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Abstract—Real Time Kinematic (RTK) based on
single-frequency observation is still widely used in many fields due
to the characteristics of low-cost and low-power consumption.
However, the positioning performance of single-frequency RTK
in terms of accuracy, stability, and continuity would be
significantly degraded during the harsh satellite environments. To
improve the performance, this contribution presented a model of
multi-sensor and analytical observations augmented the single
frequency RTK tightly based on a modified Psi-angle state model.
In such a model, the single frequency observations of the new
signal of BDS-3 B2b are tightly integrated with inertial
measurements, odometer data, dual-antenna attitude, and
non-holonomic constraint. To evaluate the presented model, the
typical navigation performance and the ambiguity resolution
performance are analyzed based on a set of vehicle-borne data.
Results illustrated that the Inertial Navigation System (INS)
would bring about 13.5%, 16.2%, and 12.3% position
enhancements to the BDS-3 B2b RTK mode. Such improvements
could be up to 15.9%, 16.2%, and 25.2% while adding the
non-holonomic constraint and odometer data. Besides,
non-holonomic constraint and odometer also upgrade the attitude
accuracy visibly in pitch and heading directions, with
enhancements of about 16.9% and 62.9%. In contrast,
augmentations from the dual-antenna attitude are mainly
presented in terms of heading angle with about 29.5% compared
to the RTK/INS/Odometer/NHC tight integration mode. Besides,
the convergence time of yaw angle is visibly enhanced while using
the odometer/NHC, the dual-antenna heading, or the two together.
Moreover, the ambiguity resolution performance could also be
improved while using the presented model. Due to the
enhancements in position and attitude brought by different
sensors, the ADOP performance would be improved to varying
degrees. Besides, the fixed rate and reliability of ambiguity
resolution could also be enhanced.

Index Terms—BeiDou Navigation Satellite System (BDS),
Single Frequency Real-time Kinematic (SF-RTK), Odometer,
Dual-antenna attitude, BDS-3 B2b signal
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I. INTRODUCTION
OSITIONING, Navigation, and Timing (PNT) information
have become an essential requirement for location-based

fields like the Internet of Things (IoT) [1], ocean measurements
[2], meteorology [3], and deformation monitoring [4]. Among
the current PNT technologies, Global Navigation Satellite
System (GNSS), such as BeiDou Navigation Satellite System
(BDS), present an excellent space-time sensing capability to
provide users with PNT solutions with different grade accuracy.
Currently, BDS refers to the second generation BDS (BDS-2)
and the third generation BDS (BDS-3) [5], with more than 45
satellites in orbit. In contrast to other systems (i.e., GPS), BDS
has stronger anti-jamming capability due to its hybrid orbits of
Medium Earth Orbit (MEO), Inclined Geo-Synchronous Orbit
(IGSO), and Geostationary Earth Orbit (GEO). In addition,
BDS innovatively fuses navigation information with
communication information [6]. To meet the requirements of
compatibility and interoperability of the inter-GNSS system,
BDS-3 adds three new signal frequencies, namely B1C, B2a,
and B2b, to the BDS-2 signals of B1I and B3I [7]. As described
in [8], B1C has the same frequency (1575.42 MHz) as GPS L1
and Galileo E1. B2a has the same frequency (1176.45 MHz) as
GPS L5 and Galileo E5a. B2b has the same frequency
(1207.140 MHz) as Galileo E5b. These multi-frequency signals
provide significant improvements in the cycle-slip detection [9],
ambiguity resolution [10], positioning accuracy and continuity
[11], and ionosphere removal [12]. However, the
multi-frequency receiver is high cost and high energy
consumption. Consequently, there are still a lot of applications
based on single-frequency observations.
In recent years, researchers have explored the capability of

BDS single-frequency positioning. For example, the
observation quality of BDS different signals is analyzed. In
[13], a short-baseline experiment was designed to assess the
signal quality of B1I and B2I. The result showed that the
precision of code and carrier-phase measurements on such two
frequencies are comparable to that of GPS. In [14], the
multipath effects of BDS-2 GEO satellites were studied. The
results showed that the time series of multipath errors vary from
1 m to 2 m. With the completion of BDS-3, scholars also
explored the signal quality of BDS-3. In [15], a zero-baseline
test with two Trimble Alloy receivers was designed. Results
illustrated that the BDS-3 code presents the slightest noise
compared to other GNSS systems, and the carrier noise is
comparable to these of others. The pseudo-range multipath
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effects of the three new frequency observations presented in [6]
showed that the B2b signal has the most robust anti-multipath
ability compared to the worst one of B1C. Meanwhile, the
multipath effect of B1I and B3I of BDS-3 was smaller than that
of BDS-2. In contrast, more works focused on positioning
accuracy. For example, in [16], the positioning performance of
GPS, BDS-2, BDS-3, and BDS-2+3 were compared while
adopting Precise Point Positioning (PPP) model based on GPS
L1, BDS B1I, and BDS B1C. Results showed that horizontal
accuracy is better than 0.5 m within 2.5 min at the 68%
confidence level except using BDS-2 only mode. In [17], the
static Real-time Kinematic (RTK) positioning accuracy of B1I,
B3I, B1C, and B2a were investigated under short-baseline
conditions. Results showed that millimeter-level positioning
could be achieved while using these signals. For the dynamic
applications, the positioning accuracy of B1I, B1C, and B2a of
BDS-3 adopting single frequency RTK mode were evaluated
[18]. Compared to the results of GPS L1 and BDS-2 B1I in the
complex observing environments, the RTK of GPS L1 and
BDS-3 B1I presented the worst positioning accuracy at about
meter-level, and other signals can reach decimeter-level
positioning accuracy. Such difference is mainly related to the
number of the observation quality, the tracking satellites, and
the corresponding Position Dilution of Precision (PDOP).
However, the continuous and high-accuracy positioning

