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Abstract: This study proposed an approach for robot localization using data from multiple low-cost sensors with two goals in 
mind, to produce accurate localization data and to keep the computation as simple as possible.  The approach used data from 
wheel odometry, inertial-motion data from the Inertial Motion Unit (IMU), and a location fix from a Real-Time Kinematics 
Global Positioning System (RTK GPS).  Each of the sensors is prone to errors in some situations, resulting in inaccurate 
localization.  The odometry is affected by errors caused by slipping when turning the robot or putting it on slippery ground.  
The IMU produces drifts due to vibrations, and RTK GPS does not return to an accurate fix in (semi-) occluded areas.  None 
of these sensors is accurate enough to produce a precise reading for a sound localization of the robot in an outdoor environment.  
To solve this challenge, sensor fusion was implemented on the robot to prevent possible localization errors.  It worked by 
selecting the most accurate readings in a given moment to produce a precise pose estimation.  To evaluate the approach, two 
different tests were performed, one with robot localization from the robot operating system (ROS) repository and the other with 
the presented Field Robot Localization.  The first did not perform well, while the second did and was evaluated by comparing 
the location and orientation estimate with ground truth, captured by a hovering drone above the testing ground, which revealed 
an average error of 0.005 m±0.220 m in estimating the position, and 0.6°±3.5° when estimating orientation.  The tests proved 
that the developed field robot localization is accurate and robust enough to be used on a ROVITIS 4.0 vineyard robot. 
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1  Introduction  

The use of robotic systems in agriculture is on the rise.  In 
recent years alone, a number of new solutions have been developed.  
While milking[1] and inspection[2,3] robots are already commercially 
available, it is still not the case for some promising solutions like 
robots for weeding[4], fruit picking[5], or spraying[6], which are still 
in the prototype phase.  One of the challenges is the working 
environment in nature with its changing conditions that affect the 
performance of such robotic platforms.  Hence, a robust 
localization algorithm[7-9] is needed, which presents a fundamental 
part of subsequent methods. 

Localization is the process performed by a robot in order to 
determine its position and orientation within a certain environment, 
enabling the robot to perform future decisions[10].  However, the 
localization cannot easily be solved due to sensory uncertainties 
that might occur and can accumulate errors over time.  A solution 
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to this challenge lies in the sensor fusion approach[11,12] which 
minimizes errors and maximizes the accuracy of the localization. 

Shalal et al.[13] described an approach to use localization based 
on camera and laser scanner data fusion to construct a local orchard 
map.  It does so by implementing Extended Kalman filter (EKF) 
to develop a local orchard map of the individual trees, which also 
helped to improve the precision of in row-navigation.  The authors 
report an average error of 0.103 m for position and 3.32° for 
orientation. 

The work from Chen et al.[14] presented a sensor fusion based 
approach to localize a mobile platform by using readings from four 
diagonally placed ultrasonic sensors and cameras.  The ultrasonic 
sensors measure the distances to the tree trunks, while the cameras 
help to determine the angle at which the tree has been detected.  
This way an average localization error of 62 mm was achieved for 
the selected test cases, but no orientation accuracy was reported by 
the authors. 

Precise localization of the mobile wheeled robot is also 
presented by Nemec et al.[15] which was based on the sensory 
fusion of odometry (ODO), visual artificial landmarks, and inertial 
sensors.  It used simple implementation and is therefore 
interesting for real-time processing and low-cost hardware as it is 
approximately four times cheaper computationally than EKF filters 
and promises a Root Mean Square (RMS) error below 5 mm.  
However, it relied on landmarks, which are usually not present in 
outdoor environments.  In addition, the results were calculated 
based on simulations and real-world testing would pose additional 
challenges, affecting the overall results. 

As presented in the previous paragraphs, robotic systems 
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nowadays include several sensory systems.  These usually include 
inertial motion units, LiDAR systems, encoders, and global 
positioning systems.  Upon using the information provided by 
these sensors, several localization approaches can be built using 
one of the sensors.  The simplest is odometry which summarizes 
the movement of the wheels of the robot.  However, on wet 
soil/sand-covered surfaces or when the robot is turning, it might 
fail and produce errors due to the wheels slipping, which leads to 
incongruent encoder readings.  The inertial units include 
gyroscopes, accelerometers, and magnetometers to measure the 
angles of the rotations, and accelerations to produce speeds and 
relative positions of the robot while moving.  These systems are 
not perfect and can be influenced by other metallic objects in the 
proximity influencing the magnetometers, or they can be affected 
by noise, like the one produced by vibrations of internal 
combustion engines.  The third is satellite navigation systems, like 
RTK receivers, which are becoming cheaper and more accessible 
with time.  Of course, they still rely on the received signals from 
satellites and base stations that correct and improve the accuracy.  
In general, their performance is good, but in some cases such as 
outside interferences of the signal, canyon effects, and occlusions 
by trees or buildings, they will produce inaccurate or false readings.  
The last type of sensor is the LiDAR sensor which has its 
limitations in range, placement on the robot, and the number of 
channels.  Like this, all can fail or is insufficient at a given time, 
so a smart switching algorithm is required to include or exclude 
their readings in a given time frame.  In this work, one such 
approach was presented and evaluated on a prototype vineyard 
robot.  

