utilizes
the relatively high localization accuracy of PDR to

alleviate the impact of WiFi localization outliers on
the overall localization accuracy

4. Localization Error of Our Fusion
Localization Scheme

The fusion localization errors comprise WiFi localization
and PDR errors. In this section, the WiFi localization error
is first introduced, and then the PDR error is investigated.
On these grounds, we design a coarse localization error
model of the fusion localization system and discuss various
factors that affect the coarse fusion localization error.

4.1. WiFi Localization Error. According to [23–25], it can be
concluded that the number of APs, the noise level of RSS
measurements, the grid spacing of a radio map, and the path
loss exponent in the LDPL model affect WiFi localization
errors, thereby affecting the fusion localization error. But,
these factors depend on either the system costs or environ-
ments, which are difficult to be arbitrarily adjusted given a
specific localization system in a dedicated environment,
especially in a real-time environment. First, excessive APs
(more than 9) involved in localization and multiple repeated
WiFi scans (for the purpose of reducing the noise level of
RSS measurements) cannot significantly reduce the WiFi
localization error, but cause the increase of energy consump-
tion and localization delay [23, 24, 26–28]. Second, it is also
unrealistic to shorten the grid size by temporarily adding
some additional reference points due to labour-intensive
and time-consuming construction of a radio map. Finally,
the path-loss exponent is determined by surrounding
environments and building types and cannot be adjusted
manually [24, 28].

Therefore, we consider to trigger once WiFi scan in each
step. Moreover, as was commonly adopted in the literature
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Figure 1: Framework of the proposed fusion localization scheme.
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[27], the WiFi localization error, termed Ewif i, is assumed to
be normal with zero mean and variance of σ2, namely,

Ewif i ∼N 0, σ2
À Á

: ð1Þ

4.2. PDR Error. PDR errors mainly involve the errors of gait
detection, step length, and heading. According to [12], the
sampling frequencies of both the magnetometer and the
accelerometer are reduced to be 15Hz, while the sampling
frequency of the gyroscope is still set to be 60Hz in PDR,
with the result that the adopted AKF heading estimation
algorithm can achieve similar heading accuracy compared
with using the same high sampling frequency for all IMU
sensors at low costs in energy consumption. Hence, the
impact of the low sampling frequency of the accelerometer
on the gait detection, as well as the step length error and
the heading error, is discussed. On this basis, we derive the
mathematical expression of PDR error.

4.2.1. Gait Detection Error. Among various gait detection
algorithms, the peak detection method [29, 30], autocorrela-
tion analysis method [31], zero-velocity update method [32],
and finite state machine method [33] have relatively high
and stable step-counting accuracy. Considering low compu-
tational complexity, we adopt the window-based peak accel-
eration method [30] for gait detection.

In this method, vertical acceleration is adopted for gait
detection, due to the fact that the vertical acceleration often
incurs more significant changes than those in the horizontal
plane when a pedestrian is walking; namely, that the vertical
acceleration is closely related with walking, as was also
pointed out in [34]. Thus, in order to obtain the vertical
acceleration, define the measurement of the acceleration
vector excluding gravity (i.e., linear accelerations returned
by the linear acceleration sensor on the Android platform)
as follows:

a = ax, ay , az
Â Ã

, ð2Þ

where ax, ay , and az represent the accelerations in the three
axis, respectively. In our experiments, a tester held a smart-
phone in front of his chest and right side up. Since the z
-axis of the tester’s device coordinate system was opposite
to the gravity in the experiments, we can approximate the
vertical acceleration by az for use in step detection and step
length estimation.

Additionally, once the sampling frequencies of acceler-
ometer is set to be more than 20Hz, the step-counting accu-
racy of the step-detection method will be slightly improved
[11] even resulting that the energy consumption of the
method will rise. In fact, the fastest step frequency of a
pedestrian can reach 2.5Hz in real life [35]. Therefore, the
gait can be detected correctly when the sampling frequency
of the accelerometer is set to be more than 10Hz according
to the Nyquist-Shannon sampling theorem. As a result, the
sampling frequency of 15Hz is appropriate. Moreover, the
acceleration measurement is not disturbed by external envi-
ronments. Therefore, the step-counting accuracy of the

method is also stable over time and does not vary with exter-
nal environments. Consequently, we consider the gait detec-
tion error as a constant value.

4.2.2. Step Length Error. A well-known empirical step length
estimation approach, presented by Weinberg [36, 37], is
based on the vertical acceleration as follows:

L = β ∗ amax
z − amin

z

À Á1/4, ð3Þ

where L represents the step length estimate, amax
z and amin

z
represent the maximum and minimum vertical accelerations
in a gait cycle, and β is the coefficient which can be cali-
brated using real step lengths.

