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Abstract: Human motion analysis using inertial measurement units (IMUs) has recently been shown
to provide accuracy similar to the gold standard, optical motion capture, but at lower costs and
while being less restrictive and time-consuming. However, IMU-based motion analysis requires
precise knowledge of the orientations in which the sensors are attached to the body segments. This
knowledge is commonly obtained via time-consuming and error-prone anatomical calibration based
on precisely defined poses or motions. In the present work, we propose a self-calibrating approach
for magnetometer-free joint angle tracking that is suitable for joints with two degrees of freedom
(DoF), such as the elbow, ankle, and metacarpophalangeal finger joints. The proposed methods
exploit kinematic constraints in the angular rates and the relative orientations to simultaneously
identify the joint axes and the heading offset. The experimental evaluation shows that the proposed
methods are able to estimate plausible and consistent joint axes from just ten seconds of arbitrary
elbow joint motion. Comparison with optical motion capture shows that the proposed methods
yield joint angles with similar accuracy as a conventional IMU-based method while being much less
restrictive. Therefore, the proposed methods improve the practical usability of IMU-based motion
tracking in many clinical and biomedical applications.

Keywords: anatomical calibration; sensor-to-segment calibration; kinematic constraints; human
motion analysis; elbow joint; inertial sensor; inertial measurement unit

1. Introduction

Marker-based optical motion capture (OMC) is considered the gold standard for hu-
man motion analysis. However, this method is time-consuming and confined to expensive
laboratory environments. Ambulatory real-time motion analysis can be achieved at much
lower costs with inertial measurement units (IMUs). Recent studies have shown that the
accuracy of IMU-based motion analysis is comparable to marker-based OMC, see, e.g., [1,2].

However, in order to derive anatomically meaningful kinematic quantities, for exam-
ple, joint angles, the orientation of each IMU with respect to its body segment must be
known, as illustrated in Figure 1. Even small misalignments between the assumed and
actual orientation of the IMUs on the body lead to errors in the obtained kinematic quanti-
ties. To ensure accurate motion tracking, it is therefore desirable to accurately determine
this orientation. In practice, this is often achieved by manual placement of the IMUs on
the respective body segments in a specified orientation [3], which is error-prone, especially
when the attachment of sensors is to be performed by patients or by non-medical personnel.

An alternative is to include a procedure that determines the orientation of each IMU
with respect to its body segment based on data measured by the sensors. This procedure is
called anatomical calibration or sensor-to-segment calibration, which is not to be confused with
sensor calibration. Sensor calibration determines parameters such as scaling and bias in
order to increase the accuracy of the sensor orientation estimates. Anatomical calibration
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determines how the sensors are attached to the body segments to ensure that the rotation
axes used for calculating joint angles match the anatomical axes of joint rotation.
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Figure 1. Anatomical calibration, also called sensor-to-segment calibration, is the task of determining
how the IMUs are attached to the body segments. More precisely, the rotations between the IMU
coordinate systems S1,2, defined by the sensor housing, and the corresponding body segments B1,2,
determined by anatomical axes such as the joint axes j1,2, have to be determined. Conventional
methods rely on precisely defined calibration movements and poses, whereas the proposed methods
use kinematic constraints to derive this information from arbitrary joint motion.

As detailed in Section 2, anatomical calibration traditionally relies on precisely defined
calibration poses or motions. Less restrictive approaches aim for anatomical calibration
based on arbitrary joint motion. Such approaches have been proposed for (approximate)
hinge joints [4,5]. In the following, we consider the more challenging case of joints with
two degrees of freedom (DoF), such as the elbow joint (capable of flexion/extension
and pronation/supination), the metacarpophalangeal joints (MCP) of the finger (capable
of flexion/extension and adduction/abduction), or the ankle joint (capable of plantar-
/dorsiflexion and inversion/eversion). The present contribution introduces methods for
self-calibrating joint angle tracking that

• use two kinematic constraints for 2-DoF joints, one that must be fulfilled by the angular
rates (as already introduced in [6,7]) and a novel constraint that must be fulfilled by
the relative segment orientations at any time and for any motion

• do not make use of magnetometer measurements and are therefore insensitive to mag-
netic disturbances (otherwise, temporary magnetic disturbances could permanently
deteriorate accuracy until calibration is repeated)

• instead simultaneously estimate the heading offset to facilitate magnetometer-free
joint angle tracking.

The methods are evaluated based on two experiments. The first experiment, with a
known sensor attachment as ground truth, compares a simple and a complex motion and is
used to show that estimation over a short time window of just ten seconds of joint motion
yields plausible and consistent joint axes. The second experiment, with OMC as ground
truth, is used to validate that, while being much less restrictive, the proposed self-calibrating
joint angle tracking provides the same accuracy as a conventional IMU-based approach.

2. Brief Review of the State of the Art in Anatomical Calibration

Anatomical calibration is the task of determining how the IMUs are attached to the
body segments. In a broader sense, this also encompasses the pairing of IMUs to body
segments [8,9] and the estimation of joint center positions [10–13]. The most relevant
aspect, however, is to determine how the sensor coordinate system is rotated with respect
to anatomical body segment axes (cf. Figure 1). In order to uniquely define this orientation,
the coordinates of two anatomical axes need to be known in the sensor frame (or vice versa).
Since errors in the sensor-to-segment orientations lead to kinematic cross-task and thus
directly cause errors in the obtained joint angles [14–16], the reliability and accuracy of
anatomical calibration methods are of fundamental interest in IMU-based motion analysis.
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There are four main approaches for how to deal with the need for sensor-to-segment
alignment in IMU-based human motion analysis [3]:

1. relying on a precisely defined sensor attachment (assumed alignment),
2. calibration via measurements from additional devices (augmented data),
3. calibration based on precisely defined poses or motions (functional alignment),
4. calibration from arbitrary motions (model-based alignment).

Using a precisely defined attachment of the sensors to the body is a common approach
and, according to the survey by Vitali and Perkins [3], used by 42 % of recent publications.
The advantage of this approach is that it only requires minimum effort from the subject, i.e.,
no extra calibration movements are required, and that it is simple to implement. However,
placing the sensors on the body so that predefined sensor axes correspond to functional
joint axes is error-prone even for experienced medical personnel and even more so when
patients themselves attach the sensors. In a study with three operators, Bouvier et al. [17]
report reproducibility in the range of 4◦ to 12◦ and agreement with OMC in the range of 8◦

to 23◦.
An example of an augmented data method for anatomical calibration is the use of

an additional custom device equipped with an IMU that is used to determine the sensor
orientation with respect to anatomical landmarks [18,19].

The third approach is to ask the subject to assume precisely defined postures or
perform a sequence of precisely defined motions. In the simplest form, this consists of a
single pose calibration, often in the N-pose or T-pose [20–23], and requires magnetometers
in order to be able to define two axes from one pose. A magnetometer-free alternative is to
use two poses, e.g., one standing up and one lying down [24], or to derive the anatomical
axes from angular rate measurements of precisely defined motions, typically around the
functional axes of the joint [25–27]. Often, both approaches are combined, and one axis is
derived from a static pose and one from a functional motion. Those hybrid approaches
have been demonstrated for the upper body [28,29] and lower body [30–32]. For thorax and
lumbar joint angles, however, a recent study by Cottam et al. [33] found that calibration
via functional motions did not improve accuracy in comparison to relying on manual
sensor placement. Bouvier et al. [17] observe similar accuracy for precise attachment and
for various calibration approaches based on precise poses and motions and point out that
accuracy depends more on the rigor of the experimental procedure and operator training
than on the calibration method. Furthermore, performing those motions can be tedious for
the subject, especially considering that a precise execution is required. For patients with
motor disabilities, performing precise motions can be hard or impossible. Even after solving
those obstacles, the main drawback of those methods is that the accuracy of the calibration
depends on the accuracy of performing the motion. An elegant recent approach is to use the
actual motions of interest for calibration, e.g., during cycling [34] or walking [35]. However,
this is only feasible in a limited amount of applications and relies on strong assumptions
on the analyzed motions.

In many cases, e.g., clinical applications, it would render the use of IMUs much
more practical if both a precisely known attachment and precisely specified calibration
poses and motions could be avoided by determining the sensor-to-segment orientations
from arbitrary motions, usually by relying on kinematic constraints of biomechanical
models. This was demonstrated for the knee joint by exploiting a kinematic constraint
in the angular rates of (approximate) hinge joints [4,11]. Furthermore, it was shown that
extending this constraint for a combined optimization of a three-segment chain improves
robustness [36] and that other methods, such as principal component analysis [37] and
factor graph optimization [38,39], can be used to exploit hinge joint constraints. In [5,40],
the gyroscope-based hinge joint constraint introduced in [11] and an accelerometer-based
constraint are combined with an elaborate sample selection strategy, and in [41], both
constraints are analyzed for observability of the joint axis. Taetz et al. [42] introduce an
approach based on sliding window weighted least squares optimization that uses hinge-
joint and range-of-motion constraints and a body-shape prior to simultaneously estimate
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the sensor-to-segment orientation along with the body motion. Zimmermann et al. [9]
demonstrate that deep learning can be used for lower body anatomical calibration with
just two seconds of walking data.

