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Visual inertial odometry based gait analysis
using waist-attached RGB-D camera

and inertial sensors
Duc Cong Dang, and Young Soo Suh, Member, IEEE

Abstract— In this paper, a visual inertial odometry algorithm is
proposed to estimate walking stride length and reconstruct walking
trajectory. Depth and color image data from a downward-looking
waist-mounted RGB-D camera is fused with its internal Inertial Mea-
surement Unit (IMU) data in an estimation algorithm to perform foot
detection and position estimation. Floor plane and foot positions in
stance phases are calculated and used as landmarks to construct
measurement equations for updating in the filter. A smoothing
problem is formulated as a linear optimization problem to improve
filter result. Experiments are performed to evaluate the walking
trajectory reconstruction and the overall root mean square errors
(RMSE) of walking stride length estimation is about 3.8 centimeters.

Index Terms— Visual inertial odometry, Gait analysis, RGB-D camera, Inertial sensor, Kalman filter.

I. INTRODUCTION

Gait analysis is to describe human walking ability based
on quantitative parameters such as cadence, stride length, and
walking speed [1]. Even though considerable research has been
done in gait analysis, this area is still gaining attraction largely
with the advent of new technologies and techniques [2].

Recently, a variety of sensor-based systems are developed
to perform gait analysis, where sensors are placed on the floor
(force sensors), inside insole of shoes (pressure or sensors), or
on the subject body (wearable systems like inertial sensors or
EMG electrodes). Floor platform-based and pressure sensors
provide an accurate measurement of force pattern and foot
pressure distribution to detect step and gait phases [3]. A force
sensing resistor or piezoelectric-based in-socket sensor system
can be used to detect gait phases from signal responses [4],
[5]. EMG is used to measure the muscle electrical activity
during walking, and to derive gait phases using the amplitude
of EMG signals [6]. There are limitations of space and cost
for those non-wearable systems.

Inertial sensors provide a cost effective solution with high
sampling rates and require low computing capability to detect
steps and estimate gait parameters [7]–[9]. However, accuracy
and robustness of inertial sensors-based systems need to im-
prove due to accumulative errors.
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Vision based gait analysis can be separated into direct
and indirect approaches. Direct method with optoelectronic
systems is a gold standard for movement tracking based on
markers placed on certain key points of the body with a sub-
millimeter precision [10], [11]. However, those systems are
expensive, difficult to set up, and cannot be used outside the
clinic or laboratory. Indirect vision based approach extract
features of the subjects (gender or human identity [12]) and
gait parameters (step length and duration or ankle angles
and distance [13], [14]) from image processing and machine
learning technique through a sequence of images. Others use
single or multiple fixed depth cameras to reconstruct 3-D shape
and volume during walking which can be used to extract
skeleton data and detect symmetrical gait troubles [15], [16].

Visual odometry (VO) is widely used in autonomous nav-
igation systems, humanoid robots or aerial vehicles to track
and reconstruct the motion of the camera in real-time using
sequential images [17]–[19]. However, there is currently no
research on applying visual inertial odometry to gait analysis.
In this paper, we propose a visual-inertial approach to detect
feet and estimate walking trajectory for gait parameter estima-
tion, where a body-installed RGB-D camera are used for data
acquisition. Relative attitude and relative position estimated
from a visual odometry algorithm and detected stance foot
position from depth image are used as measurement updates
for a filtering and smoothing algorithm to compute two feet’s
trajectories. The proposed algorithm is designed based on the
structure given in Fig. 1, where stance foot position estimation
is the main objective.

The remainder of this study is organized as follows. Section
II presents our system setup for data acquisition, the definition
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Fig. 1. Algorithm structure.

of the coordinate systems, and some notations. Section III
describes the system equations and state definition for an
inertial system along with extended states for the visual
odometry information. Measurement equation from the visual
odometry algorithm is derived for updating relative position
and relative orientation. Section IV presents the floor plane pa-
rameter estimation and foot tracking algorithm. Measurement
equations for the markers at the initial and final step, and the
measurement equation for the stance foot which is used as a
landmark, are derived in Section V. The filtering algorithm and
the formulation of the smoothing algorithm are summarized in
Section VI. Section VII presents the experiment results and the
discussion of the results, and finally Section VIII summarizes
the conclusions and potential future works.

II. SYSTEM OVERVIEW

A. Hardware setup
The system setup is shown in Fig. 2. Images are acquired

using an Intel Realsense D455 RGB-D camera with a resolu-
tion of 640x480 pixels and a frame rate of 30Hz. Internal IMU
of the camera is configured to provide 200Hz accelerometer
and 200Hz gyroscope data. Two infrared markers are mounted
on top of both feet to provide ground truth data from an
optical tracker system. The intrinsic parameters of the camera
are pre-calibrated using a chessboard with Camera Calibration
Toolbox of MATLAB. Images and inertial data timestamps are
synchronized.