results are hard to obtain during harsh GNSS environments. To
compensate for the drawback of GNSS, an integration model
based on the Extended Kalman Filter (EKF) was presented [19],
in which the GPS data and the original Inertial Navigation
System (INS) measurements are integrated. In such integration
mode, INS provides continuous high-rate results to bridge and
smooth GPS solutions. In recent years, some researchers have
devoted their research fields to the integration of multi-system
and multi-frequency GNSS observations with INS data. For
example, a multi-GNSS PPP/INS tight integration model was
provided to enhance the reliability, accuracy, and
reconvergence time of GNSS PPP [20]. In [21], a
GPS/BDS/Galileo PPP-RTK/INS tight integration model was
designed and centimeter-level positioning accuracy could be
achieved in semi-urban and urban environments. Besides, the
ambiguity recovery time was also accelerated with the aid of
INS. In [22], a GPS/BDS dual frequencies RTK/INS tight
integration model was investigated. Results showed that such a
model can significantly improve the ambiguity resolution
performance, especially at high cut-off elevations. To reduce
the cost and energy consumption in real applications, the
integration of GNSS single frequency observations and INS
data has also been carried out by some scholars. For example, a
real-time sliding estimator for the single frequency RTK/INS
tight integration was constructed [23]. Results showed that the
position accuracy could achieve decimeter-level. In [24], a
multi-GNSS single frequency RTK/INS tight integration model
was designed and the positioning performance under
short-baseline conditions was analyzed. Results showed that
the model could significantly improve the availability and
positioning accuracy of RTK in complex environments. To
limit the drift speed of INS under GNSS-denied environments,

other sensors are used. For example, a single frequency
GNSS/INS/Odometer real-time integration system based
loosely coupled structure was designed [25]. Results showed
that the overall positioning accuracy is 0.31 m, and the power
consumption is low. In [26], a GNSS/INS/Visual tight
integration model was presented, in which the observations
from single-frequency multi-GNSS RTK, IMU, and monocular
camera were tightly integrated. Results indicated that the
position accuracy could reach centimeter-lever in urban area.
Besides, the velocity and attitude could be significantly
estimated. In [27], a GNSS/INS/Lidar integration model was
provided, and the horizontal positioning error was 0.13 m under
the forested environment, which was improved by 70%,
compared to that of the GNSS/INS tight integration scheme. In
addition, some virtual observations based on the carrier’ motion
have been considered. As described in [28], the INS
measurements, GNSS data, and Non-holonomic Constraint
(NHC) could be integrated to reduce the drift of navigation
results. Besides, in [29], the contribution of NHC to INS from
the observability perspective was investigated. A simulation
experiment demonstrated that NHC could improve the
observability of attitude and IMU sensor errors. In [30], a
mobile phone-based enhanced Pedestrian Dead Reckoning
(PDR) model was designed, in which Attitude and Heading
Reference System (AHRS) algorithm and zero velocity
information in smartphones are utilized to assist RTK. Results
showed that the positioning performance in the field of
accuracy and continuity could be enhanced using the presented
model.
The above works proved that multi-sensor and motion

constraints can significantly improve the performance of RTK.
To extend the potential application area of BDS-3 RTK/INS
system and improve the navigation performance of
vehicle-borne under complex urban environments, a tight
integration model among BDS-3 B2b RTK, low-cost IMU,
odometer, dual-antenna attitude, and analytical constraint is
presented in this contribution. Compared to the previous works,
the main contributions can be summarized as (1) the odometer
and dual-antenna attitude are integrated with single frequency
RTK/INS tight integration based on BDS-3 new signal (B2b)
and a modified state model, and (2) the Ambiguity Resolution
(AR) performance of BDS-3 single frequency RTK could be
improved by the enhancements from INS, odometer, and
heading data. These contributions make the performance of
BDS-3 B2b RTK in terms of positioning accuracy, continuity,
and reliability upgrade significantly. The paper is organized as
follows. The mathematic models of the odometer, dual-antenna
attitude, and analytical constraint tightly aided BDS-3 B2b
RTK/INS integration are described in the Methodology part.
After that, a set of vehicle-borne data collected around the
Beijing’s fifth-ring road is analyzed to assess the presented
model in terms of typical positioning performance (position,
velocity, and attitude) and AR performance. Besides, the
influence of the state model on positioning accuracy and
ambiguity resolution is also presented. Then, the conclusions
are summarized.
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II. METHODOLOGY
This section provides a detailed presentation of the proposed
methods, including state models, BDS-3 B2b RTK/INS tight
integration model, odometer and non-holonomic constraint
enhanced model, dual-antenna heading constraint model, and
multi-sensor aided ambiguity resolution theory.

A. State models
As described in [20], the state function of the extended

Kalman filter for RTK/INS tightly coupled integration can be
illustrated as

, 1 , 1k k k k k k  X Φ X η (1)
with

, ,

Tn n T
k INS INS g a g a r w b w oT T s           X r v ψ b b s s N (2)

where , 1k kΦ denotes the state transition matrix; kX represents

the state parameter vector; kη is the state noise vector; n
INS r ,

n
INS v , and ψ denotes the error vector of position, velocity, and

attitude, respectively; b and s are the bias and factor errors
of inertial sensors; the subscript g and a represent gyroscope
and accelerometer; T is the wet component of the zenith
troposphere delay; the subscript b and r represent the
base-station and rover-station; os stands for the scale factor
error of the odometer; N denotes the Double-Differenced
(DD) float-ambiguities.
To weak the nonlinear errors of the extended Kalman filter,

usually the Psi-angle error model [31] is used
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where n
enω denotes the rotation rate of navigation frame

(n-frame) relative to the Earth Centered Earth Fixed frame
(e-frame) projected in n-frame; n

ieω represents the rotation rate
of inertial frame (i-frame) relative to the e-frame projected in
n-frame; ng denotes the gravity vector in n-frame; b

ibω and nf
are the gyroscope outputs and accelerometer outputs in b-frame
and n-frame; n

bC is the transition matrix from b-frame to
n-frame.
In such a Psi-angle model, the specific force terms may be

easily polluted by large biases while using low-cost IMU,
which forms an incorrect transition matrix [31]. In [32], a
modified Psi-angle model was presented to solve such problem,
which can be expressed as
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where n
inω denotes the angle rate of n-frame relative to the

i-frame projected in n-frame;
To limit IMU drift over time, the IMU sensors’ errors are

usually augmented to the state vector and modeled as
First-order Gauss-Markov processes [31].
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where  is the correlation time of the process; w is the driving
white noise.
Besides, the gyroscope noises and accelerometer noises are

processed as Angle Random Walk (ARW) and Velocity
Random Walk (VRW), respectively. Besides, the odometer
scale factor and zenith troposphere delay parameters can also
be modeled as a random walk process. The DD
float-ambiguities can be processed as Random Constant [33].
Such two stochastic models can be expressed as
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where the symbols are the same as these mentioned above.
Based on the state models in Eqs. (4) ~ (6), the transition

matrix can be achieved by applying a digital integration
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where t denotes the sampling rates of IMU, the other symbols
are the same as these mentioned above.
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B. Observation models
In this subsection, the models for integrating the

INS-updated information (position, velocity, and attitude) with
B2b observations (pseudo-range and carrier-phase), odometer
data, dual-antenna attitude, and non-holonomic
pseudo-observations are provided.