Additionally, people are more concerned about the total
walking distance over a period of time instead of each step
length in a localization application. Thus, we can conclude
that the step length error is stable, and letting the sampling
frequency of the accelerometer be 15Hz does not signifi-
cantly decrease the step-counting error. Correspondingly,
we can approximate the estimated step length as the true
step length.

4.2.3. Heading Error. The heading is a key performance fac-
tor of PDR [6]. Although we have applied the AKF heading
estimation method fusing the accelerometer, the gyroscope
and the magnetometer to estimate a pedestrian’s heading,
the errors from magnetometer still exist because of the inter-
ference in indoor environments.

Differently, a gyroscope-based heading estimation
method is relatively accurate in the short term, although
drift errors occur over time. Thus, the heading change esti-
mated from the gyroscope is considered as the true value
of the heading change in two adjacent steps, and the differ-
ence of the heading change between the true value and the
estimated value by the AKF method in these two adjacent
steps is considered as a coarse heading estimation error.
Accordingly, the coarse heading estimation error, termed
by Δθt , can be expressed as follows:

Δθt = Ht
kalman −Ht−1

kalman
À Á

− Ht
gyro −Ht−1

gyro

� �
, ð4Þ

where Ht−1
kalman and Ht

kalman represent the AKF-based heading
at the ðt − 1Þ-th and t-th steps, respectively, and Ht−1

gyro and
Ht

gyro represent the gyroscope-based heading at the ðt − 1Þ-th
and t-th steps, respectively.

4.2.4. PDR Error Formula. Assume that t is the number of a
pedestrian’s walking steps, Lt is the actual step length in
the t-th step, bLt is the estimated step length in the t-th step,
ΔLt is the step length error in the t-th step, θt is the actual

heading in the t-th step, bθt is the estimated heading in
the t-th step, Δθt is the heading error in the t-th step, ðxt , ytÞ
is the actual position coordinate in the t-th step, and ð bxt , byt Þ
is the estimated position coordinate in the t-th step. Thus,
we can obtain the following formulas:
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bLt = Lt + ΔLt , ð5Þ

bθt = θt + Δθt , ð6Þ
xt = xt−1 + Lt cos θt , ð7Þ
yt = yt−1 + Lt sin θt , ð8Þ

bxt = xt−1 + bLt cos cθt , ð9Þ

byt = yt−1 + bLt sin cθt: ð10Þ
Define et as the one-step error of PDR in the t-th step and

Et as the cumulative error of PDR from the first step to the t-th
step. Here, we use the square of the Euclidian distance between
the true and estimated positions to represent et and Et ,
namely,

e2t = bxt − xtð Þ2 + byt − ytð Þ2, ð11Þ

E2
t = e21 + e22 + e23+⋯+e2t : ð12Þ

After substituting Equations (5)–(10) into Equation (11),
we can derive

e2t =cL2t − 2L bLt cos Δθt + L2t : ð13Þ

Further, by using the second-order Taylor polynomial to
approximate the cos function in Equation (13) and ignoring
the step length error to simplify Equation (13), we can derive

e2t ≈
cL2t Δθ2t : ð14Þ

Finally, the cumulative error for PDR from the first step
to the final N-th step, denoted as Esum, can be expressed as
follows:

E2
sum ≈cL21Δθ21 +cL22Δθ22+⋯+cL2NΔθ2N +N ∗ estepcount, ð15Þ

where estepcount represents the gait detection error averaged
to each step, which can be a constant. It can be seen from
Equation (15) that, the cumulative PDR error is mainly
determined by the heading error at each step, estimated
step length, gait detection error, and total step count.

4.3. Fusion Localization Scheme Error. In our fusion localiza-
tion system, running WiFi localization is dynamically con-
trolled by scheduling WiFi scans. Moreover, during two
consecutive WiFi scans in the short term, PDR results are
regarded as the final fusion results because of the relatively
high accuracy in such time interval for PDR. Hence, the total
error of the fusion localization scheme, denoted as Efusion,
can be expressed as follows:

Efusion ≈ Ewifi + Esum: ð16Þ

Consequently, we can conclude that the total localization
error associated with the fusion localization scheme is
mainly affected by the WiFi localization error, heading error,

estimated step length, and the total number of steps. How-
ever, the fusion localization scheme error calculated by
Equation (16) is uncertain or ambiguous and is the coarse
error of the fusion localization scheme. Hence, the heading
error, estimated step length, and the total number of steps
are used to calculate the coarse error of the fusion localiza-
tion scheme.