B. Notation
For a vector a ∈ R3, [a×] ∈ R3×3 denotes the corre-

sponding skew-symmetric matrix. For a quaternion q ∈ R4,
C(q) ∈ SO(3) denotes the corresponding rotation matrix.
qidentity =

[
1 01×3

]′
denotes the identity quaternion. Let

q̂ denote the estimated value of a quaternion q ∈ R4. Assuming
the estimation error is small, we use the following three vector
error model q̄e ∈ R3 [20]:

q = q̂ ⊗ fquat(q̄e) (1)

World
coordinate

system

Foot mounted
infrared markers

Walking
direction

Intel Realsense
RGB-D camera

with IMU

Camera
coordinate

system

Body
coordinate

system

Fig. 2. System overview.

where ⊗ denotes the quaternion multiplication, and

fquat(q̄e) =

[
1
q̄e

]
∈
[
R
R3

]
.

Representing (1) with the rotation matrix, we obtain

C(q) = (I − 2[q̄e×])C(q̂).

Let fvector : R4 → R3 be a function extracting the vector part
of a quaternion. For a matrix A ∈ Rn×m, A(r1 : r2, c1 : c2) ∈
R(r2−r1+1)×(c2−c1+1) denotes a submatrix of A consisting of
rows {r1, · · · , r2} and columns {c1, · · · , c2}.

III. VISUAL INERTIAL ODOMETRY FILTERING

In this section, the state variables are defined to derive
dynamic equations for a Kalman-based filter using IMU data.
These states are extended to include visual odometry informa-
tion. The visual odometry algorithm provides relative position
and attitude of consecutive image frames as the measurement
updating for the filter.
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A. System equation and state definition

Let q ∈ R4, r ∈ R3 and v ∈ R3 be quaternion, position and
velocity of IMU. The quaternion q represents the rotation from
the world coordinate system to the body coordinate system.
Let ya ∈ R3 and yg ∈ R3 be the accelerometer and gyroscope
outputs:

ya = C(q)g̃ + ab + ba + ηa
yg = ω + bg + ηg

(2)

where g̃ ∈ R3 is the local gravitation vector, ab ∈ R3 is
the external acceleration and ω ∈ R3 is the angular velocity.
ba ∈ R3 and bg ∈ R3 are the accelerometer and gyroscope
bias. ηa ∈ R3 and ηg ∈ R3 are white Gaussian sensor noises,
whose covariances are given by raI3 and rgI3.

Usually, the sampling period Tcamera of a camera is larger
than the sampling period Timu of an IMU. In this paper, we
assume that the sampling period of a camera is an integer
multiple of the sampling period of an IMU: that is, Tcamera =
MratioTimu for a positive integer Mratio. There are two
discrete time indices k (with the sampling period Tcamera) and
i (with the sampling period Timu). The function fdiscrete(k)
relates two discrete indices:

i = fdiscrete(k) = (k − 1)Mratio + 1.

In the attitude and position filtering and smoothing, es-
timation error terms are usually estimated instead of direct
estimation of attitude and position [21]. The estimation error
terms q̄e,i ∈ R3, re,i ∈ R3 and ve,i ∈ R3 are defined by:

qi = q̂i ⊗ fquat(q̄e,i)
ri = r̂i + re,i
vi = v̂i + ve,i

(3)

where q̂i ∈ R4, r̂i ∈ R3 and v̂i ∈ R3 represent estimated
values of qi, ri and vi, respectively.

The dynamic equation of estimation error terms is given by
[20] 

q̄e,i+1

re,i+1

ve,i+1

bg,e,i+1

ba,e,i+1

 = Fi


q̄e,i
re,i
ve,i
bg,e,i
ba,e,i

+ ζi (4)

where bg,e,i ∈ R3 and ba,e,i ∈ R3 are error terms of sensor
biases bg and ba. The covariance of noise ζi is given by [20]

Qd = E{ζiζ ′i} = Diag(0.25rgI3, 03×3, raI3, 09×9, Qbg , Qba).

Fi is computed by

Fi =

[
F11,i F12,i

06×9 I6

]
= exp(

[
A11,i A12,i

06×9 06×6

]
Timu) (5)

where

A11,i =

 [−yg,i×] 03×3 03×3

03×3 03×3 I3
−2C ′(q̂i)[ya,i×] 03×3 03×3

 ∈ R9×9

A12 =

 −0.5I3 03×3

03×3 03×3

03×3 −C ′(q̂i)

 ∈ R9×6.

