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Abstract: The accuracy of the wearable inertia-measurement-unit (IMU)-sensor-based gesture recog-
nition may be significantly affected by undesired changes in the body-fixed frame and the sensor-fixed
frame according to the change in the subject and the sensor attachment. In this study, we proposed
a novel wearable IMU-sensor-based hand-guiding gesture recognition method robust to significant
changes in the subject’s body alignment based on the floating body-fixed frame method and the bi-
directional long short-term memory (bi-LSTM). Through comparative experimental studies with
the other two methods, it was confirmed that aligning the sensor-fixed frame with the reference
frame of the human body and updating the reference frame according to the change in the subject’s
body-heading direction helped improve the generalization performance of the gesture recognition
model. As a result, the proposed floating body-fixed frame method showed a 91.7% test accuracy,
confirming that it was appropriate for gesture recognition under significant changes in the subject’s
body alignment during gestures.

Keywords: gesture recognition; bi-directional LSTM; wearable sensor; biomechanics; hand-guiding
gesture

MSC: 68T01; 68T05

1. Introduction

Human gesture recognition technology has steadily been applied to healthcare [1] and
remote control [2], along with the spread of compact small-sized mobile devices and the de-
velopment of deep learning technology. In the industrial field, gesture recognition is also
being used for remote control of various automation systems to prevent musculoskeletal
diseases of workers [3,4].

Most gesture recognition methods are implemented with vision sensors or wearable
sensors. The vision-based methods have mostly used RGB cameras [4–6] and Kinects [3].
In the study of Nuzzi et al. [5], five pieces of hand-gesture data collected through an RGB
camera were used for accurate hand position and gesture recognition in RGB images
using the R-CNN algorithm to 92.6%. Jiang et al. [6], using an RGB-D sensor, proposed
a skeletonization algorithm for effective gesture recognition and classified 24 hand gestures
collected with the Kinect with an accuracy of 93.63% through the CNN. However, in the case
of using these RGB and RGB-D sensors, the gesture capture area is inevitably restricted
to inside the sensor field of view (FOV), and the light reflections as well as low light can
severely degrade the recognition accuracy [7].

The wearable-sensor-based gesture recognition methods have mainly used IMU sen-
sors [8–14], electromyography sensors [15–18], and multimodal wearable devices [19].
Abualola et al. [8] proposed an IMU-integrated glove for hand-gesture recognition. The sys-
tem tracks fine-grain hand movements using inertial and attitude measurements. Gestures
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are recognized in real-time based on Linear Discriminant Analysis (LDA) with an accu-
racy of 85%. Suri et al. [9] studied sign language recognition using a wrist-worn IMU
sensor, and 30 pieces of sign language sentence data obtained by the IMU were classified
with an average accuracy of 94.6%. Moreover, Khassanov et al. [10,11] proposed multiple
IMU-sensor-based methods for recognizing supervisory user interface commands, such as
manipulator on/off and operation pause/resume for a mobile manipulator system.

However, because the accuracy of the wearable IMU-sensor-based gesture recognition
may be significantly affected by undesired changes in the subject’s heading direction and
the sensor attachment’s pose, the subjects should keep their initial body-alignment iden-
tified at the sensor calibration step to recognize the target gestures correctly, as shown in
Figure 1. Moreover, there are no studies that explicitly report on these issues. Thus, in this
study, we propose a new wearable IMU-sensor-based hand-guiding gesture recognition
method robust to significant changes in the subject’s body alignment with the floating
body-fixed frame method and the bi-directional LSTM. Comparative experimental studies
are also performed for the five hand-guiding gesture classifications and the five dumb-
bell exercise classifications to validate the proposed method’s significance compared to
the previous methods.
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2. Problem Definition

As shown in Table 1 below, in this study, the wearable IMU-sensor-based dynamic
gesture recognition method is classified into the following three according to the satisfaction
of the key requirements in the wearable-sensor-based methods, such as the creation of
a new body-fixed frame, the change in the sensor-fixed frame every time a wearable sensor
is attached to the body, and sensor recalibration according to changes in the subject’s body-
heading direction. Method A [12,13] only performs the creation of a new body-fixed frame,
and method B [20] performs the creation of a new the body-fixed frame after the creation of
a new body fixed frame. To gain full insight into the need for method C proposed in this
study, in this section, an in-depth data-based discussion is conducted on the two different
hand-guiding gestures’ data collected while applying intentional changes to the subject’s
body-heading direction.