5. Formulation of Energy-Accuracy Trade-off

In this section, we systematically describe the formulation of
energy-accuracy trade-off. First, the energy consumption
characteristics of the fusion system are discussed. Second,
the FIS is introduced. Third, we demonstrate the specific
trade-off strategies between accuracy and energy consumption
in the fusion localization scheme. Finally, the distance-based
fusion method is proposed.

5.1. Energy Consumption. The energy consumption of the
system has mainly three fundamental sources: WiFi scans
for localization, IMU sensors for PDR, and fusion localiza-
tion algorithm. Generally, a WiFi adapter is an energy-
hungry component, especially in its scan status. Moreover,
its power in the scan status can be greater than the total
power of the three IMU sensors of a smartphone [38]. For
instance, the average current in the scan status could reach
above 200mA in our experiments, whereas that of the three
IMU sensors was only 100mA. In addition, since the IMU
sensors should run all the time continuously in PDR [17],
the PDR power can be assumed to be constant in the whole
localization process. Consequently, the energy consumption
of the fusion localization scheme, denoted as P, can be writ-
ten as follows:

P = k ∗ Pwifi + t ∗ Powerpdr + Pfusion + c, ð17Þ

where k represents the total number of WiFi scans, Pwifi
represents the average energy consumption of once WiFi
scan, t represents the total running times of PDR, Powerpdr
represents the average energy consumption of running once
PDR, Pfusion represents the energy consumption of the
fusion algorithm, and c is the unknown constant that needs
to be calibrated.

Nevertheless, modelling the energy consumptions of dif-
ferent mobile devices may not be an easy task because of var-
ious hardware and software. Due to the fact that smartphone
manufacturers often do not publish the energy-related
parameters of smartphone components, the energy con-
sumption model obtained from experimental data can only
be applied to a specific smartphone model, indicating that
it is not applicable for all smartphones.

It is intuitive that the energy consumption of a localiza-
tion system evidently affects the remaining battery (energy)
of the mobile device running this localization system, and
often dominates the energy consumption of the mobile
device when only the localization task is performed. In fact,
people usually pay more attention to the battery life of their
smartphones rather than that one application consumes
more energy than the others. Several studies on the energy
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consumption of smartphones [38–40] have adopted the
remaining energy as an indicator to reflect the endurance
of applications. More importantly, the remaining energy of
a mobile device can be easily obtained using the interface
of the mobile operating system. Thus, it is a natural choice
to alternatively utilize the remaining energy of the smart-
phone for measuring the energy consumption of the fusion
localization scheme.

In summary, though the total error of the fusion local-
ization scheme can be coarsely evaluated using Equation
(16), one can effectively suppress this error through appro-
priately managing the duty cycle of WiFi scans. To this
end, by converting the coarse error of the fusion localization
scheme and the corresponding remaining energy as fuzzy
variables, FIS introduced in the following subsection is
implemented to adaptively schedule energy-hungry WiFi
scans, so as to fulfill energy-efficient localization fusion using
WiFi and PDR.

5.2. FIS. A Mamdani inference system is used to develop the
strategies of energy-accuracy trade-off.

The procedures of designing the FIS are listed as follows.

5.2.1. Choice of Input and Output Linguistic Variables. The
input linguistic variables comprise the fusion localization
scheme error and remaining energy. The main purpose of
the FIS is to dynamically schedule WiFi scans, so as to bal-
ance the fusion localization scheme error against the
remaining energy. Hence, we consider the output linguistic
variable as the indicator of whether or not to run once WiFi
scan in each step.

5.2.2. Choice of Membership Functions for All Variables.
There is no uniform standard for choosing a membership
function’s shape. The trapezoidal function is often used as
the membership function for input and output variables
due to its low computations [41]. Since the fusion localiza-
tion scheme error gradually increases with the number of
steps and the remaining energy gradually decreases with
time, dividing too many fuzzy subsets can increase the num-
ber of fuzzy rules, with the result that more energy is con-
sumed. In addition, considering the adaptability for various
localization accuracy requirements, the coarse error of the
fusion localization scheme is normalized within the interval
[0, 1] as follows:

e =
E2
fusion − E2

threshold
E2
threshold

, ð18Þ

where e represents the normalized fusion scheme error and
E2
threshold represents the squared error threshold. Moreover,

the remaining energy is essentially a ratio within the interval
[0, 1]. Thus, combined with practical experiences, both two
input variables are divided into three fuzzy subsets, as shown
in Figures 2(a) and 2(b), and the output variable into four
fuzzy subsets, as shown in Figure 2(c).