Note that (4) is a discrete-time system equation with the
sampling period Timu. Since measurement information from
the camera is available with the sampling Timage, (4) is trans-
formed to a discrete-time system equation with the sampling
period Timage.

Let Uk ∈ R9 (notice that the image discrete index k is
used instead of IMU discrete index i) be an error state vector
defined by

Uk =

 q̄e,fdiscrete(k)

re,fdiscrete(k)

ve,fdiscrete(k)

 ∈ R9×1. (6)

Let Vi ∈ R15 be a state vector with bias terms defined by

Vk =

 Uk
bg,e,fdiscrete(k)

ba,e,fdiscrete(k)

 ∈ R15×1. (7)

where bg,e ∈ R3 and ba,e ∈ R3 are error terms of sensor
biases bg and ba.

By repeating (4) Mratio times, the following equation is
given by

Vk+1 = F̄kVk + ζ̄k (8)

where

F̄k =

fdiscrete(k)+Mratio−1∏
i=fdiscrete(k)

Fi,

Qζ̄ = E{ζ̄k ζ̄ ′k} =

Mratio∑
j=1

Gk+j−1QdG
′
k+j−1,

Gk = I15, Gk+j = Gk+j−1F̄fdiscrete(k+1)−j ,

1 ≤ j ≤Mratio − 1.

From the structure of Fi (see (5)), F̄k and ζ̄k are partitioned
as follows for later use:

F̄k =

[
F̄11,k F̄12,k

06×9 I6

]
∈
[
R9×9 R9×6

R6×9 R6×6

]
,

ζ̄k =

[
ζ̄k,1
ζ̄k,2

]
∈
[
R9

R6

]
,

Qζ̄k =

[
Qζ̄k,11 Qζ̄k,12

Qζ̄k,21 Qζ̄k,22

]
∈
[
R9×9 R9×6

R6×9 R6×6

]
. (9)

The visual odometry information at k-th discrete time is
obtained using (k−1)-th and k-th images; thus the information
imposes constraints on Uk−1 and Uk. To cope with this fact,
we construct an extended state Xk containing both Uk−1 and
Uk [22].

Let the extended state Xk be defined by

Xk =


Uk
Uk−1

bg,e,k
ba,e,k

 ∈ R24×1.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3227950

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 03,2023 at 08:28:44 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

From (8), we have the following system equation for the
Kalman filter.

Xk+1 =

 F̄11,k 09×9 F̄12,k

I9 09×9 09×6

06×9 06×9 I6

Xk + η̄k (10)

where

η̄k =

 ζ̄k,1
09×1

ζ̄k,2

 ∈
 R9

R9

R6

 .
Let Qη̄k be the covariance of η̄, which can be computed from
Qζ̄ .

B. Visual odometry
Visual odometry estimates the motion of a camera using

sequential images [23]. Visual odometry can be divided into
two methods: indirect and direct methods. Indirect methods
extract and track point features in the environment. Direct
methods use raw image data by comparing pixel intensities
of consecutive images. In this paper, the direct method in [24]
is used since this method is known to be robust in low-texture
environments. Note that the camera in this paper is looking
downward to floor, which generally gives low-texture images.

[ ]
C B

t

camera

imu

[ ]
C B

t
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imu
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1 framek -
th framek

,vo k
t

1k
r - k

r

world coordinate origin

Fig. 3. Relative camera pose of two consecutive image frames

Let rk and qk be the position and attitude of the IMU
represented in the world coordinate corresponding to k-th
image frame (see Fig. 3). Let [tC ]B and qCB be the position
and orientation of the camera in IMU (body) coordinate.
Since [tC ]B and qCB are known constants, the position and
attitude of the camera in world coordinate can be calculated
as rk + C(qk)′[tC ]B and qk ⊗ qCB [20].

The visual odometry algorithm provides the relative attitude
qvo,k and relative position tvo,k of the camera with its previous
frame, (represented in the camera coordinate at the k-th
discrete time) that are (k − 1)-th and k-th images.

The relative attitude qvo,k and relative position tvo,k satisfies
the following equations:

qk ⊗ qCB = qk−1 ⊗ qCB ⊗ qvo,k. (11)

tvo,k = CCBC(qk)((rk−1 + C(qk−1)′[tC ]B)
−(rk + C(qk)′[tC ]B)).

(12)

Let q̂vo ∈ R4 and t̂vo ∈ R3 be visual odometry estimate
values and qvo,e ∈ R4 and tvo,e ∈ R3 be estimation error
terms defined by

qvo,k = q̂vo,k ⊗ fquat(q̄vo,e,k)
tvo,k = t̂vo,k + tvo,e,k.