2  Materials and methods 

2.1  Rovitis and Rovitis 4.0 robots 
Rovitis is a vehicle concept for the management of grapevine 

fields[11] which reduces the harm that frequent contact with 
chemicals may lead to[17].  For example, in a single yearly 
production season, a vine grower may come in contact with 
potentially harmful products at least 16 times for every hectare.  If 
this is done via the robot, it reduces the exposure of the vine grower 
to chemicals and if this is done in autonomous mode, the vine 
grower may do some other work while the chemicals are applied to 
the plants.  All this is possible with an assembly of mechanical, 
mechatronics, and electrical hardware components controlled by 
computer programs installed on an onboard computer unit.  

To build a reliable field robot localization, two different robots 
were used.  The original Rovitis robot[16] was used when the 
algorithm in this study was developed, and the Rovitis 4.0[16] was 
used to finetune the parameters and evaluate the results.  

The original Rovitis vineyard robot was based on a 414HY 
Dodich excavator machine (Dodich, Italy), that was modified with 
variable displacement closed circuit axial piston pumps.  The 
human-machine interfaces were removed, in order for it to be used 
as a field robot.  The newer Rovitis 4.0 is based on a 
RoboGREEN remote-controlled platform (Energreen, Italy) with a 
40 Horse Power (HP) engine, where the main difference is that it 
uses tracks, while the Dodich platform used wheels.  Both 
platforms were retrofitted with IT systems and are based on a 
skid-steer drive principle.  For ensuring mechanical safety, a set of 
mechanical bumpers were installed on both platforms with sensors 
mounted on the proper points of the platforms. 

Both platforms include mechatronics and electrical hardware 
for providing a way of automatic guidance to the robots.  The 

onboard computational unit is in charge of the overall control, with 
all sensors connected to efficiently control the peripherals.  To 
control the platform, proportional pressure control drivers were 
included to regulate the amount of oil going onto the oil motors, 
with an electrical regulator as an interface and an electric linear 
actuator for throttle control. 

Sensors were mounted on the platform to provide 
environmental input data for the control algorithms.  These 
include the following sensors: a Micro-Electro Mechanical 
System-based (MEMS-based) Phidgets spatial Inertial Motion Unit 
(IMU)[18], a SICK LMS111[19] for Rovitis, and a Velodyne 
VLP16[20] for Rovitis 4.0 LiDARs, wheel encoders, and a Piksi 
RTK-GPS receiver[21]. 

The mechanical base is controlled by the developed control 
algorithms installed on the onboard computational unit.  The 
chosen operating system is Ubuntu Linux 16.04 LTS distribution 
with an installed meta operating system, ROS[19]. 

 

 
a. Original Rovitis 

 

 
b. Rovitis 4.0 

Figure 1  Original Rovitis and the Rovitis 4.0 robots  
 

2.2  Localization 
The process of determining the robots’ pose and orientation in 

space is called localization.  For the 2D case, the robot’s current 
position p can simply be represented by a vector as, 
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where, x and y are coordinates; θ is the orientation of the robot 
based on an initial set coordinate system.  When the robot moves 
and reaches a new coordinate in space, going from pn to pn+1, it 
might have a new orientation as shown by Equation (2). 
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where, xn and yn are the current movements along X- and Y-axes, 
accordingly; θn represents the change of orientation from the last 
calculation of localization or step n.  The parameters used for the 
new step can be produced by using different sensors, as shown by 
Equation (3). 
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where, weights a, b, and c can use all of the sensors equally, put an 
emphasis on one and (partly) discard the other(s), or simply enable 
the best one in a given situation, as shown in Section 3. 