For anatomical calibration based on arbitrary motions of 2-DoF joints, the existing
work is limited. Müller et al. [6] introduce a gyroscope-based kinematic constraint for 2-DoF
joints such as the elbow. Norden et al. [43] demonstrate that the same constraint can be
employed for real-time estimation of hip and knee joint axes. However, the constraint used
in both [6,43] assumes knowledge of the relative sensor orientation and therefore requires
magnetometers. This poses a severe limitation for the applicability of those methods
in indoor environments [44] and implies that temporary magnetic disturbances during
calibration can lead to wrong axis estimates and thus permanently deteriorate the accuracy
of the obtained joint angles. In [7], we presented first results of a magnetometer-free method
that overcomes those restrictions by simultaneously estimating the heading offset.

3. Kinematic Model of 2-DoF Joints

The methods proposed in the present contribution perform automatic anatomical
calibration for joints with two degrees of freedom (DoF). Those methods are suitable for
any 2-DoF joint and can be applied to a range of biomechanical or robotic 2-DoF joints.
To improve comprehensibility, the following description of the kinematic model and the
calibration method focuses on the human elbow joint as an exemplary joint, which is later
also used in the experimental evaluation.

Furthermore, even though in the following we always only consider two body seg-
ments connected by a single joint, the proposed methods can be used to analzye longer
kinematic chains consisting of multiple segments. In this case, the calibration methods can
be applied to each pair of segments that are connected by a 2-DoF joint.

Figure 2 shows an anatomical model of the elbow joint as an exemplary biological
2-DoF joint. This joint can perform two functional motions. Flexion and extension (FE) are
performed by the humeroulnar joint, while pronation and supination (PS) are the result of
the radius pivoting around the ulna.

j1 (FE)

j2 (PS)

B1 (upper arm) B2 (forearm)

humerus
radius

ulna

Figure 2. Anatomical model of the elbow joint. The humeroulnar joint is a hinge joint with the
rotation axes j1, allowing for flexion and extension (FE). The radioulnar joint also has one degree
of freedom (j2) and allows for pronation and supination (PS). In this contribution, we refer to the
combined joint with two degrees of freedom as elbow joint.

As an approximation, we can model this joint—as well as any other 2-DoF joint—as
a kinematic chain consisting of two hinge joints and one fixed rotation in between, as
depicted in Figure 3. Including the fixed rotation, the sequence of rotations consists of
flexion and extension (FE), a fixed carrying angle [45], and pronation and supination (PS).
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(a) (b)

j1 (FE)

j2 (PS)

B1 (upper arm)

B2 (forearm)

S1

S2

carrying angle β0

B1
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S1

S2

j1

j2

Figure 3. (a) Geometric kinematic model of the elbow joint. Inertial sensors S1 and S2 are placed in
arbitrary orientation on the upper arm B1 and forearm B2. Upper arm and forearm are connected by
two hinge joints that allow for FE (j1) and PS (j2). (b) View onto the j1-j2 plane. The fixed rotation
between FE and PS is called carrying angle.

We use unit quaternions to denote rotations and orientations [46]. In the context of
quaternion multiplication, which we denote by ⊗, we implicitly regard 3D vectors as pure
quaternions. Square brackets specify the coordinate system in which a vector is expressed,
for example, [ω1]E is the gyroscope measurement of IMU S1 transformed into frame E ,
i.e., [ω1]E = S

Eq⊗ω1 ⊗ SEq−1. Here, the left upper and lower indices denote the frames
between which the quaternion rotates. Quaternions that represent the rotation of an angle

α ∈ R around the axis v ∈ R3 are written as (α @ v) :=
[
cos α

2
vᵀ

‖v‖ sin α
2

]ᵀ
.

We can use this notation to mathematically express the orientation of the forearm B2
relative to the upper arm B1 using the FE joint angle α(t), the carrying angle β0, and the PS
angle γ(t) as

B2
B1

q = (α(t)@ j1)⊗ (β0 @ j1 × j2)⊗ (γ(t)@ j2). (1)

The International Society of Biomechanics (ISB) [45] also recommends this joint model
for the elbow and precisely defines coordinate systems B1 and B2 so that [j1]B1 = [ 0 0 1 ]ᵀ

and [j2]B2 = [ 0 1 0 ]ᵀ. When using this definition, the joint angles are intrinsic z-x′-y′′

Euler angles of B2
B1

q. Please note that this also means that the axis j1 (FE) is fixed in the
coordinate system of a sensor attached to the upper arm, while the axis j2 (PS) is fixed in
the coordinate system of a sensor attached to the forearm.

Instead of using regular Euler angles, we could consider modeling a 2-DoF joint with
axes that are all potentially non-orthogonal (including the carrying angle axis). How-
ever, as Appendix A shows, any generic model with non-orthogonal axes can also be
expressed using standard z-x′-y′′ Euler angles by redefining the segment coordinate sys-
tems accordingly. This means that the choice of z-x′-y′′ Euler angles according to the ISB
recommendations [45] does not restrict the generality of the proposed methods. Moreover,
note that the orientation of the IMUs on the body segments is independent of this definition.
The goal of anatomical calibration is to determine the fixed coordinates j1 and j2 of the
functional joint axes in the local coordinate systems of the respective IMUs.

4. Proposed Methods

Two IMUs S1 and S2 are placed on the subject in unknown orientations, one on each
body segment connected by the 2-DoF joint (i.e., in case of the elbow, one on the upper arm
and one on the forearm). Assume that we can estimate the sensor orientation quaternions
S1
Eq(tk),

S2
Eq(tk) relative to a common inertial frame E . We also measure the angular rates

ω1(tk) ∈ R3, ω2(tk) ∈ R3 of the IMUs, in their respective local coordinate systems. All
measurements are sampled at times tk = kTs, k ∈ {1, 2, . . . , N}, Ts ∈ R>0. Note that the
assumption of a common inertial frame E is restrictive in practice as it assumes 9D sensor
fusion in a perfectly homogeneous magnetic field and will later be dropped.

In the following, we derive two different kinematic constraints for 2-DoF joints, one
based on the joint rotation and one based on the relative segment orientations. Both
constraints are suitable for 6D sensor fusion with unknown heading offset. Given a short
sequence of recorded IMU data, we use the Gauss–Newton algorithm to determine the
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joint axes coordinates in the sensor frame and the heading offset that best fit either the
rotation-based or the orientation-based constraint in a least-squares sense. We use these
joint axes coordinates to determine segment orientations from the sensor orientations and
use the heading offset to align the reference frames of the orientations. From this result, we
calculate the relative segment orientation, which we then decompose via Euler angles to
obtain magnetometer-free estimates of the joint angles.

4.1. Rotation-Based Kinematic Joint Constraint

As shown in Section 3, a 2-DoF joint cannot perform arbitrary joint rotation in all
directions. Instead, rotation is only possible around the two joint axes. In the following, we
will investigate how this translates to a kinematic constraint in the angular rates measured
by the two IMUs. We will later exploit this constraint to estimate joint axes from arbitrary
joint motion.

Using the addition theorem for angular velocities, we express the relationship between
the gyroscope measurements ω1(tk) and ω2(tk) as

[ω2]E = [ω1]E + ωj1 [j1]E + ωj2 [j2]E . (2)

The scalars ωj1 and ωj2 are the rotation rates of the joint around the respective joint
axes. In case of joints with two degrees of freedom according to the model in Figure 3, this
corresponds to the anatomical joint motions, i.e., in case of the elbow, ωj1 is the FE angular
rate and ωj2 the PS angular rate. This means that the angular rate ω2 measured by the
forearm IMU S2 is composed of three components:

1. the common rotation of the whole arm, also observed by IMU S1 as ω1
2. the FE rotation around j1
3. the PS rotation around j2.

Note that the carrying angle does not appear, since it is time-invariant. Furthermore,
note that in (2), the angular rates and joint axes are transformed into a common coordinate
system, here E .

For hinge joints, in [4], the following constraint has been derived from (2):

‖ω1 × j1‖ − ‖ω2 × j2‖ = 0. (3)

Since this version of the constraint only uses quantities given in local sensor coordi-
nates, it is independent of sensor orientations with respect to a fixed frame and thus not
affected by magnetic disturbances.