1) BDS-3 B2b RTK/INS tight integration
The core idea of B2b RTK/INS tight integration is to fuse the

INS-predicted position and B2b observations. According to
[24], the measurement function of the RTK/INS tight
integration can be illustrated as

, , ,BDS k BDS k k BDS k Z H X V (9)
with
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where ,BDS kH denotes the designed coefficient matrix; ,BDS kV

is the residual vector; ÎNS denotes the INS-predicted distance
between the antenna centers of satellite and receiver; BDSP and

BDS represent the pseudo-range and carrier-phase;

, ,T r r w b b wR F T F T      , wherein TR represents the

inter-station wet troposphere delay in slant direction [18], F is
the projection function of the troposphere delay; ,l IBp denotes
the distance form of lever-arm offset between the centers of
IMU and BDS receiver antenna [33].
By applying the Taylor series expansion on Eq. (10) around

Eq. (2), and considering the lever-arm offset and the
transformation between n-frame and e-frame, the designed
coefficient matrix can be written as
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where λ is the carrier wavelength; A denotes the designed
matrix containing the DD receiver-satellite direction vector; the
subscript m denotes the BDS-3 satellite numbers;
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of IMU and BDS receiver antenna in b-frame; 1C denotes the
transition matrix from e-frame to the n-frame, which can be
expressed as
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where B ,  , and h represent geodetic latitude, longitude,
and height; NR and MR denote the radius of curvature in prime
vertical and meridian; e is earth eccentricity.

2) Odometer and NHC enhanced B2b RTK/INS tight
integration
A vehicle-borne carrier should keep in touch with the ground,

which means that only velocity in the forward direction exists,
and the velocities in the lateral and vertical directions should be
close to zero when there are no slip and jump. It provides two
pseudo velocity observations in the motor-vehicle frame
(m-frame)

 T0 0m
NHC v (13)

The velocity in forward direction can be measured by an
odometer. Then a three-dimension holonomic constraint is
formed

T T

0 0
1 1o

m m
m mF F

NHC
o o

v v
s s

   
        

v v (14)

where m
Fv is the forward velocity measured by the odometer;

os denotes the scale error of the odometer.
The measurement function can be written as

 m m b n b b
o o b n INS ib oZ v   C C v ω l (15)

with the error disturbance expression of
      m m b n b n b b b

o o o b n INS n INS o g o ib gZ v s C C v C v l b l s             (16)

where b
ol denotes the lever-arm from the IMU center to the

odometer center in the b-frame.
The corresponding designed matrix can be expressed as

     3 3 30 0m b m b n m b m b b m
o k b n b n INS b o b o ib o q 

      H C C C C v C l C l ω v, 0 0 (17)

where the symbols are the same as these mentioned above.

3) Dual-antenna attitude enhanced B2b RTK/INS tight
integration
As mentioned in [34, 35], the estimation accuracy of the

heading angle is much lower than roll and pitch due to the weak
observability of the gyroscope in the vertical direction. To
improve heading angle accuracy, the heading angle provided by
dual-antenna BDS-3 is introduced in our work.
According to [35], the baseline vector in n-frame can be

represented by

   , y , , y ,
T Tn n n n u u u

ux z x z C (18)

where  , y ,u u ux z denotes the baseline vector in

GNSS-antenna frame; n
uC denotes the transition matrix from

GNSS-antenna-frame to the n-frame.
Then, the heading angle provided by dual-antenna can be

obtained by
 ˆ 2 y ,n natan x  (19)

where  2atan  denotes the inverse tangent function.
According to [31], the heading pseudo observation function

can be expressed by

,
ˆ

Heading kZ    (20)

, ,Heading k heading kZ H  (21)
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(22)

where  and ̂ denote the heading angles from the
INS-updated solutions and the dual-antenna BDS-3 solutions,
respectively; C denotes the direction cosine matrix for the
transformation from b-frame to n-frame; C is derived from
b
vC ; the subscripts i and j (1 , 3i j  ) are the i th line and
j th column element.

C. Multi-sensor augmented ambiguity resolution
As common sense, correct and reliable ambiguity resolution

is the key for the carrier-phase based high-accuracy positioning.
However, the AR performance based on single frequency is
generally worse due to the frequent signal outages and
low-accuracy observations, especially in a constrained and
dynamic environment [36]. Fortunately, recent researchers
showed that adding other sensors like INS could improve float
ambiguity estimation and compress the ambiguity search space
[24, 37]. To furtherly illustrate the superiority of the presented
model, the theory of multi-sensor augmented ambiguity
resolution will be introduced in this part.
To be more simplicity, the state vector can be re-expressed as

 ˆ ˆ ˆ
T

k s o aX X X X (23)
with

2

Tn
s INS    X r X (24)

where 2X denotes the state vector related to the velocity error,
IMU sensor error, and residual zenith wet delay errors; ôX
represents the scale factor error of the odometer; âX is the DD
ambiguities vector.
The prior state covariance predicted by Extended Kalman

Filter (EKF) can be expressed as

ˆ ˆˆ ˆ ˆ 2

ˆˆ ˆ ˆ ˆ ˆ 2

ˆ ˆ ˆ ˆ ˆ 2 2 2

,
ψ

ψ ψ ψ

ψ

  







  
      
     

r r rs so sa
T T

rso o oa s
T T T T

rsa oa a

P P P P P P
P P P P P P P P

P P P P P P
(25)

where the subscripts are the same as these in Eqs. (23) and (24).
Assuming that there are complete satellite outages at the last

epoch, the simplified covariances of ambiguity can be written
as

2
ˆ 0

ˆ ˆ

ˆ ˆ

0
0

 
 
