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Abstract: Regardless of recent advances, humanoid robots still face significant difficulties in perform-
ing locomotion tasks. Among the key challenges that must be addressed to achieve robust bipedal
locomotion are dynamically consistent motion planning, feedback control, and state estimation of
such complex systems. In this paper, we investigate the use of an external motion capture system
to provide state feedback to an online whole-body controller. We present experimental results with
the humanoid robot RH5 performing two different whole-body motions: squatting with both feet in
contact with the ground and balancing on one leg. We compare the execution of these motions using
state feedback from (i) an external motion tracking system and (ii) an internal state estimator based
on inertial measurement unit (IMU), forward kinematics, and contact sensing. It is shown that state-
of-the-art motion capture systems can be successfully used in the high-frequency feedback control
loop of humanoid robots, providing an alternative in cases where state estimation is not reliable.

Keywords: humanoid robot; state estimation; motion capture; Whole-Body Control

1. Introduction

Humanoid robots are complex systems, both in terms of modeling and control. Bipedal
locomotion is particularly difficult due to the instability of the robot in walking phases with
double or single ground contacts. Balance is highly dependent on the control approaches
employed and the accuracy of the floating base state estimation. The latter is commonly
achieved using onboard sensors, which are subject to drift and noise. In contrast, external
tracking approaches provide a globally stable estimate of the robot’s state, independent of
inertial sensor drift and kinematic modeling errors such as leg flexibility.

Marker-based motion capture systems (MoCap) have been used for various robotic ap-
plications. One widely explored topic is human motion imitation. Motion data acquisition
enables humanoid robots to perform human-like movement sequences such as walking and
dancing. For instance, ref. [1] proposes a trajectory generation method for humanoid robots
to imitate human walking gaits captured with a marker-based motion capture system. The
human movements are adapted to match the kinematic structure, degrees of freedom, and
joint limits of the humanoid robot. The work in [2] presents the use of human motion data
to generate natural walking and turning motions on the humanoid robot HRP-4C, while
considering dynamic balance. Moreover, the work of [3] addresses the topic of human–
robot interaction by generating human-like locomotion trajectories for the humanoid robot
TALOS. Motion capture is used to compare the computed robot trajectories with previously
recorded human walking trajectories and to evaluate which walking pattern generation
model is more realistic. Dancing motion generation is a challenging task as well, since it
often requires quicker motions than walking. The work in [4] proposes a control approach,
which enables the HRP-2 humanoid robot to perform human-like dancing based on motion
capture data, while maintaining balance and enforcing actuation limits.
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Another important application of motion capture systems is state estimation of mobile
robots. Very often, MoCap is used as precise ground truth to determine the position
and orientation of the floating base of a humanoid robot. For example, MoCap has been
used to evaluate different state estimation approaches based on proprioceptive sensors [5],
LiDAR and kinematic-inertial data fusion [6], as well as LiDAR fused with visual-inertial
odometry [7]. Less frequently, external motion capture systems have been used to provide
state feedback to the control loops of legged robots. The LittleDog quadruped robot [8]
uses a set of retroreflective markers placed both on the robot body and legs as well as
on the terrain surface to allow analysis of different locomotion strategies without robot
perception. The motion capture runs at a low frequency of approximately 100 Hz since the
speed of state estimation is not crucial for the balance of the robot with four contact points.
The hopping leg Salto-1P [9] executes precise hopping by using motion capture data to
estimate the position and orientation of the robot. However, the motion capture has a low
frequency of 100 Hz, which is not sufficient for a fast feedback control loop and requires an
additional Kalman filter for position estimation and fusion with the gyroscope readings
from the onboard IMU for attitude estimation. Moreover, marker-based motion capture has
been used to track the position and orientation of the HRP-2 humanoid robot’s chest, while
performing locomotion and pulling a fire hose, which acts as an external force on the robot’s
wrist [10]. The tracked robot pose is used as input to the walking pattern generator to
correct the orientation drift and improve the robot’s balance during locomotion. However,
the success rate of the HRP-2 humanoid robot experiments is only 50%, and the motion
capture system has a low acquisition frequency of 200 Hz.

In this work, we present an experimental study to demonstrate for the first time that it
is possible to employ a high-frequency motion capture system for online stabilization of
the humanoid robot RH5 [11]. We use motion capture as an alternative for proprioceptive
state estimation. The whole-body controller in [12] is used to stabilize legged motions such
as squats and balancing on one leg.

