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From Coarse to Fine: Two-Stage Indoor Localization
with Multisensor Fusion

Li Zhang�, Jinhui Bao, Yi Xu, Qiuyu Wang, Jingao Xu, and Danyang Li

Abstract: Increasing attention has been paid to high-precision indoor localization in dense urban and indoor

environments. Previous studies have shown single indoor localization methods based on WiFi fingerprints,

surveillance cameras or Pedestrian Dead Reckoning (PDR) are restricted by low accuracy, limited tracking region,

and accumulative error, etc., and some defects can be resolved with more labor costs or special scenes. However,

requesting more additional information and extra user constraints is costly and rarely applicable. In this paper, a

two-stage indoor localization system is presented, integrating WiFi fingerprints, the vision of surveillance cameras,

and PDR (the system abbreviated as iWVP). A coarse location using WiFi fingerprints is done advanced, and then

an accurate location by fusing data from surveillance cameras and the IMU sensors is obtained. iWVP uses a

matching algorithm based on motion sequences to confirm the identity of pedestrians, enhancing output accuracy

and avoiding corresponding drawbacks of each subsystem. The experimental results show that the iWVP achieves

high accuracy with an average position error of 4.61 cm, which can effectively track pedestrians in multiple regions in

complex and dynamic indoor environments.
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1 Introduction

Current navigation systems, such as Global Positioning
System (GPS) or GLObal NAvigation Satellite System
(GLONASS), can provide high accuracy in outdoor
environments but extremely limited accuracy in indoor
environments[1]. Therefore, accurate indoor localization
and tracking have become a hot spot and spawned a
series of applications, such as intelligent advertisement,
customer navigation, and augmented reality. Increasing
interests have been paid in indoor positioning and
tracking technologies, including the use of wireless
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signals, cameras, Inertial Measurement Units (IMU),
etc., as witnessed by recent publications of plentiful
research[2–15].

Appealing WiFi-based indoor positioning[16–18]

requires extensive, critical, and challenging pre-
deployment efforts, but its positioning accuracy is
limited. Pedestrian Dead Reckoning (PDR) realized
by IMU is one of the most popular solutions due to
the prevalence of smartphones. However, PDR suffers
from accumulative errors seriously, leading to non-
negligible deviation[19]. Computer vision is a promising
solution for indoor localization[20–24]. Fusion indoor
localization methods are presented to eliminate the above
shortcomings. The widely installed indoor surveillance
cameras are combined with smartphone IMU data to
achieve indoor localization with high accuracy[25–27].
Furthermore, WiFi and PDR integrated with an extended
Kalman filter are presented to achieve high-ranking
accuracy[28]. WiFi, vision, and PDR are fused by a
particle filter to locate pedestrians, known as iVR[29].
Nevertheless, most of the processes only locate a
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limited range and require special hardware, especially
in complex indoor environments which are prone to
pedestrian identity mismatch problems. Therefore, a
three-in-one combination method (indoor surveillance
cameras, smartphone, and WiFi) is desirable to obtain
efficient and high-accuracy indoor localization, thus
achieving higher accuracy.

However, it is not easy to transform the above idea into
a practical system. It faces four important challenges:

(1) Incorrespondence of identification. The user ID
provided by vision-based methods cannot be directly
associated with IMU-based methods. This association is
a prerequisite to integrate multimodal data.

(2) Frequency Line Of Sight (LOS) blockage.
Frequently blocked pedestrian makes it impossible to
locate the target. The LOS blockages decrease the
efficiency of detection and tracking.

(3) Multiple types of sensor data fusion. Traces are
directly generated by individual systems independently,
and then aligned to distinguish the user’s WiFi and obtain
a fused trajectory. But all the data are from different
types of devices. Fusing vision data and IMU data
becomes a key point.

(4) The coordinate transformation model. The
pixel coordinates of pedestrians are obtained through
the fusion of multiple types of sensor data. Since most
of the results are not useful, the transforming model
from pixel coordinate to world coordinate needs to be
obtained, and then the world coordinate of pedestrians is
calculated according to the surveillance camera’s internal
and external parameters.