 

a

sa

oa

P
P
P

(26)

where 2
0 denotes the re-initialized covariance of float

ambiguity. By applying Eqs.(10), (15), and (20), the
measurement function can be summarized as

ˆ

ˆ ˆ

ˆ ˆ

ˆˆ

0 0

0

0

0 0

s

s
so od

z o z
s a

a
s
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H

H
X

H v
V X η

H H
X
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(27)

where zV is the measurement error vector; ˆ    q qaH I
denotes the design matrix of float ambiguities; ŝH , ˆ ˆsoH , and

ˆŝψH represent the matrices of the position error, velocity error,
attitude error, IMU sensor error, and residual zenith wet delay
errors, which can be found in Eqs. (11), (17), and (22); zη is
the measurement noise vector, with the covariance matrix of

0 0 0
0 0 0
0 0 0
0 0 0





 
 
 
 
 
 

p

o

R
R

R
R

R

(28)

where pR , oR , R and R stand for the prior variance of
pseudo-range, odometer, carrier-phase, and heading angle,
respectively;
According to [38], the posterior state covariance can be

applied

  1      T TP P P H HP H R HP (29)

where the symbols are the same as the above. Substituting Eqs.
(25), (26), (27), and (28) into Eq. (29), the posterior state
covariance of the updated float ambiguities can be expressed as

1

1 1 1 2 1 1 2 12
ˆ ˆ ˆ ˆ2

ˆ1 2 2 1

  






  

   

 

  
  
    

T T T T T T T
r ψr rψ

a a a aT T T
ψ a

AC P C A ACC P C A AC P C C A
P P P P

ACC P C C A P R

(30)

where ˆ

aP denotes the prior state covariance of float

ambiguities.
According to Eq. (30), it can be concluded that ˆ


aP is only

influenced by the satellite geometry A and the prior poses
information (  , , 

   pose r rψ ψP P P P ). Assuming that there are

two prior poses information, a matrix inequality can be
expressed as

ˆ ˆ ,1 ,2,1 ,2,if
    pose posea aP P P P (31)

if the accuracy of the prior poses is high, the float ambiguity
will be better estimated. According to [39], the Ambiguity
Dilution of Precision (ADOP) is a scalar diagnostic to measure
the volume of the ambiguity search space and the intrinsic
model strength of the successful ambiguity resolution, which is
defined as
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ˆ
nADOP  aP (32)

where n denotes the dimension of the ambiguity vector.
Considering Eq. (31), Eq. (32) implies

1 2ADOP ADOP , if

,1 ,2
 pose poseP P . Therefore, it can be concluded that more

accurate poses information provides higher ambiguities fixing
rate.

D. Algorithm summary
Based on the models presented above, the algorithm can be

described by Fig. 1. According to the time synchronization
results among IMU measurements, BDS-3 observations,
odometer velocity, and dual-antenna-based heading
measurements, the integration schemes of the RTK/INS tight
integration mode, the INS only mode, INS/odometer
integration mode, odometer and INS tightly aided RTK mode,
and heading measurements tightly aided RTK/INS/odometer
mode, respectively can be adopted. In the initialization phase,
the dual-antenna BDS-3 RTK provides the initial position,
velocity, and heading attitude. Then, these information as well
as IMU raw data are adopted to provide the initial information
for the Kalman filter. Then, the compensated IMU data are used
by INS mechanization to provide the INS-predicted position,
velocity, and attitude. After the time update phase of the
Kalman filter, the measurement update of the Kalman filter will
work and the corresponding innovation vector would be
generated according to the availabilities of BDS-3 observations,
odometer measurements, and heading measurements at current
epoch. When BDS-3 data is available, the LAMBDA method is
utilized for ambiguity resolution and the “continuous”
ambiguity fixing strategy [40] is adopted for ambiguity
inheriting. In this phase, the ratio-test and model-driven
bootstrapped success rate test will be used to confirm the
correctness of the fixed ambiguities. If the searched ambiguities
pass the validation test, the selected mode can be obtained by
only using the high-precision carrier phase measurements.
Otherwise, the float solutions are feedback.

Fig. 1. Implementation of the multi-sensor and analytical
constraints augmented the BDS-3 RTK model.

III. EXPERIMENTS, EVALUATIONS, AND DISCUSSIONS

To evaluate the comprehensive performance of the presented
method in a classic urban environment, a set of two-hour
vehicle-borne data collected in Beijing, China, on December 12,
2021, was processed and analyzed. During this test,
dual-antenna multi-constellation GNSS receivers, a
MEMS-grade IMU, and an odometer sensor were rigidly fixed
on a vehicle to obtain the 1 Hz BDS-3 observations, 200 Hz
IMU measurements, 1 Hz odometer data, and the 1 Hz
dual-antenna heading observations was. The main
specifications of the IMU can be found in Table Ⅰ, which
indicates it is a low-grade MEMS IMU. The trajectory of this
test, as plotted in the top subfigure of Fig. 2, is about 26.0 km in
the west-east direction and about 39.0 km along the north-south
direction, which is located along the fifth ring road in Beijing.
In the test, the vehicle velocities are within ±35m/s, as shown in
the bottom subfigure of Fig. 2.

TABLE Ⅰ
PERFORMANCE SPECIFICATIONS OF THE IMU SENSORS

Bias Random Walk
Gyro.
(°/�)

Acce.
(mGal)

Angular
(°/ �)

Velocity
(�/�/ �)

36 3000 3.17 2.7

Fig. 2. Trajectory (top) and velocity (bottom) of the vehicle

experiment
To make the investigation clear, the solutions based on both

single-frequency observations of BDS-3 B1I and BDS-3 B2b
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were presented. In general, these measured data were analyzed
by the schemes of (1) BDS-3 B1I RTK (B1I-R), (2) BDS-3 B2b
RTK (B2b-R), (3) BDS-3 B1I RTK/INS tightly coupled
integration (B1I-RI), (4) BDS-3 B2b RTK/INS (B2b-RI)
tightly coupled integration, (5) BDS-3 B1I RTK/INS tightly
coupled integration based on the Psi-angle state model
(B1I-PRI), (6) BDS-3 B2b RTK/INS based on the Psi-angle
state model (B2b-PRI), (7) BDS-3 B1I RTK/INS/Odometer
tightly coupled integration (B1I-RIO), (8) BDS-3 B2b
RTK/INS/Odometer tightly coupled integration (B2b-RIO), (9)
BDS-3 B1I RTK/INS/Odometer/Heading tightly coupled
integration (B1I-RIOH), (10) BDS-3 B2b
RTK/INS/Odometer/Heading (B2b-RIOH), respectively. The
specific differences of these schemes are listed in Table Ⅱ. For
ambiguity procession, the ratio-test and success-rate were set to
3.00 and 0.99 [41]. In the validation, the above schemes are
compared to the reference values provided by the
Rauch–Tung–Striebel (RTS)-smoothed dual-frequency
GPS+BDS RTK/INS tight integration from Inertial Explorer
software. During the analysis part, the improvements in the
performance of Positioning, Velocimetry, and Attitude
determination (PVA) from our methods are presented in detail.

