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Abstract
Emergent fields such as Internet of Things applications, driverless cars, and indoor mobile
robots have brought about an increasing demand for simultaneous localization and mapping
(SLAM) technology. In this study, we design a SLAM scheme called BVLI-SLAM based on
binocular vision, 2D lidar, and an inertial measurement unit (IMU) sensor. The pose estimation
provided by vision and the IMU can provide better initial values for the 2D lidar mapping
algorithm and improve the mapping effect. Lidar can also assist vision to provide better plane
and yaw angle constraints in weak texture areas and obtain higher precision 6-degree of
freedom pose. BVLI-SLAM uses graph optimization to fuse the data of the IMU, binocular
camera, and laser. The IMU pre-integration combines the visual reprojection error and the laser
matching error to form an error equation, which is processed by a sliding window-based bundle
adjustment optimization to calculate the pose in real time. Outdoor experiments based on KITTI
datasets and indoor experiments based on the trolley mobile measurement platform show that
BVLI-SLAM has different degrees of improvement in mapping effect, positioning accuracy,
and robustness compared with VINS-Fusion and Cartographer, and can solve the problem of
positioning and plane mapping in indoor complex scenes.

Keywords: 2D lidar, binocular vision, IMU, simultaneous localization and mapping,
graph optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Simultaneous localization and mapping (SLAM) technology
means that mobile carriers only carry their sensors to complete
real-time self-positioning and map a perceived environment
[1–3]. SLAM has been developed for nearly 30 years.
Research has intensified in the last decade with the popular-
ity of industries, such as autopilot, unmanned aerial vehicles,

∗
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various service robots, and virtual reality/augmented reality,
all of which have SLAM as their core basic function.

With the rapid development of SLAM in the past decade,
it has evolved into two types of schemes, which are mainly
based on visual cameras and lidar sensors [4]. Two types of
SLAM solutions, namely, visual SLAM and lidar SLAM, have
evolved. The constructed map is divided into a 2D grid map,
a 3D sparse map, and a 3D dense map according to the form
of sensors. In cases where the environment has adequate light-
ing, sufficient texture, and is composed of static rigid bodies,
the existing visual SLAM can operate satisfactorily, meeting
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the needs of localization and mapping with an error of 5 cm.
However, visual SLAM technology cannot work well in envir-
onments with poor textures and insufficient lighting.

SLAM technology based on 2D lidar is mainly used
for indoor floor mapping. Compared with 2D lidar, multi-
threaded lidar can perform more robust localization and map-
ping in both indoor and outdoor environments, but itis more
expensive [5]. Lidar-based SLAM technology is not affected
by changes in ambient light texture, etc, but positioning errors
are often encountered in a structured environment because
the point cloud data at different locations have the same
coordinate information. The researchers found that vision
and lidar have very good complementary properties, and
the SLAM fusion of vision and lidar is a current research
hotspot [6].

However, researchers mostly focus on the fusion of multi-
threaded lidar and camera, ignoring 2D lidar. Applications
in indoor environments often only require 2D lidar, such as
sweeping robots, while 3D lidar has a larger volume, which
greatly increases its cost. However, mapping large-scene
indoor environments is subject to factors such as the struc-
tural environment, glass curtain walls, and uneven ground.
Only relying on 2D lidar to complete high-precision localiza-
tion and mapping is very difficult. To cope with more indoor
environments, this paper pursues the combination of low-
cost 2D lidar, camera, and inertial measurement unit (IMU)
to achieve high-precision 6-degree of freedom (DOF) pose
estimation and 2D plane mapping. Given that 2D lidar is
suitable for flat areas, obtaining sufficient motion excitation
during IMU initialization is not easy. Therefore, this paper
selects a binocular camera to replace the monocular camera
to assist the initialization process, and the depth estimation
based on the former has natural advantages over the latter.
Based on 2D lidar, a more accurate heading angle can be
obtained, compensating for the unobservable nature of the
IMU heading angle. Therefore, a SLAM scheme based on bin-
ocular vision, 2D lidar, and IMU fusion is a low-cost optimal
choice for high-precision real-time positioning and planar
mapping. This paper presents a general framework, herein-
after referred to as BVLI-SLAM, based on factor graph optim-
ization, which integrates a binocular camera, 2D lidar, and
IMU sensors for high-precision real-time positioning and 2D
mapping.