In particular, the paper presents (i) the usage of a high-frequency marker-based
motion capture framework for robot floating base tracking, (ii) Whole-Body Control of the
humanoid robot with motion capture position feedback, (iii) the experimental validation of
the proposed approach with the humanoid robot RH5 performing squats and balancing
on one leg and (iv) a comparison with a state estimation approach [13] based on internal
sensor measurements, namely IMU, leg kinematics and foot contact sensors. We believe
that motion capture can be a viable alternative to state estimation to address edge cases
of humanoid locomotion where state estimation is not reliable. As an alternative, the two
approaches could potentially be combined.

This paper is organized as follows. In Section 2, we describe the motion capture
framework and the Whole-Body Control algorithm. Section 3 presents the experimental
results of squatting and single leg balancing of the humanoid robot RH5. In Section 5, we
draw the conclusions and propose future research directions.

2. Materials and Methods

First, we briefly describe the humanoid robot RH5 used in practical experiments.
Second, we introduce the motion capture system and explain its application for tracking the
position and orientation of the robot’s floating base. Next, we describe the state estimation
approach based on proprioceptive sensors used in this work for comparison with our
motion capture system. Finally, we present the Whole-Body Control framework used
on the humanoid robot RH5. The interaction between these components is depicted in
Figure 1.
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Figure 1. The control architecture of the humanoid robot RH5 includes a Whole-Body Controller that
receives feedback from a state estimation module, based on either (i) external motion capture system
or (ii) proprioceptive sensors.

2.1. Humanoid Robot RH5

The robot RH5 [11] is a 2 m tall, 62.5 kg humanoid driven by a hybrid combination of
serial and parallel actuation modules. For example, the RH5 ankle joints are designed as
parallel submechanisms with 2 degrees of freedom (DOF), which are arranged in series with
the other leg actuation modules (see [14] for a comprehensive overview). The robot has
34 DOF and is equipped with various sensors, such as an inertial measurement unit, joint
encoders, force-torque sensors, foot contact sensors and a stereo camera. For proprioceptive
state estimation, we rely on the IMU sensor, joint encoders and foot contact sensors. The
IMU model used here is part of the Xsens MTI-300 series of attitude and heading reference
systems. The robot’s foot contact with the ground consists of 4 contact sensors located at
the corners of each foot. Additionally, there is a 6 DOF force/torque sensor on each foot. In
the parallel submechanism modules, an absolute encoder is installed in the independent
joints and a relative encoder in the linear actuators, ensuring correct forward and inverse
geometric mappings.

2.2. Motion Capture System

The motion capture system used for rigid body tracking consists of 3 Oqus 300+
Qualisys cameras connected to a Windows 10 computer. The Qualisys Track Manager
software allows tracking and streaming of rigid body poses over an Ethernet connection.
We stream rigid body data in real time without further pre-processing steps to the RoCK
software framework [15], which runs on the robot’s main control PC (Ubuntu 18.04). The
rigid body tracking has a frequency of 750 Hz and a variable latency of 2–4 ms.

System calibration is achieved by placing the calibration frame with the desired
position and orientation in the cameras’ field of view. The calibration process is fast and
accurate, with average residual values of less than 0.5 mm. A new system calibration
is only required after repositioning the cameras in the workspace, which means that
recalibration between successive experiments is not required. The cameras can be placed in
any configuration in the room as long as the markers are not occluded.

The motion capture system can be used to track any robotic platform and stream rigid
body data in real time over the network. In our work, we use the motion capture system
to track the robot {IMU} frame shown in Figure 2. In this way, we can retrieve the pose of
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the floating base of the humanoid and make a direct comparison with a state estimation
approach based on IMU data.

camera
world frame {C}

{R}

{B}

{C}

{IMU}
frame

robot
world frame {R}

robot base
frame {B}

{IMU} Tb
rTimu

b

Timu
c Tr

c

Figure 2. The coordinate frames used for robot floating base tracking are the camera world coordinate
frame {C}, robot world coordinate frame {R}, robot base frame {B} and robot {IMU} frame. The
corresponding transformation tree is depicted on the right hand side of the figure.