(13)

Inserting (3) and (13) into (11), we have

qidentity = (qCB)∗ ⊗ q∗k ⊗ qk−1 ⊗ qCB ⊗ qvo,k
= (qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k
−(qCB)∗ ⊗ fquat(q̄e,k)⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k
+(qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ fquat(q̄e,k−1)⊗ qCB ⊗ q̂vo,k
+(qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k ⊗ fquat(q̄vo,e,k).

(14)
In deriving the above equation, second-order error terms are
ignored.

Let zvo,q,k ∈ R3 (the vector part of a quaternion) be defined
by

zvo,q,k = fvector
(
(qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k

)
. (15)

Let a ∈ R4 and b ∈ R4 be quaternions and c̄ ∈ R3 be a
vector. It is straightforward to verify that

a⊗
[

0
c̄

]
⊗ b =

[
?

L(a, b)c̄

]
(16)

where ‘?’ term is irrelevant and

L(a, b) = −(b̄ā′) + (a0b0)I + b0[ā×]− a0[b̄×]− [b̄×][ā×].

Combining (14), (15) and (16), we obtain

zvo,q,k = L((qCB)∗, q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k)q̄e,k
−L((qCB)∗ ⊗ q̂∗k ⊗ q̂k−1, q

C
B ⊗ q̂vo,k)q̄e,k−1

−L((qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k, qidentity)q̄vo,e,k.
(17)

Let zvo,t,k be defined by

zvo,t,k = t̂vo,k − t̂k (18)

where

t̂k = CCBC(q̂k)(r̂k−1 − r̂k) + CCB (C(q̂k)C(q̂k−1)′ − I)[tC ]B .

Combining (14) and (18), we obtain

zvo,t,k ≈ CCBC(qk)(re,k−1 − re,k)
−2CCB [q̄e,k×]C(q̂k)(r̂k−1 − r̂k)
−2CCB [q̄e,k×]C(q̂k)C(q̂k−1)′[tC ]B
−2CCBC(q̂k)C(q̂k−1)′[q̄e,k−1×]′[tC ]B − tvo,e,k

= CCBC(qk)(re,k−1 − re,k)
+2CCB [(C(q̂k)(r̂k−1 − r̂k))×]q̄e,k
+2CCB [(C(q̂k)C(q̂k−1)′[tC ]B)×]q̄e,k
−2CCBC(q̂k)C(q̂k−1)′[[tC ]B×]qe,k−1 − tvo,e,k.

(19)
Let zvo,k be defined by

zvo,k =

[
zvo,q,k
zvo,t,k

]
∈
[
R3

R3

]
. (20)

The measurement equation from the visual odometry algo-
rithm is given by

zvo,k = Hvo,kXk + ηvo,k (21)

where Hvo,k ∈ R6×24 can be derived from (17) and (19). Let
Rvo,k ∈ R6×6 denote the covariance of ηvo,k which is given
by

Rvo,k = Jvo,k

[
rvo,qI3 03×3

03×3 rvo,tI3

]
.

where Jvo,k ∈ R is the sum of squares of brightness residual
of each pixel [24].
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IV. FLOOR AND FOOT DETECTION

As in Fig. 4, walking cycle consists of stance period (when
a foot is on the floor) and swing period (when a foot is
swinging). A stance period is detected (Section IV-B) and is
used as a landmark (Section V-B) since a foot does not move
during stance period even if the other body parts are moving.

Stance periodSwing periodLeft foot Swing period

S         periodwingStance periodRight foot S periodtance

Step Length

Stride Length

right, 1l
r

- right, 1l
r

+

left, lr

Fig. 4. Stance and swing period

Let rleft,l ∈ R3 be the position (expressed in the world
coordinate system) of the l-th left stance period foot. Similarly,
rright,l ∈ R3 is defined for the right foot. The final goal of
this paper is to estimate foot positions rleft,l and rright,l and
the walking stride length is computed from the foot positions
(see Fig. 4).

In this paper, the stance period foot is detected from depth
images. The foot could have been detected from RGB images.
However, it is not easy to detect foot if the shoe and floor have
similar color or lighting condition is poor. Since depth image
does not depend on color and lighting conditions, more robust
foot detection is possible.

A. Floor plane detection
From depth image, floor plane is detected. The floor plane

helps to detect a stance period foot.
Let [p(u, v)]C ∈ R3 be a point on the floor represented in

the camera coordinate system corresponding to (u, v) pixel,
which is obtained from the depth camera. The floor plane
equation is given by

[nfloor]C [p]C + [hfloor]C = 0, [hfloor]C > 0 (22)

where [nfloor]C ∈ R3 is the unit normal vector of the floor
plane and [hfloor]C ∈ R > 0 is the distance to the plane from
the camera.