The main contributions of this paper are as follows.

(a) A theoretical framework is proposed based on graph
optimization for the fusion of the binocular camera, 2D
lidar, and IMU;

(b) The accuracy and robustness of the algorithm are veri-
fied through experiments on datasets and indoor complex
scenes.

The remainder of the paper is organized as follows.
Section 2 reviews the related work of SLAM technology of
vision and laser fusion. Section 3 presents a detailed introduc-
tion to the proposed BVLI-SLAM scheme. Section 4 discusses

the experimental tests performed on localization and mapping.
Finally, a conclusion is given in section 5.

2. Related work

2.1. Visual SLAM

Visual SLAM systems that can run in real time, such as
MonoSLAM [7] and PTAM [8], appeared in 2007. Since
2013, with the open-sourcing of many excellent visual SLAM
schemes, such as SVO [9], LSD-SLAM [10], and ORB-
SLAM2 [11], visual SLAM has received extensive attention
and undergone rapid progress. If the environment is limited to
scenarios with sufficient light, texture, and static rigid bodies,
existing visual SLAM solutions can achieve centimeter-level
positioning accuracy. Visual SLAM is too dependent on the
environmental texture and other information, and positioning
accuracy is heavily dependent on the environment. Therefore,
some scholars proposed using IMU sensors to assist visual
SLAM. Vision and IMU fusion methods include filtering and
graph optimization. MSCKF [12] is a representative method
based on filtering. Given that SLAM is a highly nonlinear sys-
tem, the graph-based optimization method has been proven
to achieve better accuracy than the algorithm based on fil-
tering under the same computing power [13]. Therefore, the
framework based on graph optimization has been widely stud-
ied by researchers since it was proposed, and many excellent
open-source SLAM schemes have been obtained, represented
by OKVIS [14], VINS-Fusion [15], and ORB-SLAM3 [16].
Table 1 summarizes some of the most representative open-
source visual SLAM schemes, based on which most of the
present research work is carried out.

2.2. Lidar SLAM

Compared with visual SLAM, the research on 2D lidar SLAM
schemes was developed much earlier. The earliest lidar SLAM
was mainly based on 2D lidar. The lidar SLAM schemes that
rely on 2D lidar to establishmaps can be divided into filter- and
graph-based optimization according to the solution method.
The filter-based method, derived from Bayesian estimation
theory, is an early method to solve the SLAM problem. At
present, the filter-based lidar SLAM scheme is mainly used
in 2D indoor small-scale scenes. The SLAM scheme based
on graph optimization considers more pose state and envir-
onmental observation information and uses a graph formed by
nodes and edges to represent a series of mobile robot poses
and constraints, which is a more efficient and popular optimiz-
ation method. The filtering-based representative scheme EKF-
SLAM [17] is computationally complex and has poor robust-
ness to build maps. FastSLAM [18] was the first to realize
the real-time output of grid maps, but it has disadvantages,
such as memory consumption and serious particle dissipation.
Gmapping [19] alleviates particle dissipation but relies heav-
ily on odometer information. The optimal RBPF [20] further
reduces the particle degradation problem. In the 1990s, SLAM
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Table 1. Representative visual SLAM solutions.

Scheme name Release time Sensor form Characteristics

MonoSLAM 2007 a First real-time visual SLAM, EKF + sparse corners
PTAM 2007 a Keyframe + BA, first optimized for back-end
SVO 2014 a Sparse direct method
LSD-SLAM 2014 a Direct method + semi-dense map
ORB-SLAM2 2015 b ORB feature point + three-thread structure
MSCKF 2007 c EKF-based VIO
OKVIS 2015 c Optimized keyframe VIO
ROVIO [14] 2015 c EKF-based VIO
VINS-Fusion 2019 c Optical flow method + optimized back-end
ORB-SLAM3 2021 c IMU initialization and fusion estimation, and submap function
a indicates support for monocular camera.
b indicates support monocular, binocular, and RGB-D cameras.
c indicates support for vision and IMU sensor fusion.