It can be noticed that the three fuzzy sets in relation to
both the fusion localization scheme error and the remaining
energy are defined as large, medium, and small errors and

energy, respectively, with the corresponding labels of “H,”
“M,” and “L.” The four fuzzy sets in relation to the output
variable, i.e., the probability of whether or not to execute a
WiFi scan, are defined as high, medium, low, and very low
probabilities, respectively, with the corresponding labels of
“H,” “M,” “L,” and “VL,” respectively. Figure 2(d) depicts
the dependency of the output on these inputs, which visually
describes the relationship between the three fuzzy variables.

5.2.3. Design of Fuzzy If-Then Rules. In our study, the trial-
error approach is adopted to generate fuzzy rules. Consider-
ing the computation complexity, the following nine fuzzy
rules in Table 1 are carefully designed. Additionally, as can
be seen, the connective relationship of AND for the two
inputs in the fuzzy rules is utilized.

5.3. Formulation of Trade-off Strategies. On the basis of these
fuzzy rules in Table 1, we adopt the centroid defuzzification
method to obtain a crisp output and leverage this output to
formulate trade-off strategies. Specifically, once the output,
which represents the probability of running one WiFi scan,
is above a given threshold, or the fusion localization scheme
error is greater than a given threshold at a step, the fusion
system will perform the following processes in this step:
informing the system to run once new WiFi scan, so as to
obtain the latest WiFi localization result; resetting the fusion
localization scheme error to 0 and combining the newly
obtained WiFi localization result with PDR result by using
the proposed distance-based fusion method (introduced in
Section Distance-Based Fusion Method) to obtain the fusion
result; then, it resets the initial location of PDR with this
fusion result; otherwise, the system does not trigger a new
WiFi scan at this step, and before triggering a new WiFi
scan, the PDR results are used as the fusion results during
the two consecutive WiFi scans, the initial location of which
is the last fusion result using WiFi and PDR.

5.4. Distance-Based Fusion Method. To mitigate the WiFi
localization error, a distance-based fusion method is devel-
oped as follows to integrate the latest WiFi localization result
with the PDR result after a new WiFi scan is triggered,

Dfusion = 1 −Wð Þ ∗Dwifi +W ∗Dpdr, ð19Þ

where Dfusion represents the final fusion result, Dwifi repre-
sents the latest WiFi localization results, Dpdr represents
the PDR result, and W represents the weight.

As was mentioned above, WiFi localization results are
stable in the long term, but incur severe outliers and PDR
results are relatively accurate in the short term, but suffer
from drift errors. Hence, PDR is leveraged to reduce the
influence of the outliers confronted by WiFi localization
results by defining W in Equation (20) as follows:

W = 1 −
abs dwifi − dpdr

À Á
dwifi + dpdr

, ð20Þ

where dwifi represents the distance between the latest WiFi
localization result and the last fusion result fusing WiFi
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and PDR, and dpdr represents the distance between the PDR
result and this fusion result.

6. WiFi-Assisted Heading Estimation

If the time interval between two adjacent WiFi scans is rel-
atively long, the fusion results during this interval, which

are determined by PDR results, will gradually incur obvious
errors due to PDR drift errors. Thus, the WiFi-assisted
heading estimation method proposed in our previous work
[42] is used to calibrate the heading estimated by IMU sen-
sors, so as to further improve the accuracy of the fusion
system.

We have known that a pedestrian’s WiFi localization
trajectory can show an obvious straight-going trend when
walking in a straight direction [43], and a gyroscope can
accurately measure the rotational movement of objects in a
short period. Hence, we adopt the cumulative angular
velocity in each step to recognize a pedestrian’s movement
(e.g., straightforward or turning) [44], so as to identify the
straight-going path. The judgment condition of the turning
is given by

Gyrok ∗Gyrok−1 > 0 and abs Gyrokð Þ > Thres, ð21Þ

where Gyrok denotes the cumulative angular rate in the k-th
step, Gyrok−1 denotes the cumulative angular rate from the
gyroscope in the k − 1-th step, and Thres denotes the thresh-
old. Thus, a pedestrian’s trajectory can be segmented into
several straight paths by turnings.
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Figure 2: Fuzzy variables of FIS. (a) Fusion localization scheme error. (b) Remaining energy. (c) Probability of WiFi scan. (d) Output surface
of FIS (P: the probability of WiFi scan; E: the fusion localization scheme error; R: the remaining energy).

Table 1: Fuzzy rules.

No.
Fusion

localization
scheme error

Connectives
Remaining
energy

Probability of
the WiFi scan

1 H AND H M

2 H AND M L

3 H AND L VL

4 M AND H M

5 M AND M M

6 M AND L L

7 L AND H H

8 L AND M M

9 L AND L L
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Figure 3: Floor plan of the experimental field.

Table 2: The accuracy of step counting at different sampling frequencies.