To tackle the above challenges, an indoor localization
and tracking system is presented to achieve localization
and tracking of pedestrians, integrating WiFi fingerprints,
the vision of surveillance cameras, and PDR (the system
abbreviated as iWVP). Firstly, the client sends Received
Signal Strength Indicator (RSSI) data to the server, and
then the system uses Bayes filter to determine a region
and invokes the surveillance camera to get pedestrian
positions and tracks. The video pedestrian sequence and
the PDR sequence are associated to confirm the user’s
ID after the client sends IMU data to the server in the
system.

iWVP is tested on the Windows server and many
commercial smartphones. Extensive experiments are
conducted in multi-story buildings. Pedestrians are
localized and tracked in complex indoor environments.
Evaluations demonstrate that iWVP reaches better
precision and performs well in terms of detecting and

tracking than former algorithms in complex indoor
environments. Furthermore, iWVP is evaluated through
the transforming model, and the average positioning
error is about 4.61 cm.

The main contributions are summarized as follows:
� We use Bayes filter to lock pedestrians’ range

regions in multiple regions and use surveillance cameras
to locate and track pedestrians, associating PDR and
vision trace to confirm user ID.
� We design a real-time and reliable pedestrian

tracking system by combining PDR with visual tracking,
which makes up for the dilemma of pedestrian loss, thus
different types of data have been deeply integrated.
� We show the design and implementation of

the system on commercial servers and smartphones.
Compared with other systems, iWVP is robust and
accurate in both localization and tracking of pedestrians
through the coordinate transformation model, as is
shown in Fig. 1.

2 Related Work

2.1 Localization method based on WiFi

WiFi-based indoor localization method can be roughly
classified into two categories: modeling-based algorithm
and fingerprint-based algorithm. The former usually
uses triangulation of arrival angle or time of flight[30]

to determine current positions. To achieve high accuracy
needs LOS with Access Points (APs), which is not
always available due to many indoor obstacles. The latter
is more robust because it has no requirement of LOS with
APs. RADAR[31] and HORUS[32] pioneer the indoor
positioning technology in terms of WiFi fingerprints.
However, WiFi signal is not stable indoors because of
environmental changes, which leads to the inaccurate
collection of fingerprint and reduces the accuracy of
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Fig. 1 Comparison of the state-of-the-art works.
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localization. Yang et al.[33] proposed a WKNN indoor
location algorithm based on spatial characteristics partition
and localization restriction. Le et al.[34] proposed
an Advanced Clustering (AC) strategy approximating
location by clustering matching and achieving precise
location by kernel ridge regression. Wu et al.[2] and Xu
et al.[35] proposed ViVi and ViViplus, respectively, and
their key idea is to exploit the spatial awareness of RSS
values by formulating FSG profiles or RSG matrices
as enhanced WiFi fingerprints. However, WiFi-based
algorithm is difficult to obtain high location accuracy.

2.2 Localization method based on vision

Vision-based indoor localization methods achieve
sub-meter level accuracy. The traditional method
often resorts to SIFT or SURF image extraction
algorithm[36, 37] to identify the target of each frame in
the video, which provides an opportunity for accurate
visual geometry calculation. Gu et al.[23] proposed
“Spotlight” which performed passive localization using
crowdsourced photos to achieve high accuracy. Yan
et al.[38] presented and developed a novel 3D passive
vision-aided PDR system using surveillance cameras and
smartphone-based PDR, which could continuously track
the user’s movement on different floors by integrating
results of inertial navigation and real-time pedestrian
detection. It used large amounts of camera locations
and embedded barometers to provide floor/height
information to identify the user’s positions in 3D
space. Nevertheless, these relevant studies achieve high
accuracy in indoor localization by high frame rates
and suffer from frequent LOS blockage in indoor
environments, which may lead to ineffective tracking
algorithms.