based on the pose graph was first proposed, but it was not pop-
ular because of its high computational complexity. In 2010,
researchers realized the sparsity of the pose graph, which
greatly reduced the computational complexity of SLAMbased
on the pose graph [21]. In 2014, Hector [22] based on scan
to map was proposed, which is sensitive to the initial value
and struggles to handle the closed loop. In 2016, Google’s
open-source solution Cartographer used a graph-based optim-
ization framework and the branch and round approach method
to accelerate the closed-loop solution process, which is the best
solution today [23].

2.3. SLAM of vision and lidar fusion

Vision is rich in information and has good complementary
properties to lidar, and the SLAM research that integrates vis-
ion and lidar has become a new research hotspot. V-LOAM
[24] is a vision and laser fusion SLAM scheme based on the
optimization method. The scheme assumes uniform velocity,
has no loopback, and has good algorithm robustness. LVIO
[25] uses vision, lidar, and IMU sensor fusion. It runs three
modules in multiple layers in sequence to generate real-time
self-motion estimation and processes coarse-to-fine data to
generate high-frequency pose estimates and build low-drift
maps over long distances. LVI-SAM [26] adopts the tight
coupling scheme of the lidar, vision, and IMU fusion, and
is a fusion of the lidar–inertial odometer (LIO)-SAM and
VINS-Mono schemes. R3LIVE [27], the upgraded version of
R2LIVE [28] from the MARS Laboratory of the University
of Hong Kong, adopts a filtering method to integrate lidar,
camera, and IMU. The above review summarizes the SLAM
schemes based on vision and laser, as well as the excellent
representative SLAM schemes of vision laser fusion.

This section provides a brief overview of SLAM, showing
that SLAM research based on vision and lidar has made rapid
progress. SLAMbased on vision and lidar fusion has also been
the subject of some research. However, compared with SLAM
based on lidar, SLAM based on vision and laser fusion has no
significant improvement inmapping effect, and the potential of
vision and laser fusion has not been fully explored. In addition,
researchers have focused on the fusion of 3D lidar and vision

sensors, ignoring the development of multi-source fusion such
as 2D lidar sensors and vision.

3. Principles and models

The BVLI-SLAM system designed in this paper comprises
five parts: sensor data pre-processing, initial state estimation,
local sliding window optimization, closed-loop detection, and
global optimization. The overall framework of the BVLI-
SLAM system is shown in figure 1. The constraint relation-
ship between sensors is shown in figure 2. The functions and
implementation ideas of each module are then introduced sep-
arately. In this paper, the external parameter calibration of 2D
lidar, a binocular camera, and IMU is realized, and the calib-
ration is considered reliable.

(a) Sensor data pre-processing. An image pyramid is con-
structed for each frame of the image acquired by the cam-
era. Harris feature points are extracted for each layer of the
image, quadtree is used to uniformize the feature points to
obtain evenly distributed feature points, and the tracked
feature points are pushed to the image queue. The IMU
data are integrated to obtain the position, velocity, and
rotation at the current moment. The pre-integration incre-
ment of adjacent image frames that will be used in the
back-end optimization is calculated, as are the Jacobian
matrix and covariance of the pre-integration error matrix
item. The 2D lidar point cloud is de-distorted according to
the IMU pre-integration positioning result, and the point
cloud data of one frame is unified into the coordinate sys-
tem of the first laser point.

(b) Initial state estimation. This part includes the LIO gener-
ated by the fusion of 2D laser and IMU, and the visual–
inertial odometer (VIO) integrated with binocular vision
and IMU. Using the pose estimation results of binocular
vision, the acceleration bias and angular velocity bias of
the IMU are calculated. At the same time, the binocular
and IMU fusion results are aligned with the gravity vector.
The 2D lidar data after de-distortion are projected onto the
plane, and inter-frame matching based on correlation scan
match (CSM) and gradient optimization are performed.
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Figure 1. Overall framework of BVLI -SLAM scheme.