For joints with two degrees of freedom, we need to know the relative sensor orientation
or sensor orientations with respect to a common fixed frame. In order to derive a similar
constraint from (2) for 2-DoF joints, we calculate the scalar product with the normalized
axis [j1]E × [j2]E on both sides, i.e.,

(
[ω2]E −ωj2 [j2]E

)
· [j1]E × [j2]E
‖[j1]E × [j2]E‖

=
(
[ω1]E + ωj1 [j1]E

)
· [j1]E × [j2]E
‖[j1]E × [j2]E‖

, (4)

and employ the fact that a · (a × b) = a · (b × a) = 0. This yields

([ω1]E − [ω2]E ) ·
[j1]E × [j2]E
‖[j1]E × [j2]E‖

= 0. (5)

Note that normalizing the axis was found to improve robustness compared to the constraint
presented in [47].

For perfect 2-DoF joints and ideal IMU measurements, this constraint must be fulfilled
for each sampling instant. For biological joints, and when taking soft tissue motion and
measurement errors into account, the constraint is still valid in a least-squares sense when
considering a short motion sequence consisting of multiple samples.
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However, the constraint as formulated in (5) uses the reference frame E and is only
suitable for use in combination with 9D inertial orientation estimation, i.e., with the use of
magnetometers. Since magnetic fields are often severely disturbed [44], we want to avoid
using magnetometer measurements and therefore only employ 6D sensor fusion to estimate
the sensor orientations, e.g., using the VQF algorithm [48]. This implies that the heading of
the estimated orientations is not well-defined. More precisely, this can be described by the
estimated orientations S1

E1
q and S2

E2
q being given in different global reference frames E1 and

E2, which are rotated around the vertical global z-axis, i.e.,

E2
E1

q= (δ(t)@ [ 0 0 1 ]ᵀ) =
[
cos
(

δ(t)
2

)
0 0 sin

(
δ(t)

2

)]ᵀ
. (6)

The heading offset δ(t) has an unknown initial value and then slowly drifts due to
gyroscope bias [49]. Please note that both E1 and E2 have some unknown heading offset
with respect to a fixed frame E used in 9D sensor fusion and defined by gravity and the
Earth’s magnetic field. However, knowing those individual offsets is not necessary for
calculating relative orientations and joint angles.

We take the heading offset into account by evaluating the constraint (5) in one of the
slowly-drifting global frames (here E1), i.e.,

(
[ω1]E1

− [ω2]E1

)

︸ ︷︷ ︸
=: ωrel

·
[j1]E1

× [j2]E1∥∥∥[j1]E1
× [j2]E1

∥∥∥
︸ ︷︷ ︸

=: jn/‖jn‖

= 0. (7)

This version of the constraint implicitly depends on δ, as we need the quaternion
S2
E1

q = E2
E1

q(δ)⊗ S2
E2

q to transform ω2 and j2 to E1 coordinates. This means that instead of (5)
we can use (7) with magnetometer-free 6D orientations and that, in addition to the joint axes
coordinates, we also identify the current heading offset δ(t) as an additional parameter.

4.2. Orientation-Based Kinematic Joint Constraint

As an alternative, we derive a second kinematic joint constraint. In contrast to the
constraint introduced in the previous section, this constraint is not based on the joint
rotation but on the joint orientation, i.e., the relative orientation between the two body
segments connected by the joint.

As in Section 4.1, assume that we have 6D sensor orientation estimates S1
E1

q(tk),
S2
E1

q(tk),
e.g., estimated with the VQF algorithm [48]. As before, our aim is to identify [j1]S1

,
[j2]S2

, and the heading offset δ(t). For any given estimate of those values, we are able to
calculate joint angles. If the joint follows the 2-DoF joint model introduced in Section 3,
the following statement holds true: With the correct sensor-to-segment orientation and
the correct heading offset, the second joint angle (for the elbow joint: the carrying angle)
is constant.

Mathematically, we can formulate this by calculating the joint orientation and then
decomposing this orientation into Euler angles. First, we determine the shortest-possible
rotations that align the estimated sensor axes with the joint axes:

B1
S1

q =
(

arccos
(
[ 0 0 1 ]ᵀ · [j1]S1

)
@ [ 0 0 1 ]ᵀ × [j1]S1

)
(8)

B2
S2

q =
(

arccos
(
[ 0 1 0 ]ᵀ · [j2]S2

)
@ [ 0 1 0 ]ᵀ × [j2]S2

)
(9)

and calculate the rotation quaternion between the reference frames

E2
E1

q = (δ @ [ 0 0 1 ]ᵀ). (10)
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Using those quaternions we calculate the joint orientation

B2
B1

q = S1
B1

q⊗ E1
S1

q⊗ E2
E1

q⊗ S2
E2

q
︸ ︷︷ ︸

=
S2
S1

q

⊗ B2
S2

q, (11)

which depends on the sensor orientations, the estimated joint axes j1 and j2, and the
heading offset δ.

Therefore, B2
B1

q =: [ qw qx qy qz ]ᵀ can be calculated from the measured data and the
estimated parameters. The second intrinsic z-x′-y′′ Euler angle of this quaternion, i.e., the
estimated carrying angle, is

β̂0 = arcsin
(
2qwqx + 2qyqz

)
. (12)

Due to the joint constraint, this angle has to be constant over the whole measurement
window, i.e., with the fixed constant carrying angle β0,

arcsin
(
2qwqx + 2qyqz

)
= β0. (13)

Similar to (7), the constraint (13) can be used to identify the joint axes coordinates and
the heading offset δ. Additionally, unless the actual value of the carrying angle β0 is known,
β0 has to be identified as an additional parameter.

4.3. Parametrization of Joint Axes

The aim of the anatomical calibration is to identify the joint axes j1 ∈ R3 and j2 ∈ R3

with ‖ji‖ = 1, i = 1, 2. Parametrizing the axes as Cartesian vectors in an optimization
problem is inconvenient as we would need an additional constraint to ensure unit length.
Therefore, we employ spherical coordinates and represent each axis by two parameters ϕi
and θi, e.g.,

ji = [ sin θi cos ϕi sin θi sin ϕi cos θi ]
ᵀ, i = 1, 2. (14)

With the parametrization given in (14), ∂ji
∂ϕi

= 0 if sin θi = 0. To avoid this singularity,
we introduce an alternative spherical representation of the same joint axis direction, as
shown in Figure 4. During optimization, we always use a parametrization with | sin θi| �
0 by converting the axis to Cartesian coordinates and then to the other representation
whenever the current representation comes close (<30◦) to that singularity.

ji =




sin θi cos ϕi
sin θi sin ϕi

cos θi


 ji =




ji,x
ji,y
ji,z


 ji =




cos θi
sin θi sin ϕi
sin θi cos ϕi




|sin θi| < 1
2

|sin θi| < 1
2

Figure 4. Two spherical parametrizations are used to represent the joint axes ji, i = 1, 2, with two
parameters each, θi and ϕi. To avoid the derivative becoming close to zero, we convert the respective
axis to Cartesian coordinates and then to the other representation whenever | sin θi| < 0.5.

Note that both spherical parametrizations represent exactly the same 3D vector. There-
fore, changing the parametrization in between optimization iterations does not influence
the joint axis vectors or the value of the cost function but ensures that the derivatives with
respect to the joint axes are always sufficiently sensitive.

4.4. Cost Function and Optimization

Sample selection is performed to fill a sample buffer of M data sets
{S1
E1

q(tk),
S2
E2

q(tk), [ω1 ]E1
(tk), [ω2 ]E2

(tk)
}

(15)
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for the rotation-based constraint and
{S1
E1

q(tk),
S2
E2

q(tk)
}

(16)

for the orientation-based constraint from the 6D orientation quaternions and angular rates
measured at a (potentially very high) sampling frequency of fs. The proposed method
employs a regular (equidistant) sample selection strategy that stores one sample every
0.05 s. Note that this method can easily be extended by more sophisticated sample selection
strategies since the optimization procedure does not require equidistant sampling.

In order to determine the joint axes and heading offset that best satisfy the rotation-
based constraint (7) in a least-squares sense, we define the error for each sampling instant
tk as

e(tk) := ωrel(δ) ·
jn(Φ)

‖jn(Φ)‖ , (17)

with the parameter vector Φ := [ θ1 ϕ1 θ2 ϕ2 δ ]ᵀ. Note that we assume the heading
offset δ(t) to be constant for all samples in the current buffer, which is valid for short
window lengths.