Three markers are required to determine the position and orientation of a rigid body.
For redundancy, we place 4 reflective markers on the robot torso as shown in Figure 3. This
ensures better tracking performance in case of occlusions and robustness against outliers
caused by reflective robot surfaces. We define the tracked IMU rigid body as follows:
(i) the origin corresponds to Marker 1 placed on the center of the IMU sensor, and (ii) the
orientation is aligned with the right-handed robot {IMU} frame (x-up, y-right, z-forward).

RH5 Robot

IMU Markers

1
2

3 4

Figure 3. Four reflective markers are placed on the humanoid robot torso in order to track the robot
IMU frame with a motion capture system.

Next, we apply a series of transformations to the IMU rigid body pose to (i) convert
the tracked IMU pose to robot world coordinates using the camera-to-robot transformation
Tr

c and (ii) obtain the robot’s floating base pose Tb
r in the robot world coordinate system.

The camera world frame {C} and robot world frame {R} are shown along with all other
relevant transformations in Figure 2.
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The camera world frame {C} is defined during the calibration procedure of the motion
capture system. The transformation of the robot world frame Tb,0

r is defined as the projection
of the base frame at the initial time t = 0 onto the ground plane. The z-position component
is set to zero and the orientation of the world frame is set to the initial orientation of the base
frame. Then, the transformation between camera and robot world frame Tr

c is computed
using the transformation chain rule in Equation (1):

Tr
c = Timu,0

c (Timu
b )−1 (Tb,0

r )−1, (1)

where Timu,0
c is the tracked IMU rigid body pose in camera coordinates at time t = 0 and

Timu
b is the fixed IMU frame transformation with respect to the robot base frame.

Finally, we can recover the tracked floating base pose of the robot Tb,i
r in robot world

coordinates {R} at time t = i. For this purpose, we apply a series of transformations from
(i) robot to camera frame (Tr

c)
−1, (ii) camera to IMU frame Timu,i

c at time t = i and (iii) IMU
to floating base frame of the robot (Timu

b )−1 as shown in Equation (2):

Tb,i
r = (Tr

c)
−1 Timu,i

c (Timu
b )−1. (2)

In Equation (2), the time index i denotes transformations of tracked rigid bodies, which
are updated at every time step. The other transformations are fixed frames that are constant
over time.

2.3. State Estimation

The proprioceptive state estimator uses the invariant extended Kalman filter (InEKF)
proposed by [13]. The filter fuses sensor information from IMU, leg odometry and foot
contact sensors. The IMU linear acceleration aimu and angular velocity ωimu data are used
as input to the prediction step of the InEKF. The update step is performed based on leg
kinematics q, q̇ and foot contact information f ext as shown in Figure 4.

Prediction
Step

Update
Step

InEKF

Figure 4. Prediction and update blocks of the InEKF proprioceptive state estimator.

The system state X ∈ R(n+5)×(n+5) estimated by the InEKF is defined in Equation (3):

X =


R v p pC1

. . . pCn
01,3 1 0 0 . . . 0
01,3 0 1 0 . . . 0

...
...

...
...

. . .
...

01,3 0 0 0 . . . 1


(n+5), (n+5)

, (3)

where R ∈ R3×3, v ∈ R3 and p ∈ R3 represent the orientation, velocity and position of the
robot’s floating base, and pCi

∈ R3 represents the position of the n foot contact points.
In contrast to the standard EKF, the InEKF [16] takes advantage of Lie Group the-

ory [17]. Lie Groups are collections of object symmetries, for instance, the collection of
rotation matrices of a 3D object in space, known as the Special Orthogonal Group SO(3).
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Instead of using Jacobians to linearize the system, the InEKF operates on a linear vector
space, namely the Lie algebra g of a given Lie Group G. The Lie algebra is defined as
the tangent to the Lie Group manifold at the identity element. The mapping from the Lie
algebra to the Lie Group is given by the exponential map exp in Equation (4), while the
reverse mapping is provided by the logarithmic map log from Equation (5):

exp : g→ G; τ̂ 7→ X = exp(τ̂) (4)

log : G → g; X 7→ τ̂ = log(X), (5)

where τ̂ is the estimated state on the Lie algebra and the X is the state represented on the
matrix Lie Group manifold.