Figure 2. Sensor constraint structure diagram.

(c) Local slidingwindow optimization. The objective function
is constructed for nonlinear optimization of IMU pre-
integration constraints, 2D lidar constraints, and visual
constraints. To maintain the real-time performance of the
calculation, the optimization method of the sliding win-
dow is used for real-time pose calculation, and the optim-
ized result is fed back to the initial state estimation.

(d) Closed-loop detection. The closed-loop detection
algorithm based on 2D lidar (frame and database sub-
graph matching) and the vision-based bag of words model
(Dbow3) algorithm is used for closed-loop detection. Only
when the constraints of these two methods are satisfied at
the same time is it considered a closed loop. Closed-loop
constraints are then added to the global optimization.

(e) Global optimization. A separate thread is opened for the
global optimization of keyframe-based pose graphs.

3.1. Symbol description

(·)w is the world coordinate frame, and the gravity vector
is aligned with the z-axis. (·)b is the carrier system, which
coincides with the IMU system. (·)c is the camera coordinate
system. Using R and the quaternion q to represent the rota-
tion, the quaternion corresponds to the Hamiltonian notation.
qwb and pwb represent the rotation and translation of the body
system to the world coordinate system, respectively. bk rep-
resents the body coordinate system when the kth image was
taken, and ck represents the camera coordinate system when
the kth image was taken. ⊗ represents the multiplication of
two quaternions, and gw =

[
0 0 g

]T
represents the rep-

resentation of the gravity vector in the world coordinate sys-
tem. R ∈ SO(3) represents the rotation matrix, P ∈ R3 repres-
ents the position vector, v represents the velocity vector, and b

4
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represents the IMU bias. The transformation matrix T ∈ SE(3)
is expressed as T= [R|p].

The variables of the sliding window are expressed as
follows. xk represents the state of the kth frame in the sliding
window, including the position pwbk , velocity v

w
bk
, attitude qwbk ,

acceleration bias ba, and angular velocity bias bg in the world
coordinate system. xbc =

[
pbc ,q

b
c

]
represents the external para-

meter from the camera to the IMU, λ represents the inverse
depth of the feature point

χ=
[
x0,x1, . . .xn,xbc ,λ0,λ1, . . . ,λm

]
xk =

[
pwbk ,v

w
bk
,qwbk ,ba,bg

]
,k ∈ [0,n]

xbc =
[
pbc ,q

b
c

] .

3.2. IMU pre-integration factor

The angular velocity and acceleration observation model of
IMU is defined as follows:

ât = at+ bat +Rtwg
w+ na (1)

ât = at+ bat +Rtwg
w+ na (2)

ât and ŵt represent the raw measurements of the IMU
sensor. The accelerometer noises na and nw are assumed to
obey white Gaussian noise, na ∼ η(0,σ2

α), nw ∼ η(0,σ2
w). The

accelerometer bias and gyroscope bias follow random walks,
nba ∼ η(0,σ2

ba), and nbw ∼ η(0,σ2
bw)

ḃat = nba
ḃwt = nbw

. (3)

Between the key frames bk and bk+1 of the two frames of
images, in the time range [tk, tk+1], multiple IMU observation
data are present, and the pre-integration formula under con-
tinuous time is as follows:

αbkbk+1
=

ˆ ˆ
t∈[tk,tk+1]

Rbkt (ât− bat)dt
2

βbkbk+1
=

ˆ
t∈[tk,tk+1]

Rbkt (ât− bat)

γbkbk+1
=

ˆ
t∈[tk,tk+1]

1
2
Ω(ŵt− bwt)γ

bk
t dt (4)

where

Ω(w) =

[
−⌊w⌋× w

−wT 0

]
, ⌊w⌋× =

 0 −wz wy
wz 0 −wx
−wy wx 0

 .