2.3 Localization method based on data fusion

The inevitable accumulated error occurs when PDR
data[39] are used for indoor positioning. However,
researches show that better accuracy can be obtained
by fusing PDR data with other sensor data. Poulose and
Han[40] utilized the signals of magnetic field, Bluetooth,
and WiFi as input data to train the model of the
fingerprints. Chen et al.[41] proposed a multi-source data
localization method that fuses WiFi, PDR, and indoor
landmarks recognized by detecting a specific pattern of
sensors. Xu et al.[29] presented iVR, an integrated vision
and radio localization system with sub-meter accuracy,
which utilizes particle filters to fuse raw estimates
from multiple systems, including vision, radio, and

inertial sensor systems. iPAC[42] is the indoor positioning
system integrating vision and PDR, and employing a
matching algorithm based on motion sequence to fuse
raw estimates from both systems. And the identity of the
pedestrian could be confirmed by a unique device ID in
iPAC.

3 System Overview

The workflow of iWVP system consists of two main
modules, the client module and the server module, as
illustrated in Fig. 2. The positioning process can be
outlined from the user’s point of view. Firstly, the user
starts the location application, RSS and sensor data will
be collected continuously and automatically. Meanwhile,
PDR data can be calculated locally and sent to the
remote server along with the collected RSS data. Then,
the current position will be obtained quickly. Once
all the data are received, two stages will be applied
to process the data. The first stage is WiFi region
discrimination divided into the online phase and offline
phase. In the offline phase, we need to collect WiFi
signals in each region and calibrate the surveillance
camera. Accurate region tracking will be executed in the
second stage, where visual detection and tracking, and
real-time PDR will be associated to confirm the user’s
identity by matching motion sequences. Finally, the
server can locate pedestrians accurately and track them
continuously through the new pixel coordinate.

4 Two-Stage Indoor Localization with
Multisensor Fusion

4.1 Coarse positioning: Region discrimination
based on WiFi

In the coarse positioning stage, region discrimination
will be executed by combining WiFi signals with Bayes
filter[43], which guarantees high accuracy in region
positioning. Likewise, the method is divided into two
phases: the offline phase and the online phase. In
the offline phase, in each region, RSSI distribution
table can be obtained once WiFi signals are captured.
Gaussian curve is used to fit the RSSI distribution of each
region. Meanwhile, RSSI data are divided into a training
dataset and a test dataset for performance evaluation. The
normalized histograms (for each access point (AP) and
region) are calculated by using the training RSSI dataset.
In the online phase, the client acquires the RSSI value of
the environment as a query fingerprint and sends it to the
server, the server runs Bayes filter to predict the correct
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Fig. 2 System overview.

region and outputs the corresponding probability. Some
symbols are explained in Table 1 for further study.

(1) Offline phase: RSSI-based studies have found
that the distribution of RSSI follows the Gaussian
normal distribution in many scenarios[44]. The following
is the probability distribution function of Gaussian
distribution:

P
�
sj j zi

�
D

1
p
2 �

e�
.sj��/2

2�2 (1)

Four regions of the entire building have been selected
to evaluate the region detection system as shown in Fig.
3. Regions 1–4 are corridor, hall, laboratory 1, and
laboratory 2, respectively.

Figure 4 shows the original histograms and the
cleaned histograms (Gaussian histograms) in Region 1. It
can be seen that the original histograms can be
well approximated by Gaussian Probability Density
Functions (PDFs). The new normal distribution fills
in the missing values of the original RSSI histogram

Table 1 Symbol meaning.
Symbol Meaning
s Received RSS signal from all APs
zi The i -th region
sj Received RSS signal from the j -th AP
N Number of regions
� Mean value of RSS signal in a region
� Standard deviation of RSS signal in a region

P
�
sj jzi

�
Distribution of RSS from the j -th AP in the i-th region

Region 3 Region 4

Region 1 Region 2

Fig. 3 Experimental areas.