Table 1. Classification of the motion recognition method according to the requirement satisfaction.

Requirement A B C

Creating and referencing subject’s body-fixed frame # # #
Aligning all sensor-fixed frames equally × # #

Floating body-fixed frame × × #
#: method is used ×: method is not used.

2.1. Concepts of Creating Body-Fixed Frame and Aligning All Sensor-Fixed Frames Equally

Figure 2 explains the concept of the sensor calibration process to align all sensor-fixed
frames in the same orientation as the body-fixed frame. The IMU sensor has three outputs:
orientation, angular velocity, and acceleration: the orientation of the sensor is expressed
as the relative position of the sensor with respect to the inertial frame, and the angular
velocity and acceleration are expressed with respect to the sensor-fixed frame. Here, it



Mathematics 2022, 10, 4753 3 of 13

is a very self-evident fact that attaching the output reference frame of the inertial sensor
to the subject’s body rather than the globally fixed inertial frame will significantly help
the realization of a consistent gesture recognition algorithm. However, despite the fact that
the body-fixed frame generated based on the subject’s body-heading direction provides
a consistent measurement reference frame for time-varying body-heading directions each
time, the low reproducibility of the sensor pose that occurs when the sensor is attached
will still cause significantly high uncertainties in collecting consistent feature data from
wearable IMU sensors. Then, the resetting all the sensor-fixed frames of all different
sensors in the same way as the body-fixed frames created earlier will help collect sensor
data consistently. As a result, it will also help improve the generalization performance of
the gesture recognition model trained with those sensor data.
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Figure 2. Overall procedure of the hand-mounted IMU sensor calibration for aligning all sensor-fixed
frames equally with a waist-worn IMU sensor in this study: (a) standing, (b) stooping, (c) home pose
or calibration-ready pose, and (d) measurement-ready pose after standing back.

2.2. Description about Concept of Floating Body-Fixed Frame Method

Let us consider a case in which a kernel closely related to direction, such as inward and
outward turning in the hand-guiding gesture, exists in the target behaviors to be recognized.
As shown in Figure 3, the subject’s body alignment to the initially defined body-fixed frame
can be time-varied according to the various application scenarios of the gesture recognition
model. It can also be a factor that significantly hinders the generalization performance
of the gesture recognition model because it is impossible to collect learning data for all
labels in all possible heading directions of the subjects, for example, in the case of a gesture
meaning facing forward and turning left or turning to the right, and the same gesture
being taken by turning 180 degrees back, due to the reverse effect of feature data’s patterns
or the correlation of features with other labels, etc. A critical decrease in the recognition
accuracy may occur, and a mode collapse problem of a specific label among the correlated
labels may also occur.

Figure 3 shows how simple hand-guiding gestures are repeatedly performed under
the general scenario where the subject’s body alignment to the initially defined body-fixed
frame is continuously time-varying. Figure 3a shows that the subject maintains their initial
body alignment within a certain range with respect to the initially defined body-fixed frame,
and Figure 3b,c show that the subject’s body alignment is intentionally rotated about 90 and
180 degrees about the z-axis, respectively, compared to the initial state. On the right side,
angular velocity and acceleration plots measured for each case for the same two (turning
inward and turning outward) hand-guiding gestures are shown for comparison. As a result,
in the case of angular velocity, it can be seen that the activation pattern for each case is
different for a hand motion performed once. For example, in the case of Figure 3a,c, it
can be seen that the phases of the x-axis components are inverted, unlike those in which
the phases and amplitudes are very similar. In addition, comparing the turning inward
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of Figure 3a and the turning outward of Figure 3c, the angular velocity components are
almost the same. Let us consider comparing gestures that have a phase difference of
180 degrees with each other, such as turning inward and outward in Figure 3a,c. When
turning inward is performed while the subject’s body alignment to the initially defined
body-fixed frame is matched, the user’s body rotates 180 degrees about the z-axis with
respect to the initially defined body-fixed frame. When turning inward, the phases of
the angular velocity components, which are one of the key features, are reversed, so
the gesture recognition model may incorrectly predict it as turning outward. Based on
the above visual inspections on the feature data measured in different body-heading
directions, we can conclude that the body’s misalignment to the initial body alignment
causes severe degradation in recognition accuracy due to the uncertainties in distinguishing
labels. Therefore, in the next section, the sensor calibration and floating body-fixed frame
methods are described in detail. In Section 4, the performance differences in multi-class
dynamic hand-gesture recognition for the three methods in Table 1 are experimentally
compared and discussed.
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Figure 3. Comparison of angular velocity and acceleration of the back of the hand measured while
simple handshaking in three different body-heading directions according to rotation about the z-axis:
(a) initial body alignment, (b) 90 degrees, and (c) 180 degrees.