(5)
The discretized integral form of the above formula is as fol-

lows:

âbki+1 = âbki + β̂bki δt+
1
2
R(γ̂bki )(α̂i− bai)δt

2

β̂bki+1 = β̂bki +R(γ̂bki )(α̂i− bai)δt

γ̂bki+1 ⊗
[

1
1
2 (ŵi− bwi)δt

]
(6)

where i and i+ 1 correspond to two adjacent data observed
by the IMU, and δt represents the interval between moments
i and i+ 1. The error equation based on the IMU sensor is as
follows:

B

(
ẑbkbk+1

,χ
)
=



δαbkbk+1

δβbkbk+1

δθbkbk+1

δba

δbg



=



Rbkw
(
pwbb+1

− pwbk +
1
2g

w∆t2k − vwbk∆tk
)
− α̂bkbk+1

Rbkw
(
vwbk+1

+ gw∆tk − vwbk

)
− β̂bkbk+1

2
[
qw

−1

bk+1
⊗ qwbk+1

⊗
(
γ̂bkbk+1

)−1
]
xyz

babk+1
− babk

bwbk+1
− bwbk


.

(7)

According to the dynamic equation of the IMU, the covari-
ance propagation equation in its discrete form can be further
deduced, and its form can be found in [29]. The IMUmagneto-
meter bias can be calculated from equation (8), and the initial
value of the acceleration bias is set to zero, and it is solved in
the back-end optimization process. After the initial value of
the gyroscope bias is determined, the integration needs to be
re-integrated, and this process is only performed once:

min
δbw

∑
k∈B

∥∥∥qc0bk+1

−1 ⊗ qc0bk ⊗ γbkbk+1

∥∥∥2

γbkbk+1
≈ γ̂bkbk+1

⊗
[

1
1
2J

γ
bw
δbw

]
. (8)

Here, B represents all visual frames within the sliding win-
dow. qc0bk+1

and qc0bk can be calculated by visual matching. γbkbk+1

represents the IMU pre-integration value between bk and bk+1,
and Jγbw represents the partial derivative of the pre-integration
value with respect to the magnetometer bias

abkbk+1
≈ âbkbk+1

+ J abaδbak + J abwδbwk

βbkbk+1
≈ β̂bkbk+1

+ Jβbaδbak + Jβbwδbwk

γbkbk+1
≈ γ̂bkbk+1

⊗
[

1
1
2J

γ
bw
δbwk

]
. (9)

Subsequent IMU pre-integration values are approximated
using equation (9), and repeated pre-integration is not per-
formed. Jaba and Jabw represent the partial derivatives of abkbk+1

with respect to the accelerometer bias and the magnetometer
bias. Jβba and Jβbw is the partial derivative of βbkbk+1

with respect
to the accelerometer bias and the magnetometer bias.

3.3. VIO

This part of VIO is based on sliding window optimization
composed of binocular vision and IMU. The positional rela-
tionship between the camera and the IMU is shown in figure 3.

5
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Figure 3. Schematic diagram of vision and IMU coordinate system.

The correlation with the feature points of the right-eye image
is achieved by performing optical flow tracking based on the
image pyramid on the left-eye image. Then, the construction of
the initial map is completed using the triangulation of the bin-
ocular baseline length and feature points. The image-matching
pose calculation of the 3D–2D (PnP) algorithm is performed
according to the successfully initialized map points. With the
movement of the carrier, the number of successfully tracked
feature points will gradually decrease. When it is less than
the threshold, new map points are triangulated according to
the feature points associated with the left and right images to
ensure that the number of successfully tracked feature points is
not less than the threshold, and the random sample consensus
algorithm [30] is used to eliminate the tracking error feature
points. The extraction of image keyframes is mainly based on
the number of successfully tracked feature points.