TABLE Ⅱ
SPECIFIC DIFFERENCES BETWEEN DIFFERENT SCHEMES

Schemes B2b
data

B1I
data IMU Odo Heading Psi M-psi

B1I-R × √ × × × × ×

B2b-R √ × × × × × ×

B1I-RI × √ √ × × √ ×

B2b-RI √ × √ × × √ ×

B1I-PRI × √ √ × × × √

B2b-PRI √ × √ × × × √

B1I-RIO × √ √ √ × × √

B2b-RIO √ × √ √ × × √

B1I-RIOH × √ √ √ √ × √

B2b-RIOH √ × √ √ √ × √

A. Quality of single-frequency observations
In general, observations with low quality would significantly

impact the positioning performance of these satellite-based
navigation technologies. Consequently, the qualities of BDS-3
observation in terms of available satellite number, PDOP, the
ratio of the Signal to Noise Ratio (SNR), and multipath noise
were analyzed in this subsection.

1) Satellite availability
As shown in Fig. 3, only MEO satellites were tracked during

the test. The availability of satellites and the corresponding
PDOP indicate that there are frequent partial and complete
satellite signal outages during the test. The number of a such
signal-outage phenomena amounts to 453. Since the
performance of RTK is highly related to the continuity of
carrier phase, it could be a prognosis that its positioning
accuracy would be rather low because of the frequent

re-convergence or re-initialization caused by the signal outages.
According to the statistics, the satellites number of B2b and B1I
on average are 7.1 and 7.2, and the corresponding PDOP are 3.0
and 3.5.

Fig. 3. Sky-plot of the observed BDS-3 satellites (top),
available number of satellites (middle) and the corresponding
PDOP (bottom) of BDS-3 B2b and B1I in the vehicle test.

2) SNR and multipath
Besides available satellites, the observation qualities in terms

of SNR and multipath noise are also essential indexes for RTK
positioning. The information of SNR and multipath during this
test are provided in Figs. 4 and 5. Accordingly, the SNR values
of B1I and B2b signals range from 30 dB to 55 dB, with values
on average of 48.64 dB and 47.28 dB. The corresponding
Root-Mean-Square (RMS) values are about 48.70 dB and 47.38
dB. About 81.32% B2b signals and 93.84% B1I signals are
more than 45 dB on average. Compared to [15], the signal
tracking strength in this test is supposed to be strong. We also
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noticed that the SNR of C44 is lower than that of the other
satellites. This is because of the lower-evaluation angle, as
plotted in the top subfigure in Fig. 3. Besides, the multipath in
this test is visible. According to the plots, the multipath strength
of B1I and B2b within ±2 m, which is close to the solutions in
[15]. Similar to SNR, the observation quality on B1I is higher
than those on B2b. Meanwhile, it also can be found that the
SNR and multipath are strongly related to the available
satellites.

Fig. 4. The Cumulative Distribution Functions (CDF) of
signal/noise ratio of BDS-3 B2b (top) and BDS-3 B1I (bottom).

Fig. 5. The histograms of pseudorange multipath of BDS-3 B2b
(top) and BDS-3 B1I (bottom).

B. Enhancements on vehicle-borne single-frequency PVA
The performance of the presented method in terms of

position accuracy, velocity accuracy, and attitude accuracy are
presented in this part.

1) Impacts on positioning
Shown in Fig. 6 are the position differences of B2b-based

modes by comparing with the reference values, and the
corresponding RMSE results are listed in Tables Ⅲ. It can be
seen that the positioning performance of RTK-only mode could
be reached decimeter-level at the majority of epochs, which
satisfy the conclusions in [18]. However, there are still many
epochs with positioning errors bigger than one meter.
Comparing to the observability of BDS-3 satellites in Fig. 3, it
can be concluded that such accuracy degradation epochs are
strongly related to the weak satellite availability periods.

Fig. 6. Position differences of the BDS-3 B2b RTK (B2b-R),
BDS-3 B2b RTK/INS (B2b-RI), BDS-3 B2b
RTK/INS/Odometer (B2b-RIO), and BDS-3 B2b
RTK/INS/Odometer/Heading (B2b-RIOH).

With the aid of INS, the positioning performances in terms of
accuracy, stability, and continuity are greatly upgraded.
Accordingly, the positioning performance of the BD3-B2b
RTK/INS tight integration in the north, east, and down
components are upgraded to 0.179 m, 0.192 m, and 0.524 m,
with the improvements of 13.5%, 16.2%, and 12.3%, compared
to the solutions of BDS-3 B2b RTK-only mode. Besides, it can
see that the periods without RTK-only outputs also provide
solutions in RTK/INS tight integration mode. However, due to
the frequent complete signal outages in this test, the accuracy of
RTK/INS tight integration mode during these periods will drift
with time. Such position drifts could be weakened (i.e., 2640 s)
after introducing the constraints of the odometer and NHC.
Accordingly, the position RMSE values in the three directions
are up to 0.174 m, 0.192 m, and 0.511 m, with about extra 2.8%,
0.0%, and 2.5% improvements. Here, we noticed that the
position RMSE values of BDS3-B2b
RTK/INS/Odometer/NHC tight integration are close to that of
heading measurements-assisted BDS3-B2b
RTK/INS/Odometer/NHC tight integration. This phenomenon
may be due to the fact that heading observations mainly
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affected the accuracy of attitudes estimation, which can be
concluded from Eq. (22). Such attitude influence is limited and
only presents effects on the position from level-arm correction.
For instance, only millimeter-level position enhancements
appear in the north and vertical components.