With each iteration of localization, an error is produced as a 
difference between the accurate and actual parameters caused by 
roundup and measurement errors (En) of the sensors shown in 
Equation (4). 

accurate| |n nE p p= −                 (4) 
where, paccurate represents the true coordinates and orientation of the 
robot.  In order to achieve the most accurate localization En must 
be minimal as shown by Equation (5). 

accurate accurate accuratemin(| |,  | |,  | |)n ODO IMU GPSE p p p p p p= − − −  (5) 
where, pODO, pIMU, and pGPS correspond to the coordinates and 
orientation calculated from the odometry, IMU sensor, and GPS, 
respectively.  Which sensor can produce a minimal En, can be 
determined empirically or by comparing the reading with the other 
sensors. 

 
a. Field robot localization 

(FRL) 
b. Odometry (ODO) c. Inertial motion unit (IMU) d. Real Time Kinematics Global 

Positioning System (RTK GPS) 
 

Figure 2  Sensor-specific state machine for choosing the right robot localization sensory system 
 

2.3  Field robot localization algorithm 
Well known and widely used localization algorithm in the 

ROS community was developed by Charles River Analytics[7,8].  
However, the reasons why it was not used as part of the Rovitis 
robot should be made clear.  The robot itself is built on different 
sensory systems that might produce accurate readings most of the 
time, but there are situations when they fail.  In these cases, the 
approach misses completely and should not be used on a robotic 
system, including low-cost sensory systems.  

So, in order to successfully localize the robot, a custom-made 
field robot localization (FRL) algorithm was developed that uses 
three different sensory systems in combination with information 
regarding the linear and angular speeds set by the path or row 
following algorithms.  The information regarding wheel 
movement, and odometry, is captured by REP200[23] and 
connected to Phidgets high-speed encoder[24], inertial information is 
provided by Phidgets spatial IMU[18], and Navsat Pixi RTK-GPS[18] 
for the satellite navigation part.  The RTK-GPS system used 
default settings and measurements from the GPS and GLONASS 
satellites.  As explained in the introduction, none of these sensors 
is accurate enough to produce good localization results on their 
own.  This is the reason why a sensor-specific state machine was 
implemented to solve this problem and as depicted in Figure 2.  
The following paragraphs summarize the situations where each 
sensory system is acceptable at a time and which one should be 
temporarily discarded. 

The odometry-based system works well when the robot is 
moving straight.  So, it is used to calculate the position of the 
robot when linear speed is more than 0 and angular equal to 0 or 
close to 0 if no other sensor system is available at that time.  If the 

robot is turning, the odometry is disabled due to the nature of the 
skid steer system, which causes the slipping of the wheels/tracks 
used for moving and turning the robot. 

The low-cost inertial unit on the robot works great when the 
internal combustion engine of the robot is now working, but when 
it is, it is greatly affected by the vibrations caused by the engine.  
The vibrations cause noise, and the readings drift over time, even if 
the robot is not moving.  This means that, in general, the readings 
from this sensor would be rejected, but as the robot lacks 
information regarding the orientation when rotating, it can be used 
differentially in a short period of time to calculate the orientation of 
the robot for a short time frame when there is no alternative.  
Once the other sensors produce good enough readings, the 
estimates of the IMU sensor are fixed, and the sensor is reset. 

Navsat Pixi offers an accurate RTK-GPS system that, in most 
situations, works well.  The system, of course, has to have a fix 
and has to receive accurate information; when the receiver on the 
robot is connected to the base station, with no occlusions due to 
buildings or any other obstacles, when enough satellites are present, 
and when there is no outside interference, e.g., Signal to Noise 
Ratio (SNR) is low.  This can be monitored by looking at the 
statuses produced by the Pixi system and is used to calculate the 
position, in all cases when available, and orientation when the robot 
is moving on a pseudo-straight path.  The system is, however, 
disabled when the robot is not moving as the GPS locations 
randomly move around a correct position, which produces wrong 
calculations of the orientation. 

3  Results and discussion 

In order to evaluate the field localization system, the robot was  
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driven manually by remote control to teach it and then repeated in 
the drive in autonomous mode.  The location was chosen with the 
intention to give the sensors the worst possible conditions for 
accurate localization, so, the drive took place behind a big 
metal-enclosed building, positioned on the far left from the robot 
starting point, and on a sand-covered surface.  The height of the 
building party occluded the GPS base station, and its metallic parts 
interfered with the magnetic readings of the IMU, while the 
sand-covered surface caused additional errors in the odometry.  

Figure 3 shows the movement of the robot at three different 
positions with a clear path in the sand that was made when the 
robot was taught what to do.  The first image depicts the starting 
position with an orientation of 1.0°, the second in movement with 
an orientation of 95.5°, and the third after completing a rough half 
of the path with a current orientation of 187.0° compared to starting 
orientation.  These orientations and current positions were 
calculated via images taken by a hovering DJI MAVIC 2 drone 
(DJI, PRC) to determine the real robot's position and orientation. 

 

 
a. At 1.0° b. At 95.5° c. At 187.0° 

 

Figure 3  Images taken by a DJI MAVIC 2 drone  used as ground truth with three different orientations of the robot 
 

Three different sensory systems produce independent position 
and/or orientation estimates, where the goal is to get the best 
possible precision with a real-time localization system needed for 
subsequent steps like path following.  