Similarly, for the orientation-based constraint (13), we define the error as

e(Φ) := arcsin
(
2qwqx + 2qyqz

)
− β0, (18)

with a parameter vector Φ := [ θ1 ϕ1 θ2 ϕ2 δ β0 ]
ᵀ that additionally includes the carry-

ing angle.
To estimate the joint axes j1 and j2 and the heading offset δ given a set of M samples,

we find the parameter vector Φ̂ that minimizes the error of either the rotation-based
constraint or the orientation-based constraint using the Gauss–Newton algorithm [50].
Appendix B gives details on the optimization algorithm, provides analytical expressions
for the gradients of the cost functions, and introduces a moving window approach for
employing the proposed method in real-time applications. As a result of the optimization
step, we obtain the joint axes j1 and j2 in the coordinates systems of sensors S1 and S2,
respectively, and the heading offset δ between the reference frames E1 and E2.

4.5. Joint Angle Calculation

Using the optimization results, we calculate FE and PS joint angles based on the ISB
recommendations [45]. Those joint angles are defined as intrinsic z-x′-y′′ Euler angles of
the forearm B2 relative to the upper arm B1, i.e., B2

B1
q, with B1 and B2 being the segment

coordinate systems as defined in [45].
From 6D inertial orientation estimation, we obtain the sensor orientation quaternions

S1
E1

q and S2
E2

q. After performing the optimization, we know the coordinates of both joint
axes j1 and j2 in local sensor coordinates and the heading offset δ. Note that additional
knowledge is needed to determine the absolute value of the joint angles without any offset—
for example, for the elbow joint, which joint orientation corresponds to zero flexion and
zero pronation is only a matter of convention and not an inherent property of the 2-DoF
joint. To obtain offset-free angles, we employ reference values of the FE and PS joint angles
at one arbitrary time instant tref, e.g., obtained from a known pose or by exploiting the
maximum range of motion of the joint. With those values, the joint angles can be calculated
by the algorithm described below:

First, we calculate E2
E1

q via (6) and use this to obtain S2
E1

q = E2
E1

q ⊗ S2
E2

q. Then we
determine rotations that ensure that the identified joint axes match the joint axes defined
in [45]:

B′1
S1

q = (arccos([0 0 1]ᵀ · j1)@ [0 0 1]ᵀ × j1) (19)

B′2
S2

q = (arccos([0 1 0]ᵀ · j2)@ [0 1 0]ᵀ × j2). (20)
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Using those, we calculate the relative segment orientation

B′2
B′1

q =
(S1
E1

q⊗ B
′
1
S1

q
)−1
⊗ S2
E1

q⊗ B
′
2
S2

q. (21)

For any quaternion q =: [ qw qx qy qz ]ᵀ, the z-x′-y′′ Euler angles (α, β, γ) can be
calculated as

α = atan2(2qwqz − 2qxqy, q2
w − q2

x + q2
y − q2

z), (22)

β = arcsin(2qwqx + 2qyq3), (23)

γ = atan2(2qwqy − 2qxqz, q2
w − q2

x − q2
y + q2

z). (24)

By calculating z-x′-y′′ Euler angles (α′, β′, γ′) of B
′
2
B′1

q, we obtain the FE angle α′ and

the PS angle γ′ that only differ from the well-defined joint angles according to [45] by a
constant offset that depends on the actual placement of the IMUs.

We can eliminate this offset by exploiting knowledge of the actual joint angles αref and
γref at t = tref. The segment-to-sensor orientations

B1
S1

q =
B′1
S1

q⊗
(
α′(tref)− αref @ [0 0 1]ᵀ

)
, (25)

B2
S2

q =
B′2
S2

q⊗
(
γref − γ′(tref)@ [0 1 0]ᵀ

)
(26)

allow us to calculate B2
B1

q = (S1
E1

q⊗ B1
S1

q)−1 ⊗ S2
E1

q⊗ B2
S2

q. The Euler angles (α, β0, γ) of B2
B1

q
are the offset-free FE and PS joint angles α and γ, respectively, and the carrying angle β0
(cf. Figure 3), which is almost constant and rarely reported [45].

To further improve the proposed method, in Appendix C, we introduce an optional
extension that allows for the rotation-based constraint to be used when only orientation
data are available (e.g., if on-chip sensor fusion is used), add a low-pass filter to reduce
the influence of soft tissue motion artifacts, and discuss options for how to resolve the
ambiguity in the signs of the joint axes.

5. Experimental Evaluation

We evaluate the proposed magnetometer-free anatomical calibration and joint angle
calculation methods based on two experiments.

The first experiment is designed to evaluate if the obtained joint axis estimates are
plausible and consistent. To this end, IMU data from two different motions are recorded
from five subjects and a mechanical joint, while carefully attaching the sensors in a known
orientation. Each trial is split into overlapping time windows to which the anatomical
calibration methods are applied. The obtained joint axis estimates are compared to the axes
obtained by the more restrictive method of careful manual sensor placement.

The second experiment is designed for the evaluation of the accuracy of the obtained
joint angles with the proposed self-calibrating magnetometer-free joint angle calculation
method. This experiment consists of recordings of natural everyday life motions of two
subjects. It uses marker-based OMC as a reference, which allows for the comparison of the
obtained joint angles to joint angles obtained from optical markers and from a conventional
9D IMU-based approach. As a further validation step, we consider the variability of the
expected-to-be-constant carrying angle as a metric for how well the estimated joint axes
describe the functional joint motion.

Note that in all experiments, the sensors are carefully attached in a known orientation
to facilitate a plausibility check of the obtained results. To still verify that the proposed
methods do not make assumptions regarding the sensor orientation, we simulate a random
sensor attachment by multiplying all gyroscope and accelerometer measurements with a
random rotation matrix that is different for each time window.
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The extension for on-chip sensor fusion introduced in Appendix C. is always used, i.e.,
the angular rates used for evaluating the rotation-based kinematic constraint are derived
from the orientation estimates. Since the impact on the results is negligible, the results
obtained using the actual gyroscope measurements are not shown separately.

5.1. Robustness of Joint Axis Estimation

The first experiment is performed to answer the following two research questions:

1. Are the estimated joint axes plausible, i.e., do they agree with the values expected
based on careful manual placement?

2. Are the estimated joint axes consistent, i.e., do we always obtain the same result when
using different parts of the trial?

Data from five healthy subjects is recorded. The subjects are adult volunteers with
no history of upper-limb injury that might affect upper-limb movement. Inertial sensors
(Xsens MTw, Xsens Technologies B.V., Netherlands) are placed on the upper arm close
to the elbow and on the forearm close to the wrist. The sensors are placed in a defined
orientation on the skin so that one local sensor axis coincides roughly with the functional
joint axis.

We define two different motions:

1. The simple motion consists of FE of the elbow and PS of the forearm, performed
alternatingly while keeping the longitudinal axes of upper arm and forearm parallel
to the sagittal plane.

2. For the complex motion, we ask the subject to perform random combinations of FE and
PS, allowing for 3D rotation of the shoulder including humeral rotation.

Each subject performs both motions for approximately one minute.
In addition to the five human subjects, an additional data set is recorded using a

mechanical joint. This joint has dimensions similar to the human arm and consists of two
hinge joints as shown in Figure 3. During the recordings, the joint was held in hand and
moved in a way that mimics the motions performed by the five subjects.

For each recording, the proposed methods are used on 21 partially overlapping moving
windows w, w = 1, 2, . . . , 21, of length 10 s with data sets recorded every 0.05 s. Note that
we will later investigate the effect of window length and sampling time and show that this
window length is usually sufficient to identify the joint axes and that collecting data sets
more frequently does not significantly improve the robustness.

Since the only available ground truth are approximate axis coordinates that we know
due to the orientation in which the sensor was attached, we define suitable evaluation
metrics that allow us to quantify the consistency and plausibility of the estimates. See
Figure 5 for an illustration of the definitions. First, denote the estimated joint axes jw, with
w being the index for the estimation window. For a compact notation, we omit the segment
index, denoting whether the axis is a flexion and extension (FE) axis or a pronation and
supination (PS) axis. To assess if the estimates are consistent, we define the variability angle

εw = ^(jw, jmean), (27)

where ^ denotes the positive angle between two 3D vectors and

jmean =
1

21

21

∑
w=1

jw (28)

is the mean of all estimates. In other words, εw is the angular deviation between the
estimate for window w and the mean of all estimates. If this angle is always small, the
estimation results agree well for all time windows.
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α
εw

axis obtained
via manual sensor
attachment jatt

estimated
joint axes jw

mean

Figure 5. Variability angle εw and misalignment angle α used to evaluate the axis estimation results.
εi is the angle between the estimated axis for a single window and the mean estimate. α is the angle
between the mean estimate and the axis obtained by careful manual sensor attachment. For a good
anatomical calibration method, εi should be small, showing that the estimates are consistent, and α

should be within 30◦, showing that the estimates are plausible.

To also check if this result is plausible, we introduce the misalignment angle

α = ^(jmean, jatt), (29)

with jatt being the joint axis obtained via careful manual sensor attachment. Therefore, α
is the angle between the mean estimation result and the axis obtained via manual sensor
attachment. While precise manual sensor attachment is hard and error-prone, we can at least
expect both axes to coincide roughly and therefore consider the result plausible if α ≤ 30◦.