Fig. 4 APs histograms at Region 1.

and adjusts the noise values disturbed by reflection and
scattering. A new dataset consisting of only Gaussian
histograms is obtained after fitting the normalized
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histograms. Each AP (access point) table will be formed
with a combination of Gaussian histograms of different
regions with the same AP as shown in Table 2, Wi

represents the WiFi signal from Router 1.
(2) Online phase: Bayes filter can be used to infer

the posterior probability, which uses obtained signals
and prior knowledge,

P .zi js/ D
P .sjzi / P.zi /

P.s/
(2)

P.s/ D

NX
iD1

P .sjzi / P .zi / (3)

In this way, the RSSI histogram tables (or AP tables)
generated in the offline phase are used to calculate
the P .zi js/

P.s/
. By a series of iterations, the prior value

P .zi / is updated with the current estimated posterior
value P .s j zi / at the end of each iteration. The
implementation of the Bayes-based estimator is shown
in Algorithm 1. The AP tables are collected during the
offline phase and current WiFi signals are uploaded
by the mobile phone during the online phase. With
the aforementioned as inputs, the estimated region and
its probability will be returned by using Algorithm 1,
which starts with a uniform prior probability distribution
(Lines 5 and 6) and recursively calculates the probability
of the posterior region based on AP tables (Line 10),
and then the probability (Line 11) and predicted region
(Line 12) are calculated. After evaluating all regions,
the highest probability and its corresponding region are
calculated (Lines 15 and 16). Finally, based on the
previous results, the prior region is updated with the
estimated posterior region (Line 20) to be used in the
next iteration. In this way, the coarse positioning is
completed. Surveillance cameras in this area will be
further used in fine positioning.

4.2 Fine positioning: Fusion detection and tracking

(1) Pedestrian detection and tracking based on video
images: Pedestrian detection in images is the basis for
visual localization and tracking. iWVP uses YOLOv5
algorithm framework to detect pedestrians in video
images. The algorithm uses a multi-scale pyramid

Table 2 AP table for Router 1.
Region Gaussian histogram

Region 1 W1 Gaussian histogram at Region 1
Region 2 W1 Gaussian histogram at Region 2
Region 3 W1 Gaussian histogram at Region 3

:::
:::

Region N W1 Gaussian histogram at Region N

Algorithm 1 Bayes filter algorithm
1: R = number of APs
2: Wr= AP table of the r-th AP
3: procedure Bayes estimator .!1; !2; : : : ; !R/
4: start with uniform distribution
5: prior W1;2;:::;R D

�
1
N
I
1
N
I : : : I 1

N

�
N�1

6: probabilityD .100
N
/%

7: while probability < probability threshold do
8: perform Bayes
9: for r from 1 to R do
10: posteriorWr = norm(priorWr �Wr ŒW; !r �)
11: probr= max(posteriorWr )
12: predr= where(posteriorWr D probr )
13: end for
14: find the highest probability
15: probability = max( prob 1;2;:::;R)
16: r�best = where( prob1;2;:::;R=probability)
17: prediction = predr�best

18: update the new prior
19: for r from 1 to R do
20: priorWr = posteriorWr�best

21: end for
22: end while
23: return prediction and probability
24: end

structure to divide the original image into multiple
equally spaced units which are detected on the feature
map of three scales. Double upsampling is used to
transfer the feature map on two adjacent scales. Each
grid cell uses three anchor boxes to predict three
bounding boxes. Each bounding box predicts the
coordinates .x; y/, the width and height of the target
simultaneously.

The YOLOv5 algorithm framework uses logistic
regression to predict the probability that each bounding
box contains objects. The probability of the anchor box
is 1 if the overlap rate between the anchor box and the
real target bounding box is greater than any other anchor
box, but it is ignored if the overlap rate is greater than
the threshold but less than the maximum overlap rate.
Finally, the algorithm will select the best anchor box
to assign to the target and use binary cross-entropy and
logistic regression to predict its category.