Fig. 7. Position differences of the BDS-3 B1I RTK (B1I-R),
BDS-3 B1I RTK/INS (B1I-RI), BDS-3 B1I
RTK/INS/Odometer (B1I-RIO), and BDS-3 B1I
RTK/INS/Odometer (B1I-RIOH).

As a comparison, we also provided the position results of
BDS-3 B1I in Fig. 7. According to the statistics, B2b solutions
present a little higher accuracy in the north and vertical
direction with the corresponding average improvements of
15.3% and 2.3%, and a little worse accuracy in the east
component with about 10.7% decrements. Such differences
may be related to the satellite observation quality. However, the
accuracy in three-dimensional of the B1I-based solutions are
close to these of the B2b-based solutions.

Fig. 8. Position differences of the BDS-3 B1I RTK/INS with
Psi model (B1I-PRI), BDS-3 B1I RTK/INS with M-Psi model
(B1I-RI), BDS-3 B2b RTK/INS with Psi model (B2b-PRI),
BDS-3 B2b RTK/INS with M-Psi model (B2b-RI).

TABLE Ⅲ
POSITION RMSE OF DIFFERENT SOLUTIONS

Schemes North (m) East (m) Down (m)

B2b-R 0.207 0.229 0.683

B2b-RI 0.179 0.192 0.524

B2b-PRI 0.179 0.191 0.524

B2b-RIO 0.174 0.192 0.511

B2b-RIOH 0.173 0.192 0.509

B1I-R 0.246 0.187 0.627

B1I-RI 0.208 0.178 0.550

B1I-PRI 0.208 0.178 0.547

B1I-RIO 0.206 0.176 0.544

B1I-RIOH 0.206 0.175 0.544

Besides, we also investigated the effect of different state
modes of multi-sensor integration system on its positioning
accuracy. Fig. 8 shows the position differences of RTK/INS
tight integration based on the Psi-angle model and the Modified
Psi-angle model (M-Psi). According to the statics in Table Ⅲ,
the results based on the above two models are nearly identical.
This is because the M-Psi model, a modified version of the Psi
model, is mainly designed to solve the problem of the existence
of the polluted specific force. During the test, the carrier cannot
reach such high-speed motion in most epochs (as shown in Fig.
1). Therefore, the specific force has a meager impact on the
state prediction.
According to the conclusions above, the BDS-3 positioning

performance in terms of accuracy, reliability, and continuity
could be gradually enhanced using the low-cost IMU, odometer,
NHC, and heading measurements.

2) Impacts on velocimetry
Velocity and attitude are also the basic navigation

parameters. Therefore, the differences in velocity are depicted
in Figs. 9 and 10, and the corresponding RMSE are listed in
Table Ⅳ. Accordingly, the velocity RMSE of BDS-3 B2b
RTK/INS tight integration are 2.1 cm/s, 1.9 cm/s, and 3.1 cm/s
in the three directions, with the enhancements of 50.0%, 38.7%,
and 70.5% compared to the BDS-3 B2b RTK-only mode. After
introducing the odometer measurements and NHC into
RTK/INS tight integration, the velocity RMSE values are
upgraded to 2.1 cm/s, 1.8 cm/s, and 2.3 cm/s, with another 0.0%,
5.3%, and 25.8% improvements in the north, east, and down
directions. To some extent, such improvements in horizontal
are not obvious. But it is visible in the vertical direction. This is
due to the strength of satellite-user geo-structure being strong in
horizontal and weak in vertical. While applying the
odometer/NHC, the geo-structure in the vertical direction can
be significantly improved. Therefore, high accuracy velocity in
environments with good satellite tracking can be provided by
using GNSS/INS tight integration, and the velocity accuracy in
vertical can be visibly enhanced after introducing

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3227019

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 03,2023 at 08:21:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL

odometer/NHC [20]. While suffering satellite signal outages,
the velocity observations can be strongly and directly observed
by odometer/NHC (as shown in Eq. (14)), which would retain
the accuracy of velocity. For example, the north velocity
differences of scheme B2b-RI drift to about ±30 cm/s at epochs
of 5090 s and 6290 s. But such drifts completely disappear
while using the B2b-RIO mode. Similar to the position
performance, the velocity results of B2b-RIOH are close to that
of B2b-RIO. Besides, the velocity accuracy of BDS-3
B1I-based solutions is near to these B2b-based solutions, and
the velocity based on the M-Psi-angle model are comparable to
that of based on the Psi-angle model.

Fig. 9. Velocity differences of the BDS-3 B1I RTK (B1I-R),
BDS-3 B2b RTK (B2b-R), BDS-3 B1I RTK/INS (B1I-RI),
BDS-3 B2b RTK/INS (B2b-RI), BDS-3 B1I
RTK/INS/Odometer (B1I-RIO), BDS-3 B2b
RTK/INS/Odometer (B2b-RIO), BDS-3 B1I
RTK/INS/Odometer (B1I-RIOH), BDS-3 B2b
RTK/INS/Odometer/Heading (B2b-RIOH).

Fig. 10. Velocity differences of the BDS-3 B1I RTK/INS with
Psi model (B1I-PRI), BDS-3 B1I RTK/INS with M-Psi model
(B1I-RI), BDS-3 B2b RTK/INS with Psi model (B2b-PRI),
BDS-3 B2b RTK/INS with M-Psi model (B2b-RI).

TABLE Ⅳ
VELOCITY RMSE OF DIFFERENT SOLUTIONS

Schemes North East Down

(cm/s) (cm/s) (cm/s)
B2b-R 4.2 3.1 10.5

B2b-RI 2.1 1.9 3.1

B2b-PRI 2.1 1.8 3.2

B2b-RIO 2.1 1.8 2.3

B2b-RIOH 2.1 1.8 2.3

B1I-R 5.1 3.4 10.0

B1I-RI 2.0 1.7 2.4

B1I-PRI 1.8 1.5 2.3

B1I-RIO 1.9 1.6 1.8

B1I-RIOH 1.9 1.6 1.8

3) Impacts on attitude determination
The differences in attitude are depicted in Figs. 11 and 12.