No. Method Sampling frequencies (Hz) Actual counts Estimated counts Errors Error rates (%)

1 Peak detection 10 272 261 11 4.0

2 Peak detection 10 274 262 12 4.4

3 Peak detection 10 274 260 14 5.1

4 Peak detection 15 273 269 4 1.5

5 Peak detection 15 274 268 6 2.2

6 Peak detection 15 274 270 4 1.5

7 Peak detection 60 272 266 6 2.2

8 Peak detection 60 274 269 5 1.8

9 Peak detection 60 274 274 0 0.0

10 Autocorrelation 10 274 263 11 4.0

11 Autocorrelation 10 272 263 9 3.3

12 Autocorrelation 10 274 261 13 4.7

13 Autocorrelation 15 273 270 3 1.1

14 Autocorrelation 15 274 272 2 0.7

15 Autocorrelation 15 272 271 1 0.4

16 Autocorrelation 60 274 271 3 1.1

17 Autocorrelation 60 273 272 1 0.4

18 Autocorrelation 60 274 273 1 0.4

19 Zero-velocity update 10 273 263 11 4.0

20 Zero-velocity update 10 273 263 10 3.7

21 Zero-velocity update 10 274 262 12 4.0

22 Zero-velocity update 15 272 270 2 0.7

23 Zero-velocity update 15 273 271 2 0.7

24 Zero-velocity update 15 274 272 2 0.7

25 Zero-velocity update 60 272 272 0 0.0

26 Zero-velocity update 60 274 273 1 0.4

27 Zero-velocity update 60 273 273 0 0.0
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Then, the direction of a straight path from the seg-
mented WiFi localization trajectory is used to calibrate a
pedestrian’s heading. Specifically, we propose to use the
least-squares linear regression method to fit WiFi localiza-
tion results. The slope of the fitted straight line represents
the direction of a straight path, which can be converted into
the angle representing the pedestrian’s heading by the arc-
tan2 function. When the minimum number of correspond-
ing WiFi localization results in a straight path is not
satisfied, the heading is alternatively estimated by the AKF
heading estimation method.

Finally, the obtained angle value is considered as the cal-
ibrated heading in the corresponding straight path, while the
heading at the turning step is calculated by using the cali-
brated heading in the last straight path plus the heading
change estimated from the gyroscope.

7. Experimental Results and Discussion

In this section, we first introduce the whole experimental
scheme, then discuss and analyze the experimental results
to evaluate the effectiveness of the proposed methods using
extensive real experiments.

7.1. Experimental Scheme. Our experiments were performed
on the third floor of the library of Inner Mongolia University
of Science and Technology, Baotou, China.

The experimental field is 73m in length and 33.5m in
width and covers a total area of approximately 2445m2, as
is shown in Figure 3. To record the location of a pedestrian,
we define a customized coordinate system for this experi-
mental field, the origin of which is set at the specified point
marked with a black solid dot in Figure 3. The positive half
of the x-axis of the coordinate system coincides with the true
north of the library, and the positive half of its y-axis
coincides with the west of the library. Thus, a pedestrian’s
heading is 0 when walking toward the north, and −π toward
the west.

In addition, to build the radio map, location fingerprints
were sampled at 545 reference points in the experimental
area with a grid space of 1m. The Google Nexus 6 smart-
phone was used in all experiments and its built-in battery
fuel gauge (Maxim MAX17050) was used to measure energy
consumption for the fusion localization system [45].

To evaluate the performance of the proposed methods,
we designed the following experimental paths. First, the tes-
ter held the smartphone in front of his chest and right side
up. Then, he started walking at normal speed (i.e., 0.8 s/step)
from the start point (4.48, 0.9) along the rectangular path
and passing through (4.48, 0.9), (71.54, 0.9), (71.54, 34.1),
and (4.48, 34.1) marked with four red stars in Figure 3.
Obviously, the initial heading of the tester was 0. The tester
walked with the same step length at each step so as to obtain
the ground truths in the custom coordinate system. In order
to validate the proposed methods, the tester repeated each
experiment three times along the same path.

7.2. Experiments of Gait Detection Error. Three gait detection
experiments were performed with the accelerometer sampling

frequencies of 10, 15, and 60Hz. Table 2 shows the summa-
rized results of the three gait detection methods.

As is shown in Table 2, the maximum error rate of the
peak detection method can be decreased from 5.1% to
2.2% and can no longer be significantly reduced when the
sampling frequency is above 10Hz. The other two methods
also show similar characteristics to the peak detection
method. However, the computational load at the sampling
frequency of 60Hz is nearly four times that at the sampling

Table 3: The accuracy of step length estimates at different
sampling frequencies.