Plane parameters are estimated using RANSAC algorithm
[25].

B. Foot detection and ellipse approximation
A stance period foot instep is slightly above the floor plane.

Based on this observation, foot candidate points are selected.
Firstly, the height matrix Fheight(u, v) (the height from the

floor) is constructed as follows:

Fheight(u, v) = [ĥfloor]C − n̂′floor[p(u, v)]C . (23)

Then the foot candidate points are selected using the fol-
lowing condition:

hfoot,min ≤ Fheight(u, v) ≤ hfoot,max. (24)

For the pixels (u, v) satisfying (24), connected (8-direction
connectivity) pixels are grouped [26]. If the number of points
in a connected group is less than Nfoot,min, then the group is
discarded. If the number of remaining groups is greater than
2, only the two largest groups are selected as possible foot
candidates.

For each candidate group of points, the foot edge is detected.
Once foot edge is detected, foot is approximated by an ellipse
with known major and minor axes length assuming that foot
size is known.

Using a simple tracking algorithm, left and right feet are
separated and stance period foot is detected. If a left stance
period foot is detected at the k-th image, the position of a
foot represented in the camera coordinate system is denoted
by yleft,k ∈ R3. Similarly yright,k is defined for the right foot.
The detected stance feet belonging to the same stance period
are grouped. For the l-th stance period step, let Sleft,l be a
set of discrete indices with yleft,k is available. An example is
given in Fig. 5, where Sleft,l is given by

Sleft,l = {k, k + 1, k + 2, k + 3}. (25)

Note that yleft,k and yleft,k+1 are different since the camera is
moving as the body is moving. However, if yleft,i and yleft,i+1

are transformed to the world coordinate system, they should be
the same since a stance period foot is not moving. Similarly,
a set Sright,l is defined for the right foot. Let sindex(k) be
a function representing the step number given image with
discrete index k. For the example in (25), sindex is given by

l = sindex(k) = sindex(k+1) = sindex(k+2) = sindex(k+3).

Let Sfoot be the union of all Sleft,l and Sright,l: that is, k ∈
Sfoot means that at least one stance foot is observed in the
k-th image.

Stance periodSwing periodLeft foot

Discrete indices
foot is observed foot is not observed

Swing period

k k+1 k+2 k+3 k+4 ... k+9 k+10

Fig. 5. Example of stance foot set Sleft,l

Let [yfoot]C ∈ R3 be the stance foot (either left or
right foot) position represented in the camera coordinate. The
measured foot position is denoted by ŷfoot and the following
measurement model is used:

yfoot = ŷfoot + ηfoot (26)

where ηfoot is a zero mean white Gaussian measurement noise
with covariance rfootI3 ∈ R3×3.
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V. MEASUREMENT EQUATIONS

In this section, in addition to measurement equation (21)
from visual odometry algorithm, we propose two additional
measurement updating as follows. April tags at known posi-
tions provide measurement updates in initial and final stances.
Detected stance feet in Section IV are used as landmarks to
reduce estimated foot position errors.

A. Measurement equation for markers on the floor
Two A3 size papers containing 5× 7 Apriltag markers [27]

are placed both in the starting and final walking points as
in Fig. 6. Two papers are placed along the world coordinate
y axis and the distance between the left upper Apriltags of
two papers is denoted by L, which is measured with a tape
measure.

X

Walking
direction

World
coordinate
origin

D
is

ta
n

c
e

: 
L

Initial stance

Final stance

Y

Fig. 6. Markers in the starting and final points

Let [rtag,j ]C ∈ R3 be four corners of Apriltags and rimg,j ∈
R2 be the corresponding measured image coordinates. Then
the two points are related as follows:

rimg,j = fimg([rtag,j ]C) + ηimg,j (27)

where

[rtag,j ]C = C ′(qBC )(C(q)([rtag,j ]W − r)− [Pc]B). (28)

Function fimg : R3 → R2 is defined by

fimg(

 xj
yj
zj

) =

[
xj

zj
yj
zj

]
.

An image measurement noise ηimg,j ∈ R2 is assumed to be
independent Gaussian noise whose covariance is ε1I2 ∈ R2×2.
Note that [rtag,j ]W is known since the tag location on the A3
paper is known.

Attitude and position of the camera can be estimated using
the homography estimation method in [28]. Let q̂tag,k ∈ R4

and r̂tag,k ∈ R3 denote estimated attitude and position and
let q̄tag,e,k ∈ R3 and rtag,e,k ∈ R3 denote the corresponding
estimation errors, where the following is satisfied:

qk = q̂tag,k ⊗ fquat(q̄tag,k,e)
rk = r̂tag,k + rtag,k,e.