The first step to evaluate the approach was to show a problem 
with the low-cost sensors and use their readings with the usually 
applied robot localization from the ROS repository[7,8].  In order to 
ensure the same conditions for robot localization and field robot 
localization, a BAG file[25] was recorded while the robot was 
driving in autonomous mode, and they were replayed to capture the 
data from the two algorithms.  Figure 4 depicts the results of the 
robot localization algorithm presented by the software RVIZ. 

 

 
Note: The start of the red arrow represents the position and the orientation of the 
red arrow the orientation of the robot. 

Figure 4  Results of the robot localization as presented by RVIZ 
 

The robot localization from Figure 4 starts in the middle of the 
map and continues to go the right, but once it gets too close to the 
building (located at the lower right corner of the pictures from 
Figure 3) behind the GPS correction signal coverage, it starts to 
show effects caused by the bad GPS signal, metallic object 
interferences, vibration caused drifts of the IUM and slipping on 
the wheels on the sand during the left turn.  This completely turns 
the orientation and positions of the robot and even positions the 
robot going the wrong way. 

In the next step, the field robot localization is evaluated by 
using the same bag file and providing the same conditions as for 
the robot localization.  In order to assess the real position of the 
mobile robot in the outdoor test environment, a ground truth 
reading is provided from the video recording made by a DJI 
MAVIC 2 drone with a 4K camera, which was hovering above the 

robot while it was performing the test as shown in Figure 3.   
The ground truth data regarding the actual position and 

orientation of the robot were calculated from each video frame with 
the help of OpenCV’s template matching algorithm[26], where 720 
templates were prepared and used to compare it with each frame to 
determine the best possible match and the right position/orientation 
of the moving robot.  This provided a per-pixel accuracy that 
corresponds to 0.012 m in metric dimensions and 0.5° accuracy of 
orientation. 

The comparison of the field robot localization with the ground 
truth data is shown in Figures 5 and 6 for orientation and position 
respectively.  The blue line presents the readings from the field 
robot localization, while the green line represents the ground truth 
data.  By comparing the data, it can be concluded that the 
algorithm made an error of 0.005 m±0.220 m in estimating the 
position and 0.6°±3.5° when estimating orientation.  The average 
position and orientation data were low, while the standard 
orientational deviation was rather high, which could be explained 
by an initial offset of the drone not facing exactly 0° like the robot.  

The orientation estimate was initially produced by the last saved 
good orientation and then adjusted according to the new GPS fixes 
as long GPS was accurate enough (iterations around 220), then it 
switched to differential IMU readings (iterations around 320) and 
back to GPS.  Around iterations 480-600 the situation repeated as 
the robot was driving close to the trees that occluded a clear view of 
the base station. 

 
Figure 5  Orientation of the robot calculated with the FRL versus 

the ground truth data 
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Figure 6  Position of the robot calculated with the FRL versus the 

ground truth data 
 

The position of the robot was initially produced by the last 
saved good position and then adjusted according to the new GPS 
fixes as long GPS was accurate enough (second left turn, upper left 
part of the figure), then it switched to odometry while the robot was 
driving straight (lower left side of the figure) and combined IMU to 
complete the turn.  When the robot completed the third left turn it 
got accurate GPS fixes (small step at the end of the third turn).  
Similar to the orientation from Figure 5, the situation around the 
final straight movement, is followed by the last turn. 

5  Conclusions 

The usual approach when building a robust robotic solution is 
to use a high-grade, high-cost sensory system.  In this study, a 
different approach was investigated with low-cost sensors to make 
the solution more commercially accessible and available to a wider 
range of users that can afford it.  This may lead to problems if the 
sensors fail in some situations, which results in an inaccurate 
localization.  To solve this, the presented approach used data from 
all the available sensors, including wheel odometry, inertial-motion 
data from the IMU, and a location fix from an RTK GPS, where the 
challenge of localizing the robot is solved with a sensor fusion 
algorithm that works by selecting the most accurate readings in a 
given moment to produce a precise pose estimation. 

The sensor fusion approach was based on a straightforward 
state machine that chose which of the readings for which of the 
sensors should be used at a given moment.  This can produce a 
robust enough mechanism but with low-cost sensors that can, as 
shown in Section 3, outperform some of the widely used 
approaches in robot localization.  

Currently, the developed approach is being tested on two 
vineyard robots beyond the evaluation test presented in this study 
in day-to-day operation.  One of the possibilities of improvement 
that could be seen is to include the readings from the LiDAR sensor 
and improve the accuracy with the help of Simultaneous 
Localization and Mapping (SLAM) algorithms which will be 
investigated in the future. 
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