When YOLOv5 provides detection boxes, Deep SORT
is used for tracking. It has two basic modules. The first
is the prediction module which uses the Kalman filter
to predict the tracker. The second is the update module
which includes matching, tracker updating, and feature
set updating. In the update module, the fundamental
method is using Intersection over Union (IoU) to match
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the Hungarian algorithm. It uses a cascade matching
algorithm to match different priorities. Finally, it adds
Markov distance and cosine distance to compare the
similarity between detector and tracker.

(2) PDR: Pedestrians have periodic acceleration
changes when they walk normally. Therefore, the
walking steps can be detected by the internal
accelerometer in smartphones. The peak detection
method uses the characteristics of peaks and valleys
of acceleration data. It can eliminate the misjudgments
when the user stops walking with a small number of
calculations.

The main idea of PDR is calculating the number of
detected steps, and then combining the estimation of
step length and heading angle to obtain the pedestrian’s
relative position. The calculation formula is as follows:

xnC1 D xn C Ln sin

 
nX

iD1

�i

!
(4)

ynC1 D yn C Ln cos

 
nX

iD1

�i

!
(5)

where .xnC1; ynC1/ represents the position coordinate
after n steps; �i is the deflection angle of step i ; Ln is
the step size. The estimation of step size Ln is given in
the following:

Ln D af
0
C b (6)

where f 0 represents the step frequency; a and b are the
coefficients.

In this paper, the inertial positioning method is used to
obtain the relative displacements of pedestrians, and the

results are used to assist visual passive positioning. The
inertial sequence is matched with the visual sequence to
determine the user’s identity.

(3) Fusion tracking: After the region has been
predicted, pedestrians’ location and tracking will be
carried out in this area.

During the initialization stage, the identifier of the
mobile device can be used as the unique representation
of the user’s identity. However, the pedestrian detection
and tracking in the video cannot correspond to the user
directly. Therefore, in the initial stage, we need to
associate the identifier of the mobile device with the
pedestrian trajectory in the video to achieve one-to-
one correspondence. In the subsequent fusion tracking
stage, the pedestrian’s trajectory calculated by PDR will
contribute to accurate visual detection and tracking.

The key to matching is selecting some key features to
match the data calculated by PDR and visual tracking.
We select the user’s motion sequence as the matching
feature. According to the motion state tuple uploaded
by the user, the motion state ptj of the user at a certain
time tj indicates whether the user is still or moving.
We use the motion state over a period to construct the
motion sequence

˚
Ki ; pt1 ; pt2 ; : : : ; ptn

	
, where Ki is

the identifier of the mobile device. At the same time,
the motion sequence of the pedestrian in the video is
calculated through the visual tracking results. Finally,
iWVP compares the motion sequence to complete the
matching. The overview of fusion tracking is illustrated
in Fig. 5.
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In tracking stage, iWVP utilizes the trajectory
calculated by PDR to assist visual tracking. The problem
of inconsistent scale between the world coordinate
and the pixel coordinate is solved by the coordinate
transformation model in Section 5. iWVP uses the tuple
hm;pi to record user information, where m is the user’s
identifier and p is the user’s position. The server receives
a motion state from a user every time, iWVP updates the
tuple and checks the visual tracking result, where may
appear three cases:

Case 1: The user is detected and positioned
successfully in the frame, indicating that the visual
tracking accuracy is higher than that of PDR. Thus,
iWVP uses the result of visual tracking to update the
user information tuple.

Case 2: If the detection result shows that the user’s
leaving the monitoring range, then visual positioning is
ineffective and tracking accuracy relies more on PDR.
iWVP will use PDR to continuously track the user and
update the user information. When the user returns to
the monitoring range, iWVP ensures that the user can be
identified correctly and tracked continuously.

Case 3: When the user does not leave the monitoring
area and the visual tracking fails to detect location due
to blockage, iWVP keeps tracking until the obstacles
disappear or the user leaves the blocked area. As shown
in Fig. 6, the user information tuple is used to mark the
corresponding location in the video to indicate the user’s
possible position through PDR data.