(29)

The estimation error covariance Rtag,k ∈ R6×6 is given by

Rtag,k = E{
[
q̄tag,k,e
rtag,k,e

] [
q̄tag,k,e
rtag,k,e

]′
}

= ε1

(∑Ntag,k

j=1 H̄ ′tag,j,kH̄tag,j,k

)− (30)

where Ntag,k is the number of observed tag corners in the
k-th image.
H̄tag,j,k ∈ R2×6 is given by

H̄tag,j,k =
∂fimg

∂rtag,j

∂rtag,j

∂Xk

∣∣∣
rtag,j=r̂tag,j

= 1
ẑ2i

[
ẑj 0 −x̂j
0 ẑj −ŷj

]
Jtag,j

where

[P̂tag,j ]C = C ′(qBC )(C(q̂)([rtag,j ]W − r̂)− [tC ]B) =

 x̂j
ŷj
ẑj


(31)

Jtag,j =
[
2C ′(qBC )[(C(q̂)([rtag,j ]W − r̂))×],

C ′(qBC )C(q̂)
]
∈ R3×6.

(32)

q̂tag,1 and r̂tag,1 are used as initial attitude and position.
After that only r̂tag,k is used in the following measurement
equation:

ztag,k = r̂tag,k − r̂k = Htag,kXk + ηtag,k (33)

where

Htag,k =
[

03×3 I3 03×18

]
∈ R3×24. (34)

Recall that there are two A3 papers as in Fig. 6 which are
in the starting and final points. When tags are observed in
the starting point, Rtag,k(4:6,4:6) is used as a measurement
noise covariance. When tags are observed in the final point,
the measurement noise covariance is increased to compensate
uncertainties in L. Thus, the following measurement covari-
ance is used:

Rtag,k(4:6,4:6) +

[
ε2I2 02×1

01×2 0

]
.

B. Measurement equation for the stance foot
The stance foot detected in Section IV is used as a landmark.
The detected stance foot position is given by

[yfoot]C = (CBC )′(C(q)(

[
r̄foot

0

]
− r)− [tC ]B)

= ffoot(q, r, r̄foot)
(35)

where r̄foot ∈ R2 is xy world coordinates for the stance foot
position. The z axis value is 0 since a stance foot is on the
ground.

As in SLAM algorithms [29], a new stance foot position
in the world coordinate system is estimated whenever a new
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stance foot is observed. Let ˆ̄rfoot ∈ R2 be the estimated foot
position, which can be computed from (35) once [ŷfoot]C is
given. Let r̄foot,e,m ∈ R2 be the m-th stance foot position
estimation error:

r̄foot,e,m = r̄foot,m − ˆ̄rfoot,m.

The state Xk is extended to include r̄foot,e,m term. Let the
extended state X̄m−1,k with m − 1 observed stance feet be
defined by

X̄m−1,k =


Xk

r̄foot,e,1,k
...

r̄foot,e,m−1,k

 ∈

R24

R2

...
R2

 . (36)

Let the estimation error covariance of ˆ̄Xm−1,k be denoted by
P̄m−1,k:

P̄m−1,k =

[
PX,m−1,k PX,foot,m−1,k

Pfoot,X,m−1,k Pfoot,m−1,k

]
∈
[

R24×24 R24×2(m−1)

R2(m−1)×24 R2(m−1)×2(m−1)

]
.

(37)

When m-th stance foot is newly detected, the estimated state
is extended as follows:

ˆ̄Xm,k =

[
ˆ̄Xm−1,k

ˆ̄rfoot,e,m,k

]
(38)

The state estimation error covariance P̄m,k is given by

P̄m,k =

[
P̄m−1,k P ′?,m,k
P?,m,k Pfoot,m,k

]
(39)

where

Pfoot,m,k = GXPX,m−1,kG
′
X + rfootGyG

′
y (40)

P?,m,k = GX
[
PX,m−1,k PX,foot,m−1,k

]
(41)

and GX =
∂r̄foot

∂X and Gy =
∂r̄foot

∂vfoot
are computed from (44):

GX = E12

[
2C(q̂)′[([tC ]B + CBC ŷfoot)×] I3 03×18

]
∈ R2×24

(42)
Gy = E12C(q̂)′CBC ∈ R2×3 (43)

E12 =

[
1 0 0
0 1 0

]
.

GX is computed from the following equation (ignoring
second-order error terms):

r̄foot = E12(r̂ + re + C(q̂)′(I + 2[qe×])([tC ]B
+CBC (ŷfoot + vfoot)))

= E12(r̂foot − 2C(q̂)′[([tC ]B + CBC ŷfoot)×]qe
+re + C(q̂)′CBC vfoot).