In the InEKF, the exponential map is used to update the state estimate and determine
the exact error on the Lie Group manifold. The filter has strong convergence provided
by the invariance properties of the Lie Group and allows linearization independent of
the current system state. However, when the IMU accelerometer and gyroscope biases
are added to the state matrix, it loses the group affine property required for a matrix Lie
Group. This leads to an “Imperfect InEKF”, and the estimation error cannot be exactly
retrieved anymore. Moreover, the filter still suffers from inertial drift, yaw unobservability
and uncertainties in forwards kinematics due to leg flexibility.

These shortcomings of the proprioceptive state estimator may hinder the execution
of complex and dynamic motions required for bipedal locomotion and affect the robot
stability during single leg support phases and in challenging environments. Hence, state
feedback through motion capture is proposed as an alternative for developing and testing
new controllers for the humanoid robot RH5.

2.4. Whole-Body Control

To stabilize the robot during motions such as squatting and balancing, we use a
velocity-based Whole-Body Control (WBC) framework ( https://github.com/ARC-OPT/
wbc, accessed on 11 December 2022) [12], which solves the following instantaneous
quadratic program (QP):

min
q̇

‖∑i wi(Jiq̇− vi
d)‖2

s.t. Jj
cq̇ = 0, j = 1, . . . , K

q̇m ≤ q̇ ≤ q̇M,

(6)

where q̇ ∈ R6+n are the robot joint velocities, including 6-DOF virtual floating base, n
number of robot joints, vi

d ∈ R6 is the desired spatial velocity for the i-th task, Ji ∈ R6×(6+n)

is the associated task Jacobian and wi ∈ R6 the task weights that control the priority of
a task. The QP is subject to joint velocity limits q̇m, q̇M ∈ R6+n, as well as K rigid contact
constraints, where Jj

c ∈ R6×(6+n) is the contact Jacobian of the j-th contact point. The QP
in Equation (6) can be solved using any standard QP solver, e.g., [18]. Robot tasks are
specified by providing trajectories for vi

d, for instance, by means of feedback controllers
designed around the QP in Equation (6). For full pose control, this can be achieved as
follows:

vd = vr + Kp

(
xr − x
θω̂a

r

)
, (7)

where vr ∈ R6 is the feed forward spatial velocity, Kp ∈ R6×6 the feedback gain matrix,
xr, x ∈ R3 the reference and actual position of the robot and θω̂a

r ∈ R3 the difference in
orientation between actual and reference pose using a singularity-free representation [19].

The solution of Equation (6) is fed into an inverse dynamics solver [20] as shown
in Figure 5, which not only computes the joint torques τ ∈ Rn for the entire robot, but
also projects q, q̇, τ into the actuator space of the system, including all parallel kinematic

https://github.com/ARC-OPT/wbc
https://github.com/ARC-OPT/wbc
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mechanisms (PKM) of RH5. This avoids the usual mechanism-specific transformation
of the solution to the actuators of each PKM, e.g., to the linear actuators in the RH5
ankle mechanism. As a result, we obtain the reference actuator positions, velocities and
forces/torques u, u̇, τu,r ∈ Rp, where p is the number of actuators in the robot. On actuator
level, these are stabilized using a PD position controller with force/torque feed forward,
which runs at 1 kHz, as shown in Equation (8):

τu,d = τu,r + Kd,u(u̇r − u̇) + Kp,u(ur − u), (8)

where Kd,u, Kp,u ∈ Rp×p are again diagonal feedback gain matrices.
The controller in Equation (7) is used to control the center of mass (CoM) and the

orientation of the upper body of the humanoid robot, where the state feedback xb f of
the robot’s floating base is provided by either (i) the external motion capture framework
described in Section 2.2 or by using (ii) an internal state estimation approach as described
in Section 2.3.

Internal State
Estimation

WBC
qr , q̇r PD

Control
τ u ,d

u , u̇

x fb

desired state

ID/IK
ur , u̇r , τ u ,r

q , q̇

Windows PC

Motion 
Capture

Ubuntu PC

Figure 5. Control architecture to stabilize the desired robot motions.