Figure 6 shows the results obtained in the first experiment with the rotation-based and
orientation-based constraints. In general, we see that the proposed methods for anatomical
calibration produce good results: with both constraints, the methods are able to determine
plausible FE and PS joint axes from 10-second recordings, and in all cases except for
Subject 2 with the orientation-based constraint and the complex motion, the median of
the variability angle εw is below 10◦. In other words, almost all time windows lead to axis
estimates within the expected range. As a main result, it is noticeable that the rotation-based
constraint performs better than the orientation-based constraint and that a slight increase
in the variability angles εw can be observed in the complex motion. This is likely due to soft
tissue motion caused by humeral rotation. Furthermore, the randomness of the complex
motion can lead to longer periods of motion that do not excite both degrees of freedom of
the joint.

The results obtained with the mechanical joint agree very well with the expected
axes (α ≤ 2◦), and the joint axis estimates are more consistent than for the biological
elbow joints. This is to be expected since precisely attaching the sensors is easier with
the mechanical joints, there are no soft tissue motion artifacts, and the mechanical joint
constructed with two hinge joints follows the kinematic model (Figure 3) more precisely
than the human elbow.

To facilitate an intuitive understanding of the results, Figure 7 shows the estimated and
expected joint axes in a 3D visualization of the respective IMU coordinate systems. We can
see that, for both FE and PS, the joint axis estimates of all overlapping time windows agree
well. While the PS axis agrees very well with the axis expected due to sensor alignment, a
systematic disagreement of ∼17◦ between the estimated and expected axes is noticeable.
Since all estimates are very consistent, this is most likely due to an imprecise manual
attachment of the sensor, causing the y-axis to disagree with the functional PS axis of the
joint. In general, we see in Figure 6 that the misalignment angle α is larger for the FE axis j1
than for the PS axis j2. This is plausible, given the fact that the longitudinal x-axis of the
IMU is much easier to precisely align with the longitudinal axis of the forearm, whereas
aligning the y-axis of the upper arm IMU, corresponding to a much shorter dimension of
the sensor case, with the functional FE axis was found to be much harder while conducting
the experiments.
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(b) orientation-based constraint
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Figure 6. Consistency and plausibility results for the first experiment with the (a) rotation-based
constraint and the (b) orientation-based constraint, for two motion types and for five human subjects
and a mechanical joint (m). The proposed methods estimate plausible axes for all subjects and all
motions. The rotation-based constraint yields more consistent estimates than the orientation-based
constraint, and the simple motion leads to better results than the complex motion.

upper arm forearm

expected FE axis j1

estimated FE axes j1

expected PS axis j2

estimated PS axes j2

Figure 7. 3D visualization of the estimation results for an exemplary trial (Subject 2, simple motion,
rotation-based constraint). The joint axis estimates from all windows agree well (blue arrows). The PS
axis agrees very well with the expected value (red arrow), while for the FE axis there is a misalignment
of 17◦, most likely due to imprecise manual sensor attachment.

However, it is noticeable that also for the variability angle εw, the values are typically
much larger for the FE axis than for the PS axis, indicating that it is not only harder to per-
form a precise manual alignment of this axis but it is also harder for the proposed methods
to accurately and consistently estimate this axis. This effect is especially pronounced for
the complex motion.
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To investigate one potential effect, we take a closer look at Subject 2 and the rotation-
based constraint. In the complex motion trials, Subject 2 stands out as the range of motion
of the upper arm IMU is significantly lower than for the other subjects (more specifically,
the mean pairwise orientation difference within a window is 16◦ for Subject 2 and between
46◦ and 56◦ for the other four subjects) while the FE axis deviations are larger than for
all other subjects. In Figure 8, we visualize the estimated FE joint axes (Figure 8a) and
notice that all estimates lie approximately within the y-z-plane of the sensor. During the
trial, the x-axis of the upper arm IMU was approximately vertical, i.e., the y-z-plane is
approximately horizontal. When calculating the angle of the joint axis in this y-z-plane and
plotting this angle together with the estimated heading offset δ in Figure 8b, we notice that
there is an obvious correlation.

upper arm forearm

estimated FE axes j1 estimated PS axes j2 −20 0 20

angle of j1 in y-z-plane [°]
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y = 51.2 − 0.82x

(a) (b)

Figure 8. Investigation into the variability of the FE axis estimates (Subject 2, complex motion,
rotation-based constraint). (a) 3D visualization of the axis estimates for all windows. (b) Plot of the
estimated heading offset δ and the angle of the FE axis in the (approximately horizontal) y-z-plane
of the upper arm IMU coordinate system. There is an obvious correlation, indicating that without
sufficient upper arm movement, the kinematic constraint does not allow for distinguishing between
a heading rotation of the joint axis and a heading offset between the sensor orientations.

This correlation can be explained when considering the kinematic constraint in (7) for
the special case in which the upper arm does not move, i.e., the orientation B1

E1
q is constant,

ω1 = 0, and the coordinates of [j1]E1
are constant. In this case, there is no difference

between a change in δ, i.e., the heading offset between E1 and E2, and a rotation of the joint
axis estimate j1 around the vertical axis. The observation in Figure 8 is likely caused by the
real situation being too close to this singular case. To mitigate this, care should be taken to
avoid calibration motions during which one of the body segments is always stationary.

In summary, the evaluation of the first experiment has shown that the proposed
methods yield consistent and plausible joint axis estimates. The rotation-based constraint
performs better than the orientation-based constraint. To ensure that the axes converge, the
subject’s motion should include sufficient motion from both the upper arm and the forearm.

To further enrich the evaluation, we use the data from the first experiment to investi-
gate the influence of the the cutoff frequency for the low-pass filter, the sample selection
frequency, and the window duration. The results are presented in Appendix D.

5.2. Accuracy of Magnetometer-Free Joint Angle Tracking

The second experiment is performed to validate that the proposed methods can be
used to obtain accurate elbow joint angles for functional motions without relying on a
precisely known sensor attachment and without relying on the magnetic field. An optical
motion capture system (Vicon Motion Systems Ltd. UK) is used as reference. In addition to
the two inertial sensors positioned as in the previous experiment, optical markers are placed
on bony landmarks in a way that facilitates joint angle measurement as recommended by
the ISB [45]. Note that by placing reflective markers on anatomical landmarks and not, like
many previous works, on the IMUs, we ensure that we compare against the gold standard
for measuring joint angles, taking soft tissue motion into account.
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Two healthy adult volunteers, with no history of upper-limb injury that might affect
upper-limb movement, performed two motions:

1. During the pick-and-place motion, the subject placed a small box in a sequence of
predefined orientations and locations on a table.

2. The drinking motion consists of the subject repeatedly placing the hand on a table,
grabbing a cup, simulating a drinking motion, and then placing the cup back on
the table.

Each of the two subjects repeats the two motions four times (twice slow and twice fast),
resulting in a total of 16 trials, with durations between 14 and 44 s.

For each trial, calculate four different joint angles.

1. The OMC-based ground truth angles are derived from the optical markers placed on
anatomical landmarks and calculated as described in [45].

2. Conventional IMU-based joint angles are calculated using 9D sensor fusion (with the
VQF algorithm [48]), i.e., using the magnetic field to determine the heading, and
relying on the careful placement of the sensors on the body.

3. In contrast, the proposed IMU-based joint angles use 6D sensor fusion (with the VQF
algorithm [48]), and the joint axes and heading offset are identified from the trial
motion using the

• rotation-based joint constraint and the
• orientation-based joint constraint.

Note that the application of the proposed methods tests the most challenging case, i.e.,
we use a standard everyday motion to identify both the joint axes and the heading offset
without requiring a separate calibration phase.

To determine the sign and the required offset for the joint angles, we use the OMC-
based angles. The IMU-based joint angles obtained by the different methods are compared
to the OMC-based ground truth, and the RMSE is calculated. Results from all trials are
shown in Figure 9.

When comparing the two variants of the proposed method, we see that the rotation-
based constraint outperforms the orientation-based constraint. This coincides with the
results of the first experiment presented in Section 5.2. It is noteworthy that for many trials
the accuracy achieved with both constraints is comparable and the difference in the mean
accuracy is caused by several outliers obtained with the orientation-based constraint, which
is consistent with the lower robustness observed for this constraint in Figure 6.