3. Method
3.1. Sensor Calibration

This section describes the protocol of generating the body-fixed frame {B f } through
the calibration gesture of standing-stooping shown in Figure 2. In biomechanics [21,22],
most of the motions of the human body are analyzed with respect to the three mutually
orthogonal motion planes (sagittal plane, frontal plane, transverse plane), so it would be
a very reasonable choice to define the body-fixed frame by aligning it with the principal
axes of these motion planes.

Figure 2 shows the entire process of resetting the orientations of different sensors
equally by creating a body-fixed frame {B f } aligned with the principal axes of the motion
planes of the human body. Figure 2a,b show the subject’s calibration gesture to create
{B f } in order. The average orientation at each stand and stoop calibration gesture can be
calculated from the set of {S f ,waist} with respect to the inertial frame collected for about 5 s
at a sampling rate of 100 Hz [20]. Moreover, Figure 2c shows a calibration-ready or home
pose to match the orientations of {B f } and {S f ,j} created earlier. The subject puts their arms
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to the sides of both thighs with the back of their hand facing outward. After the subject
takes a calibration-ready pose, 5 s later, the orientation of {S f ,j} is reset to {Sc,j}, which is the
same orientation as {B f }. The axis (vector K) for the transition from the average stand to
the stooping pose can be obtained through Equation (1).

G
k R = G

f ,waist,stoopRT · G
f ,waist,standRT

θ = cos−1
(

trace(G
k R)−1
2

)
, K = 1

2 sin θ ·

r32 − r23
r13 − r31
r21 − r12

 (1)

Through Algorithm 1 below, {B f } can be defined in the form of SO(3) as follows.

G
B f

R =
[

xB f yB f zB f

]
(2)

where zB f denotes a unit length vertical vector opposite to gravity of
[
0 0 1

]T , yB f
denotes the subject’s transverse axis, and xB f denotes the axis representing the subject’s

body-heading direction obtained through the cross-product of k̂ and zB f . Algorithm 1 de-
scribes a detailed protocol for generating a body-fixed frame based on the following
three assumptions:

(1) k̂ coincides with the subject’s transverse axis;
(2) zB f axis coincides with the subject’s longitudinal axis;
(3) xB f axis is aligned with the subject’s anteroposterior axis.

Algorithm 1 Create body-fixed frame

1: procedure sensor data
(

G
S f ,j

R,G
→
a S f ,j ,

G →ωS f ,j

)
2: While about 5 s
3: Maintain standing posture
4: Save orientation data G

S f ,j
R

5: end
6: Update G

f ,j.standR ← avg(saved orientation data)
7: While 5 s
8: Maintain stooping posture
9: Save orientation data G

S f ,j
R

10: end
11: Update G

f ,j.stoopR ← avg(saved orientation data)

12: Calculate vector k ←
(

G
f ,j.stoopRT · G

f ,j.standR
)

13: Calculate vector x ←
(

vector k×
[
0 0 1

]T
)

14: Return Body- fixed frame ←
[

xB f kB f zB f

]
3.1.1. Orientation w.r.t Body-Fixed Frame

In this part, a method of changing the orientation of the sensor expressed for the inertial
frame {G} to be expressed with respect to {B f } and, at the same time, resetting the sensor-
fixed frame {Sj} having different orientations to be the same as {B f } is described. First,
at the calibration-ready pose in Figure 2c, the relative orientation of the current sensor-
fixed frame of each sensor with respect to {B f } is obtained through Equation (3), and then,
the new sensor-fixed frame {Cj} of each sensor initially identical to {B f } is created.