5 Coordinate Transformation Model

Most indoor cameras are monocular, but it is really hard
for a monocular camera to obtain the depth information
of the target. In general, the pixel coordinates of
the target obtained by the monocular camera cannot
correspond to its real spatial coordinate position.
Therefore, the problem we need to solve is to achieve
the conversion from the pixel coordinates under the
monocular camera to the world coordinates (describing

Blocking

Visual tracking PDR assisted tracking

PDR

Fig. 6 PDR assisted tracking.

the real spatial position of the target). Based on the
camera imaging principle, the camera calibration method
based on a checkerboard is studied, and a scene-assisted
monocular camera coordinate transformation model
is proposed to realize the coordinate transformation
of “pixel to world”. The accuracy of the coordinate
transformation model is evaluated by experiments.

The pinhole model, an approximate model of the
camera, is the simplest among various camera imaging
models. The pinhole model does not take into account
the distortion of the camera, so it actually only includes
perspective projection transformation and rigid body
transformation. In order to describe the process of
determining the target’s position in 3D scene space from
the pixels in the image, it is necessary to understand
the four coordinate systems in the camera model: pixel
plane coordinate system, image plane coordinate system,
camera coordinate system, and world coordinate system.

(1) Pixel plane coordinate system: Each digital
image is composed of pixels, and the pixel plane
coordinate represents the positions of pixels in the image.
As shown in Fig. 7, the Cartesian coordinate system is
defined on the image, whose origin O0 is located at the
upper left corner of the image. The image’s width and
height are w and h, respectively. The .u0; v0/ is the
pixel plane coordinate.

(2) Image plane coordinate system: The pixel plane
coordinate only represents the number of rows and
columns in the image array where the pixel is located, but
has no actual physical meaning to represent the position
of the pixel in the image. Therefore, it is essential to
define the actual physical 2D image plane coordinate
system O1 � xy. As shown in Fig. 8, the origin O1

represents the intersection of the camera optical axis and
the image imaging plane. The x and y axes are parallel

𝑣 𝑦

𝑂0

𝑂1
ℎ

𝑤

𝑢

𝑥

(𝑢0, 𝑣0)

Fig. 7 Plane of pixel and imaging.
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to the u and v axes of the pixel plane coordinate system,
respectively, and their coordinate system unit is mm.

The origin of the plane coordinate system O1 is
generally located at the center of the image. Let O1

be .u0; v0/ in the coordinate of the pixel plane. Let each
pixel in u and v axes on the physical size are dx and dy ,
respectively. Therefore, without considering distortion,
the relationship between the pixel plane coordinate
system and the image plane coordinate system can be
expressed as u D x=dxCu0, v D y=dyCv0. The above
relationship can be expressed in matrix in the following:264 u

v

1

375 D
264

1
dx

0 u0

0 1
dy

v0

0 0 1

375
264 x

y

1

375 (7)

(3) Camera coordinate system: As shown in Fig. 8,
the origin of the camera coordinate system is the optical
center of the camera, and its axes are parallel to the axes
of the image plane coordinate system. The optical axes
of the camera are perpendicular to the imaging plane.
The distance of f is the focal length of the camera.

The transformation from camera coordinate system to
image plane coordinate system belongs to perspective
projection. As shown in Fig. 8, the projection of any
point in the space on the image plane is the intersection
of the camera’s optical center line and the image plane.
From the similarity transformation, we have

AB

O1C
D

AOc

O1Oc

D
PB

PC
(8)

therefore
xc

x
D
zc

f
D
yc

y
(9)

Equation (9) can be expressed in matrix form as
follows:

zc

264 x

y

1

375 D
264 f 0 0

0 f 0

0 0 1

375
264 xc

yc

zc

375 (10)

(4) World coordinate system: World coordinate
system is to describe the position of any object in a 3D
scene. Any position in the environment can be chosen
as the origin. The coordinate system is also known as
the absolute coordinate system, used to represent the
absolute coordinates of the scene.