This paper assumes that the camera obeys the pinhole cam-
era model, that the image observation value of the feature
point l in the ith frame is (ûcil ,v̂

ci
l ), and that the point is pro-

jected to the jth frame through the result of the front-end
visual odometry is expressed as pcjl (equation (10)). Through
optical flow tracking of the feature point l, the coordinates of
this point on j are obtained as p̂cjl (ûcjl ,v̂

cj
l ), so the reprojection

form is constructed as in equation (11). Kc−1 represents the
inverse of the camera internal parameter matrix, projecting
the phase plane coordinate system to the camera coordinate
system:

pcjl = Rcb

(
Rbjw

(
Rwbi

(
Rbc

1
λl
Kc−1

([
ûcil
v̂cil

])
+ pbc

)
+ pwbi − pwbj

)
− pbc

)
(10)

rc(ẑ
cl
l ,χ) = p̂cjl −

pcjl∥∥pcjl ∥∥ . (11)

The constraint relationship between the camera and the
IMU is shown in figure 4. This constraint relationship is
equivalent to building a nonlinear error equation by com-
bining the residual factors of vision and IMU. By minimiz-
ing equation (12), the maximum a posteriori estimate can be
obtained, and the error equation can be optimally solved by
the L–M method:

Figure 4. Structure diagram of visual inertial restraint.

min
χ

{
∥rp−Hpχ∥2 +

∑
k∈B

∥∥∥rB(ẑbkbk+1
,χ

)∥∥∥2

p
bk
bk+1

+
∑
(l,i)∈

ρ
∥∥rc (ẑcjl ,χ)∥∥2

P
cj
l

 . (12)

The first term {rp−Hpχ} in equation (12) represents the
marginalized prior information. As the number of keyframes
increases, the oldest frame is marginalized by the Schur com-
pensation algorithm, keeping the number of keyframes in the
sliding window constant.

3.4. Lidar–inertial odometer

The scanning matching process based on 2D lidar adopts the
mainstreamCSMmethod [23]. Before initialization, IMU pre-
integration provides a more accurate initial pose. After VIO
initialization, the pose obtained byVIO provides amore accur-
ate initial pose estimation for laser matching. According to the
6-DOF pose information provided, the lidar point cloud is pro-
jected onto the plane. The pose information can also provide
more accurate initial values for CSM, narrow the search range,
and improve the efficiency of scanning matching. To further
obtain a more accurate pose, optimization is adopted; that is,
the matching relationship between the current frame laser and
the 2D grid map is obtained by minimizing equation (14).
Given that it has a relatively accurate initial value, it can effect-
ively prevent local optimization and can converge after a few
iterations. To ensure computational efficiency, a submap com-
posed of a certain frame is maintained to match the current
frame:

Si(T) =

 cosTθ −sinTθ Tx
sinTθ cosTθ Ty

0 0 1

 pix
piy
1

 (13)

rL
(
ẑlji ,χ

)
= 1−M(Si(T)) (14)

min
χ

∑
(i,j)

∥∥∥rL(ẑLji ,χ∥∥∥
P
lj
i

. (15)

T= (Tx,Ty,Tθ) represents the pose and is also a vari-
able that needs to be calculated. pi = (pix,piy) represents the
coordinates of the 2D laser point collected by the lidar, and
M(Si(T)) represents the pixel value of the map grid. An error

6
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exists in the T calculated by the IMU pre-integration or by
the VIO, so the laser point cloud and grid map cannot be
accurately matched, and equation (14) is not equal to zero.
By adjusting the pose T, equation (15) is minimized, the laser
point cloud is matched with the grid map as much as possible,
and the maximum posterior estimation of the pose is obtained.

3.5. Global optimization

Global optimization refers to combining visual reprojection
constraints, IMU constraints, and 2D lidar constraints to con-
struct a large nonlinear error equation. The joint solution pro-
cess is shown in equation (16). In pursuit of efficient comput-
ing effects, 2D lidar matching constraints can be added at a
lower frequency:

min
χ


∥rp−Hpχ∥2 +

∑
k∈B

∥∥∥rB(ẑbkbk+1
,χ

)∥∥∥2

p
bk
bk+1

+

∑
(l,i)∈c

∥∥rc (ẑcjl ,χ)∥∥2

P
cj
l
+
∑
(i,j)

∥∥∥rL(ẑLji ,χ∥∥∥
P
lj
i

 . (16)

This paper is based on the correlation scan matching
algorithm of 2D lidar for loop closure detection. When a new
scan is obtained, the optimal matching frame is searched in a
certain range around it. If the optimal matching frame meets
the requirements, it is considered a closed loop. On this basis,
the closed-loop test of the visual word bag model is added.
When the visual current frame also obtains the correct closed-
loopwith the historical frame, the closed-loop detection is con-
sidered successful, and the closed-loop constraint is added for
back-end optimization.