S f ,j.stand
Cj

R = G
S f ,j.stand

RT · G
B f

R (3)

As a result, the orientation of {Cj} with respect to {B f } can be calculated as in Equation (4).

B f
C,j

R = G
B f

RT · G
S f ,j

R · S f ,j.stand
C,j

R (4)
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3.1.2. Angular Velocity and Acceleration w.r.t Body-Fixed Frame

In this part, the angular velocity and acceleration expressed with respect to the original
sensor-fixed frame {S f ,j} of each sensor transform into an expression with respect to frame
{B f } through Equation (5) as in the orientation of I.

B f
→
a S f ,hand = G

B f
RT · G

S f ,hand
R ·
(

S f ,hand
→
a
)

B f
→
ωS f ,hand = G

B f
RT · G

S f ,hand
R ·
(

S f ,hand
→
ω
) (5)

The contents of I and II are summarized as in Algorithm 2 below.

Algorithm 2 Align all sensor fixed frames equally

1: procedure sensor data, body fixed frame, orientation of the initial posture

2:
Calculate rotated frames mapping
S f ,j.stand
C,j

R = G
S f ,j.stand

RT · G
B f

R

3: Calculate sensor orientation w.r.t
{

B f

}
B f
C,j

R = G
B f

RT · G
S f ,j

R · S f ,j.stand
C,j

R

4: Calculate sensor acceleration w.r.t
{

B f

}
B f
→
a S f ,hand = G

B f
RT · G

S f ,hand
R ·G →a S f ,hand

5:
Calculate sensor rate of turn w.r.t
B f
→
ωS f ,hand = G

B f
RT · G

S f ,hand
R ·G →ωS f ,hand

6: Return sensor data w.r.t
{

B f

}
3.2. Floating Body-Fixed Frame

As mentioned in the problem definition part, the subject’s body misalignment against
the initial body-fixed frame {B f } will increase the uncertainties in the performance of
the gesture recognition model. Therefore, in this section, a floating-body-fixed frame
{FB f } that can continuously recalibrate body alignment based on the subject’s time-varying
body-heading direction information is obtained through Equation (6).

G
FB f

R = G
S f ,waist

R · G
S f ,waist,stand

RT · G
B f

R (6)

Then, Equation (7) is used to update the orientation of the new sensor-fixed frame {Cj}
of each sensor with the expression with respect to frame {FB f } updated in real time.

FB f
C,j

R = G
FB f

RT · G
S f ,j

R · S f ,j.stand
C,j

R (7)

Then, Equation (8) is used to transform the angular velocity and acceleration with
respect to the original sensor-fixed frame {S f ,j} of each sensor into the expression with
respect to frame {FB f }. All the updating of the body-fixed frame according to change in
time-varying body-alignment is summarized in Algorithm 3.

FB f
→
a S f ,hand = G

FB f
RT · G

S f ,hand
R ·
(

S f ,hand
→
a
)

FB f
→
ωS f ,hand = G

FB f
RT · G

S f ,hand
R ·
(

S f ,hand
→
ω
) (8)
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Algorithm 3 Updating the body-fixed frame according to change in subject’s time-varying body-alignment

1: procedure sensor data, orientation of the initial posture

2:
Calculate floating body fixed frame
G
FB f

R = G
S f ,waist

R · G
S f ,waist,stand

R

3: Calculate sensor orientation w.r.t
{

FB f

}
FB f
C,j

R = G
FB f

RT · G
S f ,j

R · S f ,j.stand
C,j

R

4: Calculate sensor acceleration w.r.t
{

FB f

}
FB f
→
a S f ,hand = G

FB f
RT · G

S f ,hand
R ·G →a S f ,hand

5: Calculate sensor rate of turn w.r.t
{

FB f

}
FB f
→
ωS f ,hand = G

FB f
RT · G

S f ,hand
R ·G →ωS f ,hand

6: Return sensor data w.r.t
{

FB f

}
3.3. Practical Application to the Multi-Class Classification of the Hand-Guiding Gestures