No. Sampling frequencies (Hz) β Means (m) Variances

1 15 0.505 0.701 0.0017

2 20 0.505 0.695 0.0016

3 30 0.495 0.697 0.0013

4 40 0.490 0.719 0.0017

5 50 0.480 0.718 0.0016

6 60 0.475 0.706 0.0014
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Figure 4: CDF of the error of the heading estimation methods at
different sampling frequencies.
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Figure 5: Energy consumptions of the heading estimation methods
at different sampling frequencies.
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frequency of 15Hz. Thus, from the perspective of energy
efficiency, letting the sampling frequency be 15Hz is appro-
priate. Additionally, nine repeated experimental results in
total show that the adopted algorithm can be relatively stable
and does not change over time. Hence, the step-counting
error of the adopted gait detection algorithm can be consid-
ered as a constant value.

7.3. Experiments of Step Length Error. When performing the
gait detection experiments, we ensured that the tester had
the same length (0.7m) in each step, so as to evaluate these
experiments. Meanwhile, the step length is calculated in
these experiments.

Table 3 shows that the means and variances of the step
length estimates with different sampling frequencies appear
to be almost the same due to the calibration of the proper value
of the coefficient β. Furthermore, the means of the step length
estimates are almost equal to the true value, which confirms
again that the influence of the sampling frequency on the step
length can be ignored by calibrating β. Accordingly, we can
approximate the true step length by Equation (3).

7.4. Experiments of Energy-Efficient Heading Estimation. In
order to verify the performance of the energy-efficient

heading estimation method, i.e., AKF, the standard KF-
based heading estimation method in [43] is implemented
with the sampling frequencies of 15 and 60Hz, respectively,
for comparison.
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Figure 4 shows the cumulative distribution functions
(CDFs) of the heading errors in the three cases, i.e., KF with
15Hz sampling frequency (the green dashed curve), KF with
60Hz sampling frequency (the red solid curve), and AKF
with 15Hz accelerometer and magnetometer sampling fre-
quencies and 60Hz gyroscope sampling frequency (the blue
dash-dotted curve). It can be seen that a higher sampling fre-
quency of IMU sensors can improve the heading accuracy in
the case of KF, but AKF is able to achieve almost the same
accuracy as KF with the sampling frequency of 60Hz, which
confirms the effectiveness of AKF. In other words, with AKF,
the sampling frequency of the accelerometer and magne-
tometer is reduced to 1/4 of that of the gyroscope, and the
computational load is reduced accordingly, but the accuracy
of the heading estimation does not significantly decrease.

Figure 5 shows the energy consumption of these heading
methods after 256 s. As can be seen, the energy consumption
of using KF increases with the sampling frequency, but AKF
consumes less energy by 12.9% than KF with the sampling
frequency of 60Hz and almost the same energy as KF with
the sampling frequency of 15Hz. Thus, the adopted AKF-

based heading estimation method can reduce energy con-
sumption without significantly sacrificing the heading accu-
racy by asynchronous sampling frequencies of IMU sensors.

7.5. Experiments of Energy-Accuracy Trade-off. In this sub-
section, the performance of the proposed trade-off strategies
is evaluated with respect to different combinations of the
error threshold and the remaining energy of smartphones.

7.5.1. The Error Threshold of 1.5 and the Power Level of
100%. The fusion localization system was set to be 1.5, and
the experimental smartphone was fully charged to 100%.
Then, the tester walked along the predefined path, resulting
in a total of 264 steps, whereas the adopted gait detection
method counted 261 steps.

As shown in Figure 6, the smartphone has sufficient bat-
tery energy in the whole localization process; accordingly, its
normalized remaining energy, represented by the blue solid
line, is always equal to 1 during this process; meanwhile,
the error threshold is relatively high. Therefore, the fusion
localization scheme actively triggers a new WiFi scan to
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ensure the accuracy requirement. It can be seen from
Figure 7 that the outputs of the FIS in 35 steps out of 261
steps are above the threshold of 0.6, indicating that the
fusion localization scheme decides to invoke once new WiFi
scan in each of 35 steps. As a result, as shown in Figure 6, the
normalized coarse errors of the fusion system do not reach 1,
indicating that the fusion localization scheme always actively
triggers a new WiFi scan to ensure localization accuracy on
account of the sufficient remaining energy, resulting with
resetting the fusion localization error to 0.