4. Results and analyses

In order to verify the algorithm proposed in this paper, outdoor
and indoor experiments were designed. The outdoor scene is
tested with the KITTI public dataset [31]. Because the out-
door environment cannot establish an effective 2D map like
the indoor environment, and the quality cannot be judged, the
outdoor environment based on the KITTI dataset is mainly
analyzed for positioning accuracy. Thanks to the real tra-
jectory information of the dataset, this paper uses the EVO
tool [32] to complete the accuracy analysis of the proposed
algorithm.

In the indoor scene, it is difficult to get the real track
information of the mobile carrier because there is no external
high-precision equipment. Therefore, in indoor environments,
this paper verifies the effectiveness of this algorithm through
the mapping quality. The specific experimental process is as
follows.

4.1. Experiment on KITTI dataset

To validate our proposed algorithm, this paper conducts out-
door localization tests using the KITTI public dataset. Figure 5

Figure 5. Some scenes of the KITTI dataset.

shows some scenarios of the KITTI dataset. The source KITTI
raw_data provides a binocular camera, 3D lidar, IMU, and
Global Positioning System (GPS) data. For datasets with
extract as a suffix, the frequency of the IMU is 100 Hz. For
datasets with sync as a suffix, the frequency of IMU and GPS
is the same as 10 Hz. In order to make full use of IMU data, the
IMU data in the sync dataset need to be replaced with the IMU
data in the extract dataset. Using the processed sync datasets
as test data, this paper uses only one horizontal scan plane in
the 3D lidar data to simulate the 2D lidar data. All experiments
are carried out in an Intel i7-107500H CPU test environment
with 16 GB RAM.

In this experiment, we compared the accuracy of our
method with VINS-Fusion, ORB-SLAM3, Rovio, and LVI-
SAM, which are all representative SLAM schemes, and
verified the performance of our method. For the different
sequences of the KITTI public dataset, the positioning res-
ults are shown in figure 6. From figure 6 and table 2,
we can see that our method is comparable in accuracy
to VINS-Fusion in the dataset of 2011_09_30_drive_0016
and 2011_10_03_drive_0042. This is because the above two
sequences are sequences in a highway scene. In this case,
because the scene is relatively monotonous and the highway
lacks geometric changes, the shapes of the obtained local
subgraphs are almost the same. Another reason is that the

7
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Figure 6. Comparing the positioning results of VINS-Fusion, ORB-SLAM3, Rovio, LVI-SAM, and our method based on KITTI datasets.
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Figure 6. (Continued.)

Table 2. Comparing the accuracy results of VINS-Fusion, ORB-SLAM3, Rovio, LVI-SAM, and our method based on KITTI datasets.

Kitti_raw dataset Our method (rmse) m LVI-SAM (rmse) m ORB-SLAM3 (rmse) m VINS-Fusion (rmse) m Rovio (rmse) m

2011_09_30_drive_0016 0.81 0.85 0.79 0.80 0.84
2011_09_30_drive_0018 0.67 0.65 0.70 0.79 1.01
2011_09_30_drive_0027 0.65 0.63 0.72 0.83 1.05
2011_09_30_drive_0033 0.89 0.82 0.94 1.19 1.43
2011_09_30_drive_0034 0.67 0.66 0.73 0.84 1.11
2011_10_03_drive_0027 0.82 0.78 0.89 1.06 1.15
2011_10_03_drive_0042 1.31 1.22 1.27 1.29 1.46
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Figure 7. Planar mapping equipment integrating 2D lidar, binocular
camera, and IMU.

horizontal scan cannot obtain valid data and cannot form
effective plane constraints. In other datasets, the best accuracy
of this paper is between LVI-SAM and ORB-SLAM3, which
is obviously better than VINS-Fusion and Rovio. This situ-
ation shows that in an unstructured environment, 2D lidar can
provide good pose constraints and effectively improve the pos-
itioning accuracy.