In this study, five gesture modes were defined: shaking inward (si), shaking outward
(so), turning inward (ti), and turning outward (to), indicating not only via motion (vm),
which means unintentional guiding gesture, but also a combination of linear/angular and
inward/outward, as shown in Figure 4. This mode classification problem of the dynamic
hand-guiding gesture will be affected not only in instantaneous mode at every moment but
also in long-term dependency between these instantaneous modes due to the complex and
non-linear dynamic characteristics of hand-guiding motion itself.
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Figure 4. Illustration of five hand-guiding gestures to be classified.

Therefore, sufficient biomechanical and ergonomic insight for the corresponding
gestures should be necessary to select a classification method suitable for these human
gesture classification problems. For example, it can be seen from Figure 4 that even
when intentional so (shaking outward) is performed, unintentional si (shaking inward) is
always performed in pairs, and vice versa. As shown in Figure 5, this phenomenon can
be identified through visual inspection of ωz among the shaking outward and inward
motion data collected from 6 subjects. In the case of shaking outward and inward, it can
be seen that they show very similar behavior to each other, except that they show a phase
difference of 180 degrees. Here, if we consider repetitive shaking inward as in Figure 5a,
the prediction model based on the sliding window method will predict shaking inward
alternately inward and outward.

Similarly, in the case of so, the classification model will internally classify by repeatedly
switching instantaneous modes of so and si when classifying the so mode. In order to
recognize such a continuous gesture, it is very important to accurately recognize the ges-
ture’s intention by identifying its start moment. In particular, in the case of a classification
model using unidirectional classification, it will be difficult to distinguish the start moment
of the corresponding gesture due to the model’s limited memory as the gestures become
longer. In addition, in the case of intentional outward (inward) shaking, as shown in
Figure 5, it can be seen that the intensity of inward (outward) shaking, which is a returning
gesture, and the intensity and time interval of the intended gesture are different from each
other. In general, most subjects made the intentional gestures stronger and faster when they
took the hand-guiding gesture. In the case of intensity, it was confirmed that the intensity
of the returning gestures was about 27~45% lower than that of the intended gesture, and
the time interval of the intended gesture compared to the returning gesture was about
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26~44% lower. Based on these biomechanical and ergonomic insights, the bi-directional
LSTM [23], which is capable of instantaneous mode classification reflecting the temporal
context even at the last time point by giving backward feedback of the classification results
at the present time in the direction of the beginning of the time horizon, should be the most
suitable gesture recognition algorithm for this study.
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Figure 5. Plot of angular velocity about z-axis in (a) shaking inward and (b) outward motion data
collected from 6 subjects.

Figure 6 shows the overall framework of the bi-directional LSTM-based five hand-
guiding gesture classifications. In order to understand not only the instantaneous mode but
also the long-term dependencies between the instantaneous modes, nine features (three-
dimensional orientation, acceleration, and angular velocity with respect to the frame {FB f })
collected from the IMU sensor are captured at every 10 ms for a predefined time-horizon
length (400 ms in this case). Then, this way, 9× 40 two-dimensional input data collected for
400 ms at a sampling rate of 10 ms are input to a bi-directional LSTM after the normalization
process. Finally, the input 9 × 40 data are transformed into the 5 × 1 probability vector by
activating the 9 × 1 hidden vector as output after identifying the gesture context through
the forward LSTM model and the backward LSTM model in this study.
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Figure 6. Overall framework of the bi-directional LSTM-based different hand-guiding gesture
classification.
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4. Experiment and Discussion

This section describes the overall data collection, data expansion, and learning and
evaluation results for learning and evaluating the hand-guiding gesture recognition model
in Figure 6.