Figure 8 shows the final fusion localization results. In
each step, the fusion localization scheme trades off localiza-
tion accuracy against energy consumption based on the out-
put of the FIS. Specifically, once a WiFi scan is invoked in a
step, even if the coarse error of the fusion system has not
reached the error threshold of 1.5, the fusion localization
scheme actively performs once new WiFi scan due to the
abundant battery energy. After that, the distance-based
fusion method is employed to fuse the newly obtained WiFi
localization result with the PDR result, so as to obtain the
newly fusion result, which is also the initial position of
PDR from now on (marked by red asterisks in Figure 8).

Furthermore, the coarse error of the fusion localization
system is set to be 0, and the initial position of PDR is
updated with the newly obtained fusion localization result.
Prior to the next WiFi scan or the next WiFi localization,
the scheme simply returns the PDR results as the fusion
localization result (marked by the blue circle in Figure 8).
Thus, the fusion localization scheme applies the FIS to
dynamically schedule the energy-hungry WiFi scan in the
whole localization process according to the remaining
energy and the coarse fusion localization error.

Figure 9 depicts influence of the distance-based fusion
method. Notably, the proposed distance-based fusion
method is executed in 35 fusion locations. The local enlarged
image in Figure 9 shows the details of the first weight-fusion
location. In the first point, the Euclidean distance between
the WiFi result and the last fusion result is 3.12m, and the

Euclidean distance between the PDR result and the last
fusion result is 8.44m. Because of relatively high accuracy
for PDR in the short term and the outliers of WiFi localiza-
tion, we believe that PDR is relatively more accurate than
WiFi localization in the short term. Hence, the fusion weight
is calculated as 0.55 by using Equation (20). Consequently,
the first fusion location is almost in the middle of the WiFi
localization location and the PDR location. Differently, the
sixth fusion location in Figure 9 almost overlaps the WiFi
localization location because of the more accurate WiFi
localization than PDR. Hence, the method can weigh the
accuracy of the WiFi localization result against the PDR
result, so as to achieve a good fusion localization result.

Figure 10 depicts the error comparisons of different
localization methods. The PDR errors gradually increase
from 0 to 18.31m, indicating that PDR exits drift errors over
time. The WiFi localization error in the 83rd step is 0.2m
and can increase to 9.1m in the 76th step, but the maximum
error of WiFi localization does not exceed 10m. This shows
that WiFi localization errors remain relatively stable in the
long term, but exist outliers. However, our proposed fuzzy
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logic-based fusion method (marked by “FL”) not only elim-
inates the drift error of PDR and suppresses the instability of
WiFi localization but also obtains almost the same localiza-
tion accuracy as the complementary filter fusion method
(marked by “CF”). Furthermore, with the aid of the cali-
brated heading estimates, the WiFi-assisted PDR performs
not only better than PDR, but also better than all the other
methods because the true initial location is used.

The CDFs of the errors of these localization methods in
Figure 11 also show similar characteristics. With an increase
in the CDF value, the PDR error keeps increasing, up to
20m, whereas the maximum value of the WiFi error is just
7m. It is noted that the blue solid curve and the black
dash-dot curve in Figure 11 almost overlap, which again ver-
ifies that our proposed fusion scheme obtains similar local-
ization accuracy as the complementary filter fusion method.

Nevertheless, the energy consumption of it is just 38.02%
of that of the complementary filter fusion method, as shown
in Figure 12. The complementary filter fusion method con-
sumes the most energy among these localization methods,
whereas PDR consumes the least energy. WiFi fingerprint
localization consumes more energy than PDR. Although
WiFi scan is energy-hungry, the proposed fusion localization
scheme can achieve almost the same localization accuracy as
the complementary filter fusion method but consumes little
energy. Therefore, the proposed fusion scheme by using
the FIS can dynamically schedule WiFi scans to achieve
energy-efficient fusion localization.

7.5.2. The Error Threshold between 0.5 and 4.0 and the Power
Level between 10% and 100%. When the error threshold of
the fusion localization system was set between 0.5 and 4.0
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and the power level was set between 10% and 100%, the
experimental results with different parameter combinations
are shown in Figures 13–15.