(44)

If the m-th detected foot ŷfoot,m,k has been observed
before, it is used in the Kalman filter as a measurement. Let
zfoot ∈ R3 be defined by

zfoot,m,k = ŷfoot,k − ffoot(q̂k, r̂k, ˆ̄rfoot,m,k). (45)

From (35), we have

zfoot,m,k = ffoot(qk, rk, r̄foot,m,k)− ηfoot,k
−ffoot(q̂k, r̂k, ˆ̄rfoot,m,k)

= 2(CBC )′[(C(q̂)(E′12
ˆ̄rfoot,m,k − r̂))×]q̄e,k

+(CBC )′C(q̂)(E′12r̄foot,e,m,k − re,k)− ηfoot,k.

(46)

Inserting (46) into (45), we obtain

zfoot,m,k = H̄foot,m,kX̄m,k − ηfoot,k (47)

where

H̄foot,m,k =
[
Hfoot1,m,k 03×18+2(m−1) Hfoot2,m,k

]
(48)

Hfoot1,m,k =
[
2(CBC )′[(C(q̂)(r̂foot,m,k − r̂))×],

−(CBC )′C(q̂), 03×3

]
∈ R3×9.

Hfoot2,m,k = (CBC )′C(q̂)E′12 ∈ R3×2.

When a state is extended, Htag in Section V-A should also
be extended to be compatible with the extended dimension by
filling zeros.

VI. FILTERING AND SMOOTHING ALGORITHM

In this section, the results in Section III and V are combined.
A Kalman filter is used to estimate q, r, v and rfoot, where
q̂filter, r̂filter, v̂filter and r̂filter,foot are estimated values.
Then based on the estimated value, a smoother algorithm is
applied to obtain more accurate estimation, where q̂smoother,
r̂smoother, v̂smoother and r̂smoother,foot are estimated values.

The filtering algorithm is fairly standard and is summarized
in Algorithm 1.

initialization;
while k ≤ Nimg do

time update (10);
measurement update using visual odometry (21);
if foot is detected then

if first observed then
extend state (38);

else
measurement update using the foot (47);

end
end

end
Algorithm 1: Filtering algorithm

The smoothing problem is formulated as a linear optimiza-
tion problem, where small errors in the filter estimated values
are computed. For example, the true position rk ∈ R3 can be
modeled as

rk = r̂filter,k + re,k. (49)

In the smoothing algorithm, re,k is estimated, where r̂e,k is
the estimated value. Then the position is given by

r̂smoother,k = r̂filter,k + r̂e,k. (50)
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Let the state of the smoother Xsmoother be defined by

Xsmoother =



U1

...
UNimage

bg,e
ba,e

rfoot,e,1
...

rfoot,e,Mfoot


∈ R9Nimage+6+2Mfoot

where Mfoot is the total number of detected stance periods
(both left and right feet).

The smoothing algorithm can be formulated as a linear
quadratic optimization problem:

J(X) =
∑Nimage−1
k=1 quad(ζ̄k,1, Qζ̄k,11)

+
∑Nimage

k=2 quad(zvo,k −Hvo,k(1:6,1:18)

[
Uk
Uk−1

]
, Rvo,k)

+
∑k∈Stag quad(ztag,k −Htag,k(1:3,1:9)Uk, Rtag,k(1:3,1:3))

+
∑
k∈Sfoot

quad(zfoot,sindex(k),k −Hfoot1,sindex(k),kXk

−Hfoot2,sindex(k),k rfoot,e,sindex(k),k, Rfoot,k)

+quad(b̂+ bg,e − bg,init, Pbg,init
)

+quad(b̂+ ba,e − ba,init, Pba,init
)

+quad(Uinit − U1, PU,init)
+quad(Ufinal − UNimage , PU,final)

where quad is defined by

quad(a,B) =
1

2
a′Ba.

The initial and final constraints Uinit and Ufinal are given
by

Uinit =

 fvector(q̂1 ⊗ q̂tag,1)
r̂tag,1 − r̂1

03×1 − v̂1

 ,
Ufinal =

 fvector(q̂fdiscrete(Nimage) ⊗ q̂tag,Nimage)
r̂tag,Nimage − r̂fdiscrete(Nimage)

03×1 − v̂fdiscrete(Nimage)

 .
From (8), ζ̄k,1 in the quadratic term quad(ζ̄k,1, Qζ̄k,11) is

given by

ζ̄k,1 = Uk+1 − F̄11,kUk − F̄12,k

[
bg,e
ba,e

]
.

Once the optimal X is computed, q̂smoother, r̂smoother,
v̂smoother and r̂smoother,foot can be computed (see (50)).