The transformation from the world coordinate system
to the camera coordinate system is a rigid body
transformation as shown in Fig. 9, and their relationship
can be described by a 3 � 3 orthogonal unit rotation
matrix R and a 3D translation vector T . Therefore,
let the coordinates of P in the camera coordinate
system and the world coordinate system be .xc ; yc ; zc/

and .xw ; yw ; zw/, respectively. Then the relationship is
shown in the following:264 xc

yc

zc

375 D h R T
i26664

xw

yw

zw

1

37775 (11)

The conversion relation from the pixel plane
coordinate system to the world coordinate system is
expressed as following:

zc

264 u

v

1

375 D
264 f �

1
dx

0 u0

0 f � 1
dy

v0

0 0 1

375h R T
i26664

xw

yw

zw

1

37775 (12)

According to Eq. (12),the ground is taken as the xoy
plane of the world coordinate system, that is to say
zw D 0, then world coordinates are calculated by pixel
coordinates. The accurate location of the pedestrian is
obtained. In our experiment, the center pixel coordinates
of the detected pedestrian detection frame’s bottom are
regarded as the pedestrian pixel coordinates as shown in
Fig. 10.

𝑍𝑐
𝑌𝑐

𝑋𝑐

𝑂𝑐

𝑃(𝑥𝑐，𝑦𝑐，𝑧𝑐)
𝑍𝑤

𝑌𝑤

𝑋𝑤

𝑂𝑤

(𝑅, 𝑇)

Fig. 9 Rigid body transformation.
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6 Implementation and Evaluation

6.1 Experimental scenarios

Extensive experiments have been conducted in
laboratories, halls, and corridors. Surveillance cameras
and wireless sensors are installed in the whole scenario.
These experiments have different floor layouts, diverse
wireless environments, and distinct user behavior
patterns, which are quite complicated.

6.2 Experimental setup

The client of iWVP is implemented on the Android
platform with all the devices mentioned above. The
camera is HIKIVISION-H100 with a frame size of
1080 pixel � 960 pixel which is used as the IP camera to
continuously monitor the region and send video streams
to the server. One surveillance camera is deployed in
each region of the experimental scenario. The server
we use is DELL t3640 with i9-10900k CPU and 64 GB
RAM, running Windows 10 operating system.

6.3 Performance

Our algorithm is inspired by iPAC, so we compare iWVP
with iPAC in our experiments. In each region, RSSI
signals are collected several times at different periods to
obtain WiFi distribution, WiFi signals are collected 100
times, and Bayes algorithm is used to predict the region.
Figure 11 shows the confusion matrix of the evaluation
error obtained by the experiment, where each element
represents the probability that the predicted region is the
real region. The average regional prediction accuracy is
95.652%, virtually unaffected by time and environmental
changes. The positioning area can be well expanded due
to the wide use of surveillance cameras, combined with
the high precision of WiFi area positioning.

The main performance of fusion detection and
tracking has been tested. Figures 12–14 depict pedestrian
detection’s performances of iWVP and iPAC in four

Fig. 11 Confusion matrix.

Fig. 12 Tracking error, where CDF denotes cumulative
distribution function.

Fig. 13 Detection success rate in different areas.

different indoor environmental regions. In contrast with
iPAC, our system achieves a better performance in
detection success rate, exceeding 95% in all regions,
the average tracking error of iWVP is less than 5 pixel
as shown in Fig. 12, and the tracking success rates
of iWVP in four regions are 97%, 98%, 98%, and
99%, respectively, as illustrated in Fig. 14. Also,
iWVP performs very well in complex environments and
indicates the given algorithm is more robust.
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Fig. 14 Tracking success rate in different areas.

We further examine the positioning performance of
iWVP and iPAC in three different experimental regions
(Regions 1–3) as illustrated in Fig. 3, including one
laboratory (Trajectory 1), one corridor (Trajectory 2),
and one hall (Trajectory 3), as shown in Figs. 15–21 and
Tables 3 and 4.