However, when considering the results obtained with the proposed method and
the rotation-based constraint, the accuracy is similar to the conventional 9D IMU-based
method. For the FE angles, the mean RMSE of 2.1◦ is 0.2◦ lower than for the conventional
method, while for the PS angles, the mean RMSE of 3.7◦ is 0.1◦ larger. In contrast to
the results with the orientation-based constraint, there are no outliers, and the maximum
RMSE of the proposed method and the conventional method is comparable. Note that
the conventional method relies on properly calibrated magnetometer measurements, a
controlled environment without ferromagnetic material or electric devices, and a precise
and known sensor attachment and is therefore much more restrictive than the proposed
magnetometer-free plug-and-play method.
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Figure 9. Joint angle estimation errors for all trials with a conventional 9D approach and with the
proposed plug-and-play magnetometer-free methods, using OMC-based angles as ground truth. The
numbers below the axis labels indicate the mean root mean square error (RMSE) for all 16 trials. The
proposed method with the rotation-based constraint yields the same accuracy as the much more
restrictive conventional 9D method.

To illustrate the performed motions and the obtained results, Figure 10 shows the
OMC ground truth joint angles, the conventional IMU-based joint angles, and the proposed
joint angles with the rotation-based constraint for two exemplary trials. In several short
time periods, ground truth data are not available due to occlusion, i.e., at least one of the
required markers could not be tracked by the OMC system. Those phases were excluded
from the RMSE calculation. As can be seen, the joint angles obtained with the proposed
plug-and-play method agree well with both the conventional IMU-based joint angles and
the OMC-based ground truth angles.

Note that the joint constraint is only used for identifying the joint axes and that the
joint angle calculation uses standard Euler angles and therefore not directly restricted by
this constraint. As a result, the obtained carrying angles, which are also shown in Figure 10
but rarely reported in practice, are not perfectly constant.

We can use the carrying angle as an indicator of how well the measured joint motion
adheres to the 2-DoF joint model (Figure 3). For a perfect 2-DoF joint, we would expect
a perfectly constant carrying angle, while a 3-DoF joint will show significant movement
in all three joint angles. Furthermore, if the joint is in fact a 2-DoF joint but the joint axis
estimates are wrong, the Euler decomposition will cause variability in all three joint angles.
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Figure 10. Joint angle trajectories for an exemplary (a) drinking and (b) pick-and-place trial obtained
with the proposed IMU-based method (and the rotation-based constraint), the conventional 9D
IMU-based approach, and the OMC ground truth. While being much less restrictive, the proposed
method is able to obtain FE and PS joint angles that agree well with the angles obtained with the
other two methods.

Therefore, we calculate the standard deviation of the carrying angle as a measure
of variability, which is shown in Figure 11 for all 16 trials and all four angle calculation
methods. With both constraints, the median of the standard deviations is slightly lower
than for the conventional IMU-based joint angles and the OMC-based ground truth. This
indicates that the joint axis estimates automatically obtained with the proposed method are
better suited to describe the functional motion of the joint than the axes obtained via careful
IMU placement and the axes obtained via the placement of optical markers on anatomical
landmarks. This agrees with previous research showing that anatomical joint axes defined
based on anatomical landmarks do not coincide with the rotation axes of functional joint
motion [51]. For joint angle calculation, the use of functional rotation axes seems preferable
in order to minimize kinematic cross-talk.

In summary, the evaluation of the second experiment has shown that for the challeng-
ing case of using recordings of everyday motions for calibration, the proposed methods are
able to obtain joint angles with the same accuracy as a conventional IMU-based approach,
while not relying on precise sensor placement or magnetometer measurements. As also
shown via the first experiment, the rotation-based constraint performs better than the
orientation-based constraint and should therefore be used for anatomical calibration.



Sensors 2022, 22, 9850 18 of 28

orientation-based
constraint

rotation-based
constraint

conventional
IMU

OMC
ground truth

joint angle calculation method

1

2

3

4

5

st
an

da
rd

de
vi

at
io

n
of

ca
rr

yi
ng

an
gl

e
[°

] subject 1, drinking motion
subject 1, pick and place
subject 2, drinking motion
subject 2, pick and place

Figure 11. Standard deviation of the carrying angle for all trials with the different angle calculation
methods. The proposed method induces the smallest variation in the assumed-to-be-constant carrying
angle. This indicates that the estimated joint axes describe the functional motion axes better than the
axes obtained via careful manual IMU placement (conventional IMU) and via placing markers on
anatomical landmarks (OMC ground truth).

6. Conclusions

The present contribution introduced methods for automatic anatomical calibration for
2-DoF joints, such as the elbow, that do not require the subject to perform precise calibration
movements but instead work on arbitrary motions by exploiting one of two kinematic
constraints: a rotation-based constraint for the angular rates and an orientation-based
constraint. The methods do not make use of magnetometer measurements. Instead, the
heading offset is simultaneously estimated via the kinematic constraint, which facilitates
plug-and-play magnetometer-free joint angle estimation.

The proposed methods were evaluated using two experiments. The first experiment,
without OMC ground truth, showed that the proposed methods yield consistent and
plausible joint axis estimates from only ten seconds of motion data. The second experiment,
performed with OMC as ground truth, showed that the proposed plug-and-play method
can estimate accurate joint angles while being much less restrictive than a conventional
IMU-based approach. In both experiments, the rotation-based joint constraint performed
better than the orientation-based joint constraint.

The proposed methods overcome mounting and calibration restrictions and facilitate
magnetometer-free motion tracking. Therefore, they are highly suitable for indoor environ-
ments and improve the practical usability of IMU-based motion tracking in many clinical
and biomedical applications.

To further advance the proposed methods, it should be evaluated if combining the
rotation-based and the orientation-based constraint can increase the robustness and con-
sistency of the joint axes estimates. Furthermore, introducing and evaluating metrics to
quantify the estimation uncertainty and methods for automatic (re-)triggering of the calibra-
tion when suitable motions are detected are important next steps to increase the usability
of the method.
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Appendix A. Transforming Any General 2D Joint Model to Euler Angles

The proposed methods for automatic anatomical calibration use z-y′-x′′ Euler angles
to decompose the relative segment orientation into joint angles. This decomposition was
chosen because it is recommended by the ISB for the elbow [45]. However, this choice is
not restrictive in any way. In the following, we show that any joint model with two degrees
of freedom can be transformed to fit the chosen Euler angle representation. For example,
instead of using regular Euler angles, we could consider modeling a 2-DoF joint with axes
that are all potentially non-orthogonal (including the carrying angle axis), i.e.,

B′2
B′1

q =
(
α′(t)@ j′1

)
⊗
(

β′0 @ j′β
)
⊗
(
γ′(t)@ j′2

)
, (A1)

or assume that the relative segment orientation is a sequence of two non-orthogonal
rotations (which is a special case of the above model with β′ = 0). Furthermore, the
joint model might include additional fixed rotations, similar to the carrying angle, at the
beginning or at the end of the rotation sequence.

To capture all those possibilities, we start with a very general model of a joint with
two degrees of freedom, described as the decomposition of the relative body segment
orientation quaternion

B′2
B′1

q = q1 ⊗ (α @ j1)⊗ q2 ⊗ (γ @ j2)⊗ q3. (A2)

The 3D vectors j1 and j2 are arbitrary but constant joint rotation axes, α(t) and γ(t) are
the two time-varying joint angles, and q1, q2 and q3 are arbitrary but constant rotations.

Without loss of generality, we can write (α @ j1) = q4 ⊗ (α @ [ 0 0 1 ]ᵀ) ⊗ q−1
4 and

(γ @ j2) = q5 ⊗ (α @ [ 0 1 0 ]ᵀ) ⊗ q−1
5 , with some constant rotations q4, q5 that rotate
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between the given joint axes and the z-axis and y-axis, respectively. Inserting this into
(A2) gives

B′2
B′1

q = q1 ⊗ q4 ⊗ (α @ [ 0 0 1 ]ᵀ)⊗ q−1
4 ⊗ q2 ⊗ q5 ⊗ (γ @ [ 0 1 0 ]ᵀ)⊗ q−1

5 ⊗ q3. (A3)

Since we can decompose any quaternion into Euler angles, we can write

q−1
4 ⊗ q2 ⊗ q5 = (α0 @ [ 0 0 1 ]ᵀ)⊗ (β0 @ [ 1 0 0 ]ᵀ)⊗ (γ0 @ [ 0 1 0 ]ᵀ). (A4)

Furthermore, we can define new body segment coordinate systems B1 and B2:

B1
B′1

q = q1 ⊗ q4 (A5)

B′2
B2

q = q−1
5 ⊗ q3. (A6)

Putting (A4), (A5) and (A6) into (A3) yields

B2
B1

q = (α @ [ 0 0 1 ]ᵀ)⊗ q−1
4 ⊗ q2 ⊗ q5 ⊗ (γ @ [ 0 1 0 ]ᵀ) (A7)

= (α + α0 @ [ 0 0 1 ]ᵀ)⊗ (β0 @ [ 1 0 0 ]ᵀ)⊗ (γ + γ0 @ [ 0 1 0 ]ᵀ). (A8)

This represents z-x′-y′′ Euler angles as recommended for the elbow by [45], with a
constant carrying angle β0. The time-varying joint angles in the generic model (A2) and
in the Euler angle model (A8) are only shifted by constant offsets α0 and γ0. Therefore,
without loss of generality, all joints that can be represented with two sequential rotations
around arbitrary but constant axes can be described using z-x′-y′′ Euler angles.