As shown in Figure 13, the power level is set to be 10%,
which means that the smartphone has relatively low remain-
ing energy, so the trade-off strategies formulated based on
fuzzy rules are designed to trigger as few energy-hungry
WiFi scans as possible to ensure that the fusion localization
scheme error is below the given error threshold (i.e., 0.5, 2.0,
and 4.0). In other words, the fusion localization scheme does
not decide to trigger a new WiFi scan until the fusion local-
ization scheme error is close to the error threshold. As a
result, it can be seen from Figure 14 that the mean error of
the fusion localization scheme is higher than that of the
fusion localization scheme with the power level of 100%.
To some extent, the fusion localization system scheme
sacrifices localization accuracy to extend the smartphone’s
battery life. In contrary, the power level is set to be 100%,

which means that the smartphone has sufficient remaining
energy, so the fusion localization scheme actively decides
to trigger more WiFi scans to ensure the localization accu-
racy before the error of the fusion system increases to the
given error threshold. As a result, as shown in Figure 13,
the count of triggered WiFi scans of the fusion localization
scheme is more than twice that of the fusion localization
scheme with the power level of 10%. Accordingly, compared
with the fusion localization scheme with the power level of
10%, the fusion localization scheme achieves lower error,
as shown in Figure 14. Furthermore, it can be seen from
Figures 13 and 14 that in the fusion localization schemes
with different parameter combinations, the higher the error
threshold, the higher the mean error of the fusion localiza-
tion scheme, and the fewer the WiFi scans are triggered.

Additionally, once the power level is set to be above 40%,
as shown in Figure 14, the mean error of the fusion localiza-
tion scheme no longer can be decreased accordingly. This is
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because the fusion localization scheme error has reached
the accuracy requirement and extra WiFi scans need not
to be triggered.

Figure 15 depicts the energy consumption of the fusion
localization scheme with the different combinations of the
error threshold and the power level. The energy consump-
tion increases accordingly with the increase of triggered
WiFi scans. Furthermore, the lower the error threshold, the
higher the energy consumption for smartphones. Conse-
quently, it can be concluded that by using the FIS based on
fuzzy logic, the fusion localization scheme can dynamically
trigger energy-hungry WiFi scans to balance the localization
accuracy against energy consumption, so as to achieve
energy-adaptive localization. The input linguistic variables
comprise the fusion localization scheme error and remaining
energy. The main purpose of the FIS is to dynamically
schedule WiFi scans, so as to balance the fusion localization
scheme error against the remaining energy. Hence, we
consider the output linguistic variable as the indicator of
whether or not to run once WiFi scan in each step.

7.6. Experiments of WiFi-Assisted Heading Estimation. As is
shown in Figure 16, the cumulative angular rate from the
gyroscope in steps 88-91, steps 131-133, step 216, and steps
218-219 (enclosed by blue rectangle boxes) are above the
threshold of 10 radians. Therefore, it can be judged that
the pedestrian is turning in these steps according to
Equation (21). As a result, the whole walking trajectory can
be split into four straight paths: steps 1-87, 92-130, 134-215,
and 220-261.

Accordingly, as shown in Figure 17, with the help of the
calibrated heading by using the straight trajectories of the
WiFi localization, the heading errors on the straight paths
from steps 1 to 87 and from steps 134 to 215 are almost
equal to 0. However, since the number of the WiFi localiza-
tion results in the straight paths from steps 92 to 130 and
steps 220 to 261 does not satisfy the minimum number of
the linear fitting, the heading in these paths cannot be cali-
brated and is still estimated by the AKF heading estimation
method. While the heading in turning steps can be estimated
by using the calibrated heading of the last straight path as
the initial heading plus the heading change from gyroscope

in each step. As a result, as shown in Figure 17, the pedes-
trian’s heading errors from steps 88 to 91 and from steps
131 to 133 are lower than that from the same steps due to
the relatively high-heading estimation accuracy from gyro-
scope in the short term.

Thus, the accuracy of the heading estimation is
improved by using WiFi localization. As shown in
Figure 18, when the error is within 2.65m, the error CDF
of the standard KF heading estimation method is only
0.11, whereas the error CDF of the calibrated heading error
can increase to 1. The PDR errors in Figure 19 again depict
that the adopting WiFi-assisted heading estimation method
can reduce the PDR error. Consequently, as is shown in
Figure 10, the drift errors of PDR between the two adjacent
WiFi localizations can be eliminated or reduced.

8. Conclusion

In the study, we proposed an energy-adaptive fusion local-
ization scheme by combining WiFi with PDR. The scheme
uses the FIS to formulate trade-off strategies between local-
ization accuracy and energy consumption. Without the need
of establishing precise mathematical models for the fusion
localization error and the energy consumption, the proposed
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scheme is able to dynamically schedule energy-hungry WiFi
scans in the fusion localization process, thereby achieving
energy efficiency without degradation in localization accu-
racy. Furthermore, we identified a series of WiFi localization
results in straight-line paths to calibrate a pedestrian’s head-
ing, which further improves the accuracy of the fusion local-
ization system. Extensive experimental results showed that
the proposed scheme can efficiently balance the accuracy
requirement and the energy consumption in a fusion local-
ization system using WiFi with PDR.
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