4.1. Experimental Setup

In this study, six subjects collected the gesture dataset of hand-guiding gestures
represented in Figure 7 using Xsens’ MTx wearable inertial sensor in the environment
shown in Figure 7a below. After configuring the capture volume of 300 × 300 × 250 mm3

with six prime-13 vision sensors and Optitrack’s motion capture system, the subjects’
walking trajectory and body-heading directions were recorded and visualized to prove
the appropriateness of the training dataset acquisition process. During dataset acquisition,
the subjects walked freely within the capture volume and repeatedly performed hand-
guiding gestures, and the changes in the subjects’ pose and body-heading direction are
shown in Figure 7b.
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Figure 7. (a) Experimental environment including Optitrack’s six prime-13 vision sensors and
Xsens wearable IMU sensors, and changes in (b) pose and body-heading direction of subjects in
the data acquisitions.

4.2. Training and Test Dataset Acqusition

In addition, to prove that gesture recognition based on the floating body-fixed frame
method is more robust to significant changes in the motion and body-alignment of the sub-
ject than methods A and B, the gesture data for methods A and B were also collected. As
a result, about 126,165 training datasets and 84,592 validation datasets were collected from
4 subjects, and 52,259 test datasets were collected from 2 other subjects with the same
protocol as the training data.

4.3. Training, Test, and Result Discussion

The learning condition of the model was batch size = 5000, epoch = 1000, and learning
rate = 0.001. In addition, to prevent convergence to the local minima as learning progresses,
the learning rate was lowered with the callback function to allow it to escape from the local
minima. In addition, to prevent overfitting, learning was stopped when the performance of
test loss was no longer improving using the early stopping method, and the time horizon
length closely related to the temporal context was set to 400 ms, according to the results
presented in Table 2. For preliminary validation of the bi-directional LSTM selected as
the classification model for this study, we first compared and validated with the RNN (a.k.a
vanilla RNN) [24] and LSTM [25]. As a result, the training and test accuracies for each label
of RNN, LSTM, and bi-directional LSTM based on the floating body-fixed frame method
are presented in Table 3 for comparison purposes. Table 4 also shows that the proposed
floating body-fixed frame method has a significant performance improvement compared
to the other two methods in hand-guiding gesture recognition under significant changes in
the subject’s body alignment based on the bi-directional LSTM model.
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Table 2. Comparison of training and test accuracy of bi-directional LSTM model for the floating
body-fixed frame method according to the change in time-horizon length.

- Training/Test Accuracy by Label (%)
vm si So ti to Total

300 ms 99.3/71.9 99.7/83.5 99.8/99.9 99.3/91.6 99.6/82.2 99.5/84.0
400 ms 97.7/89.6 97.0/92.6 96.4/89.0 99.3/98.7 98.9/99.4 97.9/91.7
500 ms 99.9/57.6 99.6/96.1 99.8/99.8 99.6/75.6 99.8/90.4 99.7/82.6
600 ms 99.9/70.0 100/97.4 100/63.1 99.9/81.4 100/70.3 99.9/72.9

Table 3. Comparison of training and test accuracy of RNN and LSTM and bi-directional LSTM model
for the 5 different hand-guiding gesture classifications.

- Training/Test Accuracy by Label (%)
vm si so ti to Total

Vanilla RNN 91.8/88.6 81.8/59.5 78.8/62.1 90.7/83.9 78.4/61.7 83.6/66.4
Vanilla LSTM 98.0/89.1 98.2/90.2 94.4/71.2 98.1/85.3 98.7/98.9 97.5/85.1

Bi-directional LSTM 97.7/89.6 97.0/92.6 96.4/89.0 99.3/98.7 98.9/99.4 97.9/91.7

Table 4. Comparison of training and test accuracy of the floating body-fixed frame method over
methods A and B with the bi-directional LSTM model.

- Training/Test Accuracy by Label (%)
vm si so ti to Total

Method A 98.4/49.6 92.8/37.9 93.6/43.4 98.4/95.0 98.5/99.6 96.3/57.7
Method B 99.4/77.5 97.1/64.7 99.2/75.8 99.7/82.6 99.8/75.8 99.0/74.6
Method C 97.7/89.6 97.0/92.6 96.4/89.0 99.3/98.7 98.9/99.4 97.9/91.7

In addition, for preliminary validation of the bi-directional LSTM selected as the clas-
sification model for this study, the training and test accuracy results for each label of
RNN, LSTM, and bi-directional LSTM based on the floating body-fixed frame method
are presented in Table 3 for comparison purposes. Table 4 also shows that the proposed
floating body-fixed frame method has a significant performance improvement compared
to the other two methods in hand-guiding gesture recognition under significant changes in
the subject’s body alignment based on the bi-directional LSTM model.