Appendix B. Details on the Optimization Procedure

Appendix B.1. Gauss–Newton Algorithm

To estimate the joint axes j1 and j2 and the heading offset δ given a set of M samples,
we find the parameter vector Φ̂ that minimizes the sum of squares of either the error defined
in (17) (for the rotation-based constraint) or (18) (for the orientation-based constraint), i.e.,

Φ̂ = arg min
Φ

∑
tk∈B

e(tk)
2 = arg min

Φ

eᵀe, (A9)

with e ∈ RM×1 being the error vector and B denoting the set of sampling times tk in
the buffer.

For any given parameter vector, we can evaluate the Jacobian J ∈ RM×5 with

[J]ij =
∂ei
∂Φj

. (A10)

Analytical expressions for all elements of J that only depend on the parameters Φ and
on the measurements are given in Appendix B.3 for the rotation-based constraint and in
Appendix B.4 for the orientation-based constraint.

The Gauss–Newton algorithm [50] is used to minimize the error. Starting with an
initial parameter vector Φ0, we iteratively obtain the estimate by

Φi+1 = Φi + αpi with JᵀJpi = Jᵀe, (A11)

until convergence is achieved, with the iteration index i, the step direction pi, and the step
length α = 1. In between iterations, we switch from one joint axis representation to the
other via Cartesian coordinates if | sin θi| < 1

2 , i = 1, 2 (cf. Figure 4). As a result of the
optimization step, we obtain the joint axes j1 and j2 in the coordinates systems of sensors
S1 and S2, respectively, and the heading offset δ between the reference frames E1 and E2.
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Appendix B.2. Moving Window Approach for Real-Time Applications

Note that the proposed optimization method can not only be applied to recorded
datasets but is also suitable for real-time application. In the simplest case, samples are
saved while the subject performs a motion and afterward, the optimization is performed on
the stored samples, and the resulting calibration parameters are applied to all subsequent
samples. For an improved online implementation that continuously updates the axes
estimates (if desired) and that starts to provide estimates as early as possible, the method
can be extended to the following moving window approach:

1. New samples are continuously selected every 0.05 s and stored in a ring buffer con-
taining M = 200 data sets, i.e., old data sets are automatically discarded.

2. As soon as the buffer is half-full, optimization starts.
3. One Gauss–Newton step is performed every time a sample is added to the buffer (to

continuously update the solution while spreading the computational load over time).

Note that it is also possible to keep the parameters for the joint axes θ1, ϕ1, θ2, and ϕ2 fixed
after the initial estimate and only track the heading offset δ.

Appendix B.3. Gradient of Rotation-Based Cost Function

For efficient optimization using the rotation-based joint constraint introduced in
Section 4.2, we need to calculate the elements of the Jacobian J, i.e.,

[J]ij =
∂ei
∂Φj

= ωrel ·
∂

∂Φj

jn

‖jn‖
+

jn

‖jn‖
· ∂

∂Φj
ωrel. (A12)

The derivative of the normalized axis is

∂

∂Φj

jn

‖jn‖
=

∂
∂Φj

jn

‖jn‖
− jn

jn · ∂
∂Φj

jn

‖jn‖3 . (A13)

All necessary subsequent derivatives are detailed in the following. Note that, while jn
depends on all parameters in Φ, the relative angular rate ωrel only depends on δ.

Appendix B.3.1. Derivative with Respect to the Joint Axes

We exploit the fact that the product rule holds for quaternion multiplication [52].
Similarly, we could argue that the rotation can be expressed using a rotation matrix and
make use of the product rule for matrix multiplication.

∂jn

∂θ1, ϕ1
=

(
S1
E1

q⊗ ∂

∂θ1, ϕ1
j1 ⊗ S1

E1
q−1

)
× [j2]E1

(A14)

∂jn

∂θ2, ϕ2
= [j1]E1

×
(
S2
E1

q⊗ ∂

∂θ2, ϕ2
j2 ⊗ S2

E1
q−1

)
(A15)

Deriving the axes in local sensor coordinates with respect to θ and ϕ as defined in (14)
is straightforward:

∂ji

∂θi
= [ cos θi cos ϕi cos θi sin ϕi − sin θi ]

ᵀ, (A16)

∂ji

∂ϕi
= [− sin θi sin ϕi sin θi cos ϕi 0 ]ᵀ, i = 1, 2. (A17)

The same is possible for the alternative joint axis parametrization.
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Appendix B.3.2. Derivative with Respect to the Heading Offset

Instead of quaternion multiplication, we can make use of Rodrigues’ rotation formula
to express the transformation of a vector v ∈ R3 from E2 to E1, i.e.,

[v]E1 = E2
E1

q⊗ [v]E2
⊗ E2
E1

q−1 (A18)

= [v]E2
cos(δ) +

(
[ 0 0 1 ]ᵀ × [v]E2

)
sin(δ)

+ [ 0 0 1 ]ᵀ
(
[ 0 0 1 ]ᵀ · [v]E2

)
(1− cos(δ)). (A19)

This allows us to calculate the derivatives

∂ωrel
∂δ

= − ∂

∂δ
[ω2]E1

(A20)

= [ω2]E2
sin(δ)−

(
[ 0 0 1 ]ᵀ × [ω2]E2

)
cos(δ)

− [ 0 0 1 ]ᵀ
(
[ 0 0 1 ]ᵀ · [ω2]E2

)
sin(δ) (A21)

and

∂jn

∂δ
= [j1]E1

× ∂

∂δ
[j2]E1

with (A22)

∂

∂δ
[j2]E1

= −[j2]E2 sin(δ) +
(
[ 0 0 1 ]ᵀ × [j2]E2

)
cos(δ)

+ [ 0 0 1 ]ᵀ
(
[ 0 0 1 ]ᵀ · [j2]E2

)
sin(δ). (A23)

Appendix B.4. Gradient of Orientation-Based Cost Function

Analogously to the derivation in Appendix B.3, we now show how to calculate the
elements of the Jacobian J for the orientation-based constraint introduced in Section 4.2, i.e.,

[J]ij =
∂ei
∂Φj

=
∂

∂Φj

(
arcsin

(
2qwqx + 2qyqz

)
︸ ︷︷ ︸
=: s(θ1,ϕ1,θ2,ϕ2,δ)

−β0

)
, (A24)

with B2
B1

q =: [ qw qx qy qz ]ᵀ.
Trivially, the derivative with respect to the fixed carrying angle β0 is

∂ei
∂β0

= −1. (A25)

For the derivatives with respect to the other parameters, we make use of the fact that

∂

∂Φj
arcsin s(Φj) =

∂
∂Φj

s(Φj)
√

1− s(Φj)2
(A26)

and that
∂

∂Φj
s(Φj) = 2

(
∂qx

∂Φj
qw + qx

∂qw

∂Φj
+

∂qy

∂Φj
qz + qy

∂qz

∂Φj

)
. (A27)

To determine the derivative of the quaternion components qw, qx, qy, and qz, remember
that the relative segment orientation B2

B1
q, as defined in (11), is the multiplicative concatena-

tion of five quaternions:

B2
B1

q = S1
B1

q(θ1, ϕ1)⊗ E1
S1

q⊗ E2
E1

q(δ)⊗ S2
E2

q⊗ B2
S2

q(θ2, ϕ2). (A28)
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Since for each parameter, only a single of those five quaternions depends on the
respective parameter, the other four quaternions are constant factors, i.e.,

∂

∂θ1, ϕ1

B2
B1

q =

(
∂

∂θ1, ϕ1

S1
B1

q
)
⊗ E1
S1

q⊗ E2
E1

q⊗ S2
E2

q⊗ B2
S2

q (A29)

∂

∂δ
B2
B1

q = S1
B1

q⊗ E1
S1

q⊗
(

∂

∂δ
E2
E1

q
)
⊗ S2
E2

q⊗ B2
S2

q (A30)

∂

∂θ2, ϕ2

B2
B1

q = S1
B1

q⊗ E1
S1

q⊗ E2
E1

q⊗ S2
E2

q⊗
(

∂

∂θ2, ϕ2

B2
S2

q
)

. (A31)