4.2. Indoor environment experiment

To verify the mapping effect of our method, an indoor plane
mapping experiment is designed in this paper, and the hard-
ware equipment used is Pepperl r2000 2D lidar and an MYNT
camera (binocular + IMU) (figure 7). Cartographer is an
excellent representative solution based on 2D lidar plane map-
ping. Therefore, this experiment uses Cartographer as a refer-
ence for comparison. To verify the accuracy of BVLI-SLAM

Figure 8. Cylindrical markers.

Figure 9. Image of corridor I.

and Cartographer, cylindrical markers are arranged in the
experimental scene in this paper (figure 8), and the hori-
zontal distance between the markers is measured by a total
station and used as the true distance. To show the robust-
ness of this algorithm in indoor environment mapping, two
challenging long corridor fields are selected as experimental
scenes (figures 9 and 10). This paper conducts mapping exper-
iments based on Cartographer and our algorithm for these two
scenarios. The horizontally measured value distance of the
two markers is obtained by the corresponding positions on
the grid map (the red lines corresponding to the two points
in figures 11 and 12). The measured value is compared with
the real value to achieve the purpose of mapping accuracy
analysis.

Figure 11 shows that the 2D grid map created by the Car-
tographer algorithm has more parts than the real scene, such
as the part marked by the red frame. This is because the
scene has a lot of glass, and 2D lidar cannot obtain enough
laser points for matching, causing the algorithm to fail. Thus,
the Cartographer-based algorithm cannot solve the mapping
problem well in this scenario. With the assistance of vis-
ion and IMU, our proposed algorithm can still perform good
pose estimation and 2D grid construction even if the num-
ber of 2D laser points is missing. The results in figure 12
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Figure 10. Image of corridor II.

Figure 11. 2D plane mapping result of corridor I.
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Figure 12. 2D drawing plane mapping result of corridor II.

Table 3. Accuracy comparison.

Scenes Cartographer BVLI-SLAM (m) Ground-truth (m)

Corridor I Fail 35.69 35.673
Corridor II 43.30 43.26 43.243

show that BVLI-SLAM proposed in this paper and Carto-
grapher can build the map successfully, but the outline of the
2D grid map obtained based on the former is clearer. Table 3
further indicates that the algorithm proposed in this paper
has advantages in accuracy and robustness compared with
Cartographer.

To further test the robustness of the algorithm’s mapping,
this paper selects a complex scene with a glass corridor and

an outdoor corridor for mapping testing. The length and width
of the scene are about 40 m × 50 m. The experimental res-
ults show that the algorithm proposed in this paper can still
run robustly and obtain a 2D grid map with clear outlines (as
shown in figure 13(a), and it can be seen from figure 13(b)
that Cartographer has obvious angle deviation in the out-
door corridor because it cannot scan enough effective point
clouds.
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Figure 13. 2D plane mapping result based on BVLI-SLAM and Cartographer in complex scenes. (The blue curve represents the motion
track of the trolley in the x and y directions).
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5. Conclusions

In this paper, we designed a real-time pose estimation and 2D
mapping scheme based on the fusion of 2D lidar, a binocular
camera, and IMU based on graph optimization, making full
use of the performance of different sensors. An experiment
on the KITTI dataset shows that the positioning accuracy of
the BVLI-SLAM scheme designed in this paper is between
that of LVI-SAM and ORB-SLAM3, and BVLI-SLAM can
improve the positioning accuracy by more than 15% com-
pared with VINS-Fusion in the outdoor unstructured envir-
onment. In outdoor structured environments, localization res-
ults with an accuracy comparable to that of VINS-Fusion can
be achieved. In addition, this paper also designs the mapping
experiment in an indoor environment based on BVLI-SLAM
and Cartographer schemes, and the results show that the pro-
posed BVLI-SLAM can obtain more robust and accurate 2D
raster maps than Cartographer.

Through the above analysis, the algorithm proposed in this
paper can provide high-precision real-time positioning and
mapping, but it should also be noted that due to the limita-
tion of 2D lidar, beautiful and useful 2D grid maps can only
be created in an indoor environment.
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