VII. EXPERIMENTAL SETUP AND RESULTS

A. Experiment
Experiments are performed to verify the proposed algo-

rithm. Camera frame is attached to user’s waist by velcro
tapes and buckles clips, and two reflective markers (for the
motion capture system) are mounted on top of both feet (see
Fig. 7). A motion capture system is set up with 6 cameras
from Optitrack, creating a tracking space of about 5m long in
Fig. 8.

Five healthy persons are recruited to perform the data
acquisition. Subjects information is given in Table I.

Fig. 7. Participant with equipped camera system doing the experiments.

Fig. 8. Experiment setup, volunteer walks three straight paths from
green triangle to red square through the working range of the optical
tracker system.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3227950

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 03,2023 at 08:28:44 UTC from IEEE Xplore.  Restrictions apply. 



DUC CONG DANG et al.: VISUAL INERTIAL ODOMETRY BASED GAIT ANALYSIS USING WAIST-ATTACHED RGB-D CAMERA AND INERTIAL SENSORS 9

Fig. 9. Detected stance foot from point cloud data and masked in RGB image: 1) initial states; 2) first detected right foot; 3) already detected right
foot, used as landmark; 4) first detected left foot.

Fig. 10. Estimated walking trajectory using integrating internal IMU data only, proposed filter and smoother.

TABLE I
FIVE SUBJECTS INFORMATION

Volunteer Age Weight(kg) Height(cm)
Range 26-35 55-75 161-185
Mean 30.2 62.2 170.2

Standard deviation 3.27 7.60 6.05

In the experiment, volunteers are asked to walk in a straight
line inside a long corridor. Each person walks in separated
paths with walking distance of 5, 10, and 15 meters, five times
each. At the starting and ending point of each walking path,
two identical printed Apriltag of A3 size are placed with the
same orientation. All walking paths are designed so that the
tracking range is at the middle of each path as in Fig. 8.

B. Results

Fig. 9 shows detected stance foot from point cloud depth
data, where foot candidate points a selected using a simple
threshold constraint of the height from the floor. Candidate
points are grouped to defined foot edge. An ellipse approxi-

mation algorithm is used to fit the detected foot edge. Foot
position in the camera coordinate is then calculated from
ellipse position in the RGB images.

Fig. 10 shows a 10-meter-walking example of an estimated
walking trajectory integrating the waist-mounted internal IMU
data only without any measurement updating. It is clear that
just integrating IMU data method leads to divergence.

From the proposed filter in Algorithm 1 and the smoothing
algorithm, estimated walking trajectories are given in the right-
hand side of Fig. 10. Left and right foot positions in world
coordinate system are computed. The relative position, relative
attitude from visual odometry and foot position as landmarks
are used in the measurement updating equation. The estimated
walking trajectory is improved and corrected in the smoothing
algorithm. Note that the initial foot position is slightly negative
since it is aligned with the origin of the calibrated optical
tracker system.

To evaluate the accuracy, foot positions are compared with
ground truth from optical tracker system in Fig. 11. In each
trial, three strides in 5-meter working space of optical tracking
system are selected to provide ground truth data. In total,
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Fig. 11. Compare estimated foot position with ground truth.

there are 5 (person) x 3 (path) x 5 (trial) x 3 (stride) x 2
(left,right) = 450 strides data. Since the difference in walking
paths might cause different estimated results, the number of
selected strides for calculating stride length is the same for
the whole experiment, and average stride length error over
the walking paths for each volunteer is computed and given
in Table II. The overall root mean square errors (RMSE) is
about 3.8 centimeters.

TABLE II
ESTIMATED STRIDE LENGTH ERROR (UNIT: METER).

Left Right
ID Max. error RMSE Std. Max. error RMSE Std.
1 0.043 0.033 0.017 0.039 0.033 0.014
2 0.049 0.027 0.019 0.037 0.026 0.012
3 0.075 0.067 0.031 0.056 0.047 0.029
4 0.050 0.030 0.025 0.073 0.059 0.024
5 0.057 0.036 0.024 0.046 0.020 0.017

VIII. CONCLUSION

The paper proposed a filter and smoother algorithm to
fuse IMU data with RGB-D camera data to estimate stance
foot positions and reconstruct walking trajectory. With the
IMU-Camera system attached to user waist, walking range is
unrestricted. Therefore, longer walking range can be achieved
in comparison with pressure mat or optical tracker system.
Visual odometry algorithm provides incremental attitude and
position of the camera alongside with position of the detected
stance foot as a landmark in the measurement update equations
of the filter. However, the proposed foot detection algorithm
is restricted to only stance foot due to obscuration in the
swing phases. In future works, we intend to improve the foot
detection algorithm to be able to detect foot in every gait
phases, and integrate it with the model of human body to
reconstruct shape and pose, which can be used in gait analysis
research.
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