Appendix B.4.1. Derivative with Respect to the Joint Axes

The sensor-to-segment orientation for the first segment can be expressed as

S1
B1

q =

[
cos(ψ

2 )

sin(ψ
2 )

v
‖v‖

]
, with ψ = arccos(j1,z) and v = j1 ×




0
0
1


 =




j1,y
−j1,x

0


. (A32)

For the scalar part of the quaternion,

∂

∂θ1, ϕ1
cos
(

ψ

2

)
= −1

2
sin
(

ψ

2

)
∂ψ

∂θ1, ϕ1
(A33)

and

∂

∂θ1, ϕ1
ψ = −

∂j1,z
∂θ1,ϕ1√
1− j21,z

. (A34)

The derivative of the vector part of the quaternion is

∂

∂θ1, ϕ1
sin
(

ψ

2

)
v
‖v‖ =

1

‖v‖2

(
v‖v‖∂ sin(ψ

2 )

∂θ1, ϕ1
+ sin

(
ψ

2

)
‖v‖ ∂v

∂θ1, ϕ1
− sin

(
ψ

2

)
v

∂‖v‖
∂θ1, ϕ1

)
, (A35)

with

∂

∂θ1, ϕ1
sin
(

ψ

2

)
=

1
2

cos
(

ψ

2

)
∂ψ

∂θ1, ϕ1
(A36)

and

∂

∂θ1, ϕ1
‖v‖ = 1

‖v‖

(
j1,y

∂j1,y

∂θ1, ϕ1
− j1,x

∂j1,x

∂θ1, ϕ1

)
. (A37)

For the derivatives of the Cartesian joint axis vector j1 with respect to θ1 and ϕ1, refer
to Appendix B.3.

The derivative with respect to θ2 and ϕ2 follows analogously for the second sensor-to-
segment orientation

B2
S2

q =

[
cos(ψ

2 )

sin(ψ
2 )

v
‖v‖

]
, with ψ = arccos(j2,x) and v =




0
1
0


× j2 =




j1,z
0
−j1,x


. (A38)

Appendix B.4.2. Derivative with Respect to the Heading Offset

The derivative of the heading offset quaternion

E2
E1

q =
[
cos( δ

2 ) 0 0 sin( δ
2 )
]ᵀ (A39)
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with respect to the heading offset δ is

∂

∂δ
E2
E1

q =
[
− 1

2 sin( δ
2 ) 0 0 1

2 cos( δ
2 )
]ᵀ. (A40)

Appendix C. On-Chip Sensor Fusion, Soft Tissue Motions, and Axis Ambiguity

Appendix C.1. Extension to On-Chip 6D Sensor Fusion

Especially in wireless inertial sensor networks, it is desirable to perform on-chip sensor
fusion, potentially with a high sampling rate of the gyroscopes, and then to only transmit
the orientation quaternions at a regular (and typically much lower) sampling rate to the
processing unit. However, the constraint (7) is based on angular rates, i.e., on the gyroscope
measurements.

Instead of transmitting the gyroscope measurements as well, which requires extra
bandwidth, increases power consumption, and might not be possible without changing
hardware and/or the communication protocol, the angular rates can easily be approximated
from the change of orientation

[ S i(tk)
S i(tk−1)

q
]
E i

=
S i(tk)
E i

q⊗ S i(tk−1)
E i

q−1 =: [ qw qx qy qz ]
ᵀ, i = 1, 2, (A41)

by

[ω(tk)]E i
=

2
Ts

arccos(qw)
[ qx qy qz ]ᵀ∥∥[ qx qy qz ]ᵀ

∥∥ . (A42)

Note that due to the order of quaternion multiplication, we already obtain the angular
rate in each sensor’s global frame, thus avoiding another transformation step.

Of course, when the gyroscope and accelerometer readings are available, it is equally
possible to perform 6D sensor fusion in the processing unit, e.g., using the VQF algo-
rithm [48], and directly employ the angular rates measured by the gyroscopes for evalua-
tion of the kinematic constraint. Therefore, this proposed extension is not restrictive but
instead broadens the scope of applicability of the method.

Note that the orientation-based constraint is already quaternion-based and does not
require any other measurement data. Therefore, employing the proposed extension is not
necessary when using this constraint.

Appendix C.2. Measurement and Soft Tissue Motion Artifact Reduction

Measurement anomalies, such as the sensor accidentally touching objects, or soft
tissue motion can cause artifacts in the measured angular rates ω1 and ω2. This leads to
high-frequency disturbances (compared to the frequency of the functional joint motions)
that often violate the rotation-based constraint (7) and therefore deteriorate the estimation
accuracy. Low-pass filtering of the angular rates used for evaluating the rotation-based
constraint with a cutoff frequency of fc = 5 Hz improves the accuracy and robustness of
the anatomical calibration.

Appendix C.3. Ambiguity in the Signs of the Joint Axes

The joint constraints cannot be used to determine the signs of the joint rotation axes, as
for any pair of axes, the value of the cost function for (j1, j2), (−j1,−j2) and also (j1,−j2)
is exactly the same. Correspondingly, whether, for example, supination is defined as a
positive or negative rotation around an axis pointing proximally along the right forearm is
only a matter of convention.

In practical applications, it is essential to ensure that a specific definition is always
followed, e.g., [45]. In order to determine the sign, two approaches are practical: The first
is to ensure a sensor placement that is roughly known, i.e., the half-space in which each
joint axis points is predetermined. Another way is to exploit the joint’s range of motion
in combination with the offset-removal method described in Section 4.5. For example, by
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defining that an extended and supinated elbow corresponds to α = 0, γ = 0 and choosing
the signs of the axes so that the mean joint angles during calibration are positive, we ensure
that we follow the definitions given in [45].

Appendix D. Sensitivity to Cutoff Frequency, Sample Selection Frequency, and
Window Duration

As a further part of the evaluation, we consider the three main degrees of freedom in
applying the proposed methods and investigate the influence of those parameters:

• the cutoff frequency fc for measurement and soft tissue motion artifact reduction
(employed value: 5 Hz, cf. Appendix C.2, rotation-based constraint only)

• the sample selection frequency (employed value: 20 Hz, Ts = 0.05 s)
• the duration of the measurement window (employed value: 10 s).

We apply the proposed methods to all trials of the five subjects of the first experiment
for different values of the respective parameter while keeping the other two parameters
at the previously employed default value. In order to condense the obtained information
(cf. Figure 6), we calculate the mean and the 99th percentile of the variability angles εw of
all windows of all trials.

For the angular rate cutoff frequency fc for measurement and soft tissue motion artifact
reduction, the obtained results are shown in Figure A1. If the cutoff frequency is chosen
too low ( fc = 2 Hz), the mean and 99th-percentile of εw increase compared to the smallest
possible value. At those frequencies, valuable information about the movement is lost,
leading to more inconsistent estimation results. However, when choosing 3 Hz ≤ fc ≤ 7 Hz,
the results are more consistent than without low-pass filter. Therefore, we can conclude
that low-pass filtering of the angular rates helps to increase robustness and that fc = 5 Hz
is a reasonable choice for the cutoff frequency.
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mean(εw)/4.7°
99th-percentile(εw)/27.3°

Figure A1. Variability of the obtained axis estimates (mean and 99th-percentile of εw, relative to
minimum value) for different values of the cutoff frequency of the soft tissue motion artifact reduction
low pass filter. Low-pass filtering of the angular rates increases the consistency of the axis estimates,
but for too low cutoff frequencies, important information is lost, and the deviations increase. Choosing
a cutoff frequency of 5 Hz gives robust estimates.

To determine how many data are needed to obtain consistent estimates, we repeat the
same evaluation for the other two parameters, i.e., window duration and sample selection
frequency, which is shown for both constraints in Figure A2. As expected, using more
data in the optimization, i.e., increasing the window duration or increasing the sample
selection frequency, leads to more consistent estimates. However, this comes at a cost.
Longer window durations cause inconvenience for the subject that has to perform the
movements and limit the applicability of the method. Therefore, the duration of 10 s was
chosen as a compromise between ease of use and accuracy and to demonstrate that such
short durations lead to good results. If the data are available, employing longer motion
sequences should be considered (up to a point where the assumption of δ being constant
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is not valid anymore due to integration drift). The sampling selection frequency is less
critical as it only affects the computational time. However, the results show that increasing
the frequency past 10 Hz does not significantly affect the results. The chosen frequency of
20 Hz is more than sufficient while still considerably removing the number of data sets
compared to typical IMU raw data sampling rates of 50–500 Hz.
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(b) orientation-based constraint
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Figure A2. Variability of the obtained axis estimates (mean and 99th-percentile of εw, relative to
minimum value) for different values of the window duration and the sample selection frequency for
the (a) rotation-based constraint and the (b) orientation-based constraint. In general, using more data
(long windows at high sampling rates) leads to more consistent estimates but increases inconvenience
for the subject and processing time.
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