According to the attitudes results in Table Ⅴ, the accuracies of
heading angles of RTK/INS tight integration are lower than
these of roll and pitch due to the weak observability of the
gyroscope in the vertical direction [24]. Fortunately, such
observability can be significantly enhanced by using the
odometer/NHC, and the heading angle can also be measured
directly by dual-antenna heading measurements (as shown in
Eqs. (16) and (22)). Accordingly, the attitude RMSE values of
BDS-3 B2b RTK/INS/Odometer/NHC tight integration are
0.087°, 0.054°, and 0.122°, with enhancements of 16.9% and
62.9% in pitch and heading angles, compared to these of BDS-3
RTK/INS tight integration. After introducing the heading
measurements provided by dual-antenna GNSS solutions, such
heading improvements could be up to 73.9 %. Meanwhile, we
noticed that the convergence time of yaw angle is visibly
enhanced while using the odometer/NHC, the dual-antenna
heading, or the two together. Similar to the results of position
and velocity, the accuracies of BDS-3 B1I-based solutions are
close to these of B2b-based solutions. While applying different
state models, we noticed that the heading accuracy based on the
Psi-angle model is litter higher than that of these based on the
M-Psi-angle model, which presents about 10.3% and 13.8%
while using the BDS-3 B2b and B2I observations, respectively.
We noticed that the largest heading angle difference between
the M-Psi and Psi model occurs at 4675 s. In such an epoch, the
velocity in the horizontal direction reaches the maximum of
31.078 m/s (as shown in Fig. 2). Therefore, it can be concluded
that the high-speed motion amplifies the effect of specific force
terms on state estimates.
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Fig. 11. Attitude differences of the BDS-3 B1I RTK (B1I-R),
BDS-3 B2b RTK (B2b-R), BDS-3 B1I RTK/INS (B1I-RI),
BDS-3 B2b RTK/INS (B2b-RI), BDS-3 B1I
RTK/INS/Odometer (B1I-RIO), BDS-3 B2b
RTK/INS/Odometer (B2b-RIO), BDS-3 B1I
RTK/INS/Odometer (B1I-RIOH), BDS-3 B2b
RTK/INS/Odometer/Heading (B2b-RIOH).

Fig. 12. Attitude differences of the BDS-3 B1I RTK/INS with
Psi model (B1I-PRI), BDS-3 B1I RTK/INS with M-Psi model
(B1I-RI), BDS-3 B2b RTK/INS with Psi model (B2b-PRI),
BDS-3 B2b RTK/INS with M-Psi model (B2b-RI).

TABLE Ⅴ
ATTITUDE RMSE OF DIFFERENT SOLUTIONS

Schemes Roll (°) Pitch (°) Heading (°)
B2b-RI 0.086 0.065 0.329

B2b-PRI 0.087 0.064 0.295

B2b-RIO 0.087 0.054 0.122

B2b-RIOH 0.090 0.054 0.086

B1I-RI 0.089 0.057 0.340

B1I-PRI 0.089 0.059 0.293

B1I-RIO 0.088 0.050 0.124

B1I-RIOH 0.092 0.050 0.068

C. Improvements in single-frequency DD ambiguity
resolution
As described in the Methodology part, ADOP, to a great

extent, is an approximate description of the average accuracy of
the DD float ambiguity. This section will present the impacts of
the presented method on single-frequency DD ambiguity
resolution.
1) Impacts on ADOP
According to [42], the ambiguity success-rate can be larger

than 0.999 while the ADOP is smaller than 0.12. Figs. 13 and
14 showed the time series of ADOP values calculated by
different modes based on BDS-3 B2b and B1I SF observations,
respectively. The corresponding RMS are listed in Tables Ⅵ
andⅦ. Accordingly, the ADOP RMS values based on B2b are
0.594, 0.0356, 0.0352, 0.0263, and 0.0262 for the schemes R,
RI, PRI, RIO, and RIOH. Similarly, the corresponding ADOP
RMS values for B1I-based schemes are 0.590, 0.0585, 0.0582,
0.0435, and 0.0432. Visibly, the above results are consistent
with the theoretical part in Subsection “Multi-sensor
augmented ambiguity resolution”. By integrating with extra
sensors, the ambiguity accuracy in terms of ADOP would be
improved to varying degrees. Such phenomenon is mainly due
to the different accuracy of position and attitude in different
integration modes. For example, the scheme RIOH provides the
greatest improvement in position and attitude accuracy (the
smallest RMSE of position and attitude). Therefore, the
corresponding ADOP is the lowest one among all schemes.
Generally, the presented model could improve ambiguity
accuracy and compress the ambiguity search space.

Fig. 13. Time series of ADOP value of BDS-3 B2b solutions.

Fig. 14. Time series of ADOP value of BDS-3 B1I solutions.

2) Impacts on reliability of ambiguity resolution
Usually, the position error should be closed to zero while DD

ambiguities are fixed accurately. However, such a character
would not be satisfied by the biased ambiguities. According to
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[24], the biased ambiguity would lead to a jump in terms of
position error. Figs. 15 and 16 show the differences in position
errors based on B2b and B1I in the adjacent epoch under the
ambiguity fixed condition. It can be seen that most of the jump
phenomenon in RTK disappeared after adding INS
augmentation, and such disappearance are more obvious after
furtherly introducing the enhancements of odometer/NHC and
heading measurements. This is because the integration of IMU
data, odometer data, and heading measurements could restrain
the white noise-depended variations of the float solution (as
listed in Tables Ⅵ and Ⅶ) and improve the ambiguity
accuracy (as described in ADOP). It contributes to reduce the
probability of generating a biased ambiguity.

Fig. 15. The differences of position errors in the adjacent epoch
of the BDS-3 B2b modes of R, PRI, RI, RIO, and RIOH under
the ambiguity fixed condition.

Fig. 16. The differences of position errors in the adjacent epoch
of the BDS-3 B1I modes of R, PRI, RI, RIO, and RIOH under
the ambiguity fixed condition.