As shown in Figs. 15–17, the positioning accuracy of
iWVP is studied in three different regions (laboratory,
corridor, and hall) compared with iPAC. iWVP is
positioned closer to the ground truth and performs
effectively in different complex indoor environments.
This is mostly because the given method can avoid
pixel jitter effectively. As shown in Figs. 18–20, iWVP
achieves better accuracy, yielding the 95th percentile
error of 13.4 cm, 17.3 cm, and 12.7 cm, respectively.

Fig. 15 Schematics of Trajectory 1.

Fig. 16 Schematics of Trajectory 2.

Fig. 17 Schematics of Trajectory 3.

Fig. 18 Position error of Trajectory 1.

Fig. 19 Position error of Trajectory 2.

Fig. 20 Position error of Trajectory 3.
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Fig. 21 Comparison of position errors between iWVP and
iPAC in Regions 1–3.

Table 3 Positioning error of iWVP in different regions.
(cm)

Trajectory Max error Mean error
1 17.41 4.37
2 23.98 5.04
3 17.67 4.41

Table 4 Positioning error of iPAC in different regions.
(cm)

Trajectory Max error Mean error
1 55.16 17.52
2 88.68 17.67
3 38.48 11.27

Figure 21 shows the error assessment of iWVP and iPAC.
It can be seen that the error of iWVP is lower than that
of iPAC, indicating that iWVP plays a better role in
positioning and tracking.

The maximum and average positioning errors of
the three trajectories are shown in Tables 3 and 4.
The maximum error of iWVP is about 20 cm, while
that of iPAC fluctuates greatly, which also reflects the
robustness of iWVP. As seen, iWVP yields an average
error of 4.37 cm in the laboratory, 5.04 cm in the corridor,
and 4.41 cm in the hall. The total average error is 4.61 cm.
The results indicate that iWVP performs well regardless
of the environmental difference in precise positioning.

We also evaluate the robustness of iWVP by
introducing different visual noises. Three different levels
of noise are introduced as shown in Fig. 22. iWVP with
high noise (multiple pedestrian environments) performs
almost as well as the case with low noise (individual
pedestrian), and even with high noise, iWVP’s average
positioning error is still less than 7 cm. Besides, we also

Fig. 22 Different noise strengths.

measure the performance when the user is completely
blocked, in which case iWVP predicts the user position
in the video by PDR. The average positioning error of
iWVP under complete blockage is still less than 10 cm.
The results indicate that even in complex environments
with severe occlusion, iWVP can accurately track
pedestrians with fusion tracking.

Although iWVP can achieve real-time performance
(30 fps) in most commercial servers, we also measure
the impact of the frame processing rate of iWVP to
estimate the performance in large-scale deployment.
As illustrated in Fig. 23, the average error decreases
from 7.14 cm to 4.14 cm and the maximum error
decreases from 28.64 cm to 16.66 cm when the frame
processing rate increases from 15 fps to 30 fps. The
results demonstrate that iWVP performs well enough
even when the frame processing rate drops to 15 fps.

7 Conclusion

In this paper, an accurate two-stage indoor localization

Fig. 23 Different frame processing rates.
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system iWVP is studied. It integrates WiFi fingerprints,
the vision of surveillance cameras, and PDR, avoiding
the shortcomings of previous single indoor localization
methods. For the monitoring region, the coarse location
of the pedestrian is done via WiFi under a certain
camera, and then the deep learning tracking and PDR
fusion are added to achieve a fine location. The world
coordinates of the pedestrian are obtained through the
transforming model. Experimental results show that
iWVP achieves an overall tracking success rate of
97% and an average positioning error of 4.61 cm in
complex indoor environments. Meanwhile, iWVP can
permit accurate and robust positioning and tracking of
the specified pedestrian even under complete blockage.
Also, the performance of iWVP is effectively validated
by being implemented on commodity mobile devices.
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