As shown in Table 3, the test accuracy of the bi-directional LSTM was highest at 91.7%,
followed by the vanilla LSTM with 85.1% and the vanilla RNN with the lowest at 66.4%. In
the case of LSTM, it is often wrong to classify si as so and vice versa, because it is difficult to
correctly determine the gesture context with unidirectional LSTM. In particular, in the case
of RNN, there was a considerably high frequency of misclassifying si into so and to as ti,
which is interpreted to be caused by a decrease in classification accuracy due to long-term
dependency when the gesture length is increased.

Table 4 shows the comparison result of training and test accuracy of the floating body-
fixed frame method over methods A and B using 400 ms bi-directional LSTM. It can be seen
that method C showed a test accuracy of 91.7%, and method B, which only aligns the sensor-
fixed frame to the body-fixed frame, showed a test accuracy of 74.6%. That is, method A and
method B decreased the test accuracy by −31.0% and −18.6%, respectively, compared to
method C, which means that method C was more robust to the significant changes in
the body alignment than other methods as claimed in the problem definition section. In
addition, the lowest test accuracy of method A of 57.7% proves that the low reproducibility
in the attached pose of the wearable sensor to the body segments causes significantly high
uncertainties in collecting consistent feature data of the hand-guiding gestures. In summary,
through this study, it was experimentally confirmed that aligning the sensor-fixed frame
with the reference frame of the human body and updating the reference frame according
to the change in the subject’s body-heading direction helped improve the generalization
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performance of the gesture recognition model. The confusion matrix of the test set using
the floating body-fixed frame and bi-directional LSTM model proposed in this study is
shown in Figure 8.
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5. Conclusions

In this study, we proposed a wearable IMU-sensor-based hand-guiding gesture recog-
nition method robust to significant changes in the motion and body-alignment of the subject
based on the floating body-fixed frame method together with the bi-directional LSTM. To
validate the research contributions of the proposed method, method A and method B were
chosen according to the satisfaction of the key requirements in the wearable sensor-based
methods, such as the creation of a new body-fixed frame and the change in the sensor-fixed
frame in sensor attachment to the body. As a result, as shown in Table 2, it was confirmed
that an excellent average test accuracy of 91.7% was achieved even under the condition
of applying an intentional change to the subject’s body-heading direction. For validating
the significance of the proposed method on the gestures other than forearm-oriented hand-
guiding gestures covered in this study, the additional validation study was conducted on
four dumbbell exercises that simultaneously use both the arm and forearm, as shown in
Figure 9. About 94,605 training datasets and 63,104 validation datasets were collected from
3 subjects, and 105,401 test datasets were collected from 2 other subjects with the same
protocol as the training data. The training and test accuracies represented in Table 5 were
obtained through three repetitive model trainings for each method. According to the results,
the test accuracy of method C still showed significant improvement by 45.2% and 14.4%, re-
spectively, compared to methods A and B, as with the hand-guiding gesture case in Table 5.
Therefore, it can be seen that the FBF method could improve generalization performance
for forearm-oriented hand-guiding gestures and general gestures using the entire upper
arm part. In future work, we plan to apply the method proposed and verified through this
study to the gesture-recognition-based remote control of mobile manipulators.
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Nomenclature

R Rotation matrix
{G} Global reference frame{

B f

}
Body-fixed frame{

FB f

}
Floating body-fixed frame{

S f ,j

}
Sensor-fixed frame of jth IMU sensor{

Cj

}
Calibrated sensor-fixed frame{

S f ,j.stand

}
Sensor-fixed frame at initial standing posture{

S f ,j.stoop

}
Sensor-fixed frame at initial stooping posture

→
a Acceleration
→
ω Angular rate
SO(3) Three-dimensional orthogonal group
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