Under the condition of float ambiguity, the position RMSE
values of BDS-3 B2b RTK/INS tight integration are 0.305 m
and 0.573 m, with the enhancements of 13.6% and 21.9% in
horizontal and vertical directions, compared to the solutions of
RTK-only. After the fusion of odometer/NHC data, such
percentages are up to 14.2% and 23.4%. After furtherly adding
the heading measurements, the corresponding improvements
are slighter up to 14.6% and 23.4%. Similar enhancements can
also be found in the B1I-based solutions. Under the condition of
fixing ambiguity, the position errors under the conditions of the
Biased Fixed (BF) ambiguity and the Un-Biased Fixed (UBF)
ambiguity of different modes in horizontal and vertical
components are shown in Figs. 17 and 18. The corresponding
RMSE are listed in Tables Ⅵ and Ⅶ. Accordingly, the
ambiguity fixed rate of BDS-3 B2b are 29.8%, 31.0%, 31.1%,
30.5%, and 30.7% for schemes of R, RI, PRI, RIO, and RIOH,

and the corresponding fixed rate of BDS-3 B1I are 16.3%,
17.9%, 17.5%, 18.2%, and 18.3%. Besides, the BF rate is
gradually decreased with the enhancements of multi-sensors.
According to the statistics, the BF rate of BDS-3 B2b RIOH is
5.9%, with reductions of 10.8%, 1.9%, 2.0%, and 0.01%
compared to the other four modes, and that of BDS-3 B1I
RIOH is 4.7% with reductions of 4.7%, 0.4%, 0.5 %, and
0.02%. The position RMSE values of BDS-3 B2b RTK/INS
tight integration in horizontal and vertical components are
0.232 m and 1.163 m, with enhancements of 22.8% and 9.9%
compared to the solutions of BDS-3 B2b RTK-only. The
percentages in horizontal are up to 45.3% after applying the
odometer/NHC/heading measurements augmentation. Similar
improvements can also be found in the B1I-based solutions. It
is reasonable to conclude that the presented model could
smooth the position solutions and reduce the probability of
large errors. For the solutions of UBF ambiguity, the position
accuracies of BDS-3 B2b on average are 0.111 m and 0.240 m
in horizontal and vertical directions, which is higher than that of
BD3 B1I (0.227 m and 0.374 m). Besides, we noticed that the
different state models hardly influence the positioning accuracy
of BF or UBF. But the solutions based on the M-Psi-angle
model provide better results in terms of fixed rate and UBF rate.

Fig. 17. Position errors under the conditions of float/biased
fixed ambiguity (BF) /unbiased fixed ambiguity (UBF)
ambiguity of the BDS-3 B2b modes of R, PRI, RI, RIO, and
RIOH in horizontal and vertical directions.

Fig. 18. Position errors under the conditions of float/biased
fixed ambiguity (BF) /unbiased fixed ambiguity (UBF) of the
BDS-3 B1I modes of R, PRI, RI, RIO, and RIOH in horizontal
and vertical directions.

TABLE Ⅵ
POSITION RMSE OF THE BDS-3 B2B MODES OF R, RI, PRI,
RIO, AND RIOH UNDER THE CONDITIONS OF FLOAT/BIASED
FIXED AMBIGUITY (BF) /UNBIASED FIXED AMBIGUITY (UBF).
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Schemes B2b R PRI/RI RIO RIOH

Float (m)
Horizontal 0.353 0.304/0.305 0.303 0.302

Vertical 0.734 0.576/0.573 0.562 0.562

UBF(m) Horizontal 0.118 0.111/0.112 0.108 0.107

Vertical 0.280 0.230/0.232 0.230 0.229

BF(m) Horizontal 0.300 0.206/0.232 0.164 0.164

Vertical 1.181 1.126/1.163 1.204 1.200
ADOP 0.0594 0.0352/0.0356 0.0263 0.0262

Fixed-rate 29.82% 31.03%/31.11% 30.46% 30.74%
BF-rate 16.70% 7.92%/7.86% 5.94% 5.93%

TABLEⅦ
POSITION RMSE OF THE BDS-3 B1I MODES OF R, RI, PRI, RIO,
AND RIOH UNDER THE CONDITIONS OF FLOAT/BIASED FIXED

AMBIGUITY (BF) /UNBIASED FIXED AMBIGUITY (UBF).
Schemes B1I R PRI/RI RIO RIOH

Float (m)
Horizontal 0.324 0.281/0.282 0.279 0.278

Vertical 0.656 0.572/0.576 0.572 0.573

UBF(m) Horizontal 0.203 0.234/0.233 0.233 0.232

Vertical 0.357 0.383/0.381 0.374 0.375

BF(m) Horizontal 0.282 0.247/0.250 0.248 0.248

Vertical 0.954 0.706/0.706 0.719 0.719
ADOP 0.0590 0.0582/0.0585 0.0435 0.0432

Fixed-rate 16.27% 17.52%/17.68% 18.23% 18.31%
BF-rate 9.39% 5.18%/5.13% 4.74% 4.72%

IV. CONCLUSIONS
To extend the potential application area of BDS-3
single-frequency RTK and improve the navigation performance
of vehicle-borne under complex urban environments, we
present a multi-sensor and analytical observations tightly
augmented the single-frequency RTK model based on a
modified Psi-angle state model and BDS-3 new signal B2b. In
such a model, the BDS-3 B2b observations are tightly
integrated with low-cost MEMS IMU data, odometer
measurements, dual-antenna attitude, and non-holonomic
constraint. After describing the corresponding mathematical
models in detail, a set of vehicle-borne data collected along the
fifth ring road of Beijing was processed and analyzed to present
the comprehensive performance of the presented model in
terms of positioning, velocimetry, attitude determination, and
ambiguity credible fixing rate. According to the results, the
position RMSE of RTK/INS tight integration could bring about
13.5%, 16.2%, and 12.3% enhancements, compared to these of
the BDS-3 B2b RTK-only mode. While using the
odometer/NHC/dual-antenna attitude aided RTK/INS/ tight
integration, the position accuracy would be further enhanced.
Such conclusions could also be found in the solutions of
velocity and attitude. However, the attitude enhancements are
mainly in the heading angle due to the observability
improvements of the gyroscope in the vertical direction and the
direct observability of the heading angle. Besides, the
performance of ambiguity resolution could also be improved
while using the presented model, which mainly benefits from

the enhancements in position and attitude. similarly, it also
emerged that the solutions of the M-Psi-angle model achieved
better results in terms of unbiased fixed ambiguity rate.
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