3. Results

In this section, we present experimental results obtained with the humanoid robot RH5.
The robot is supposed to perform two different whole-body motions, namely squatting and
balancing on one leg (please find the Supplementary Video S1 under https://www.youtube.
com/watch?v=bqiBvVHf2i0, accessed on 11 December 2022). The two sets of experiments
are performed using the whole-body controller in Section 2.4 with state feedback from
motion capture system and proprioceptive state estimation, respectively. In the squatting
experiments, tracking of the vertical motion of the robot is evaluated at two execution
speeds of 10 and 16 s per squat. In the single leg balancing experiments, CoM and foot
tracking are evaluated when the robot raises one leg at two different heights of 10 cm and
15 cm, respectively. At the beginning of each experiment, the robot is placed in its initial
joint configuration and stands freely on the floor with both feet in contact with the ground.
For safety reasons, a movable cord is attached to the robot’s torso, which is secured by a
crane and neither restricts the robot’s movement nor affects its stability.

3.1. Squatting Experiment

In the squatting experiments, the floating base of the robot performs a translation
along the vertical z-axis with a height difference of 14 cm, as shown in Figure 6. Using the
whole-body controller described in Section 2.4, we constrain the feet to be in contact with
the ground during motion execution. In addition, we split the squatting motion into two
control tasks, namely the root task and the CoM task, as shown in Table 1. The root task
is used to constrain the floating base of the robot to follow the desired vertical motion on
the z-axis and minimize the lateral motion on the y-axis. The position of the floating base
on the x-axis is not constrained to allow the root frame to move forward and backward
if necessary, similar to the human squat. Furthermore, the CoM task is used to keep the
ground projection of the robot CoM centered in the support polygon to enforce balance.

https://www.youtube.com/watch?v=bqiBvVHf2i0
https://www.youtube.com/watch?v=bqiBvVHf2i0
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14 cm

Figure 6. Time lapse of the humanoid robot RH5 performing squats with an amplitude of 14 cm.

We performed two experiments with five squat repetitions each. The execution speed
was constant in both scenarios, while the time interval for a squat varies, namely (i) experi-
ment S1 with one squat per 16 s and (ii) experiment S2 with one squat per 10 s. In this way,
we can evaluate the squat movement with and without a stabilization break between the
movement direction changes. Both sets of experiments were successfully conducted using
state feedback from (a) external motion tracking and (b) proprioceptive state estimation.

Table 1. Task weights used in the whole-body controller for squatting and single leg balancing.

Experiment Task Weights
x y z θx θy θz

Squatting CoM 6 6 0 - - -
Root 0 1 1 1 1 1

Balancing
CoM 6 6 1 - - -
Feet 1 1 1 1 1 1

Wrists 1 1 0 0 0 0

Due to the initial yaw angle unobservability of the proprioceptive state estimator, the
reference frame of the estimator is arbitrarily rotated around the z-axis. We account for
this rotation by adjusting the setpoints accordingly. To obtain a rotation-invariant error
and compare the two state feedback approaches, i.e., MoCap and proprioceptive state
estimation, we compute the 3D Euclidean space root-mean-square error (RMSE) between
the desired and measured robot position, as shown in Equation (9):

Ec =
√
E2

c,x + E2
c,y + E2

c,z , (9)

where Ec,x and Ec,y represent the CoM tracking error on the x and y-axis, Ec,z represents
the floating base tracking error on the z-axis, and Ec represents the RMSE tracking error in
Euclidean space. Since the calibration residuals of the motion capture system are less than
or equal to ±0.5 mm, we evaluate the experimental data to an accuracy of 1 mm.

The tracking results of experiment S1 are shown in Figure 7. We observe slightly
better stability using external motion capture feedback compared to proprioceptive state
estimation. As shown in Table 2, proprioceptive feedback is responsible for larger errors
when the time interval between squats decreases in experiment S2. This shows that state
estimation becomes less accurate during fast movements, whereas performance does not
change significantly during squatting with external motion capture feedback.
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Table 2. Tracking error of the robot CoM position Ec along the three axes and foot position on
the z-axis (Ep) during the squatting and single leg balancing experiments. The highlighted values
represent the smallest CoM and foot position tracking errors for every set of experiments.

Experiment State Feedback RMSE [m]
Ec Ec,x Ec,y Ec,z Ep

S1 (16 s) MoCap Tracking 0.004 0.004 0.001 0.001 -
State Estimation 0.008 0.007 0.004 0.001 -

S2 (10 s) MoCap Tracking 0.004 0.004 0.001 0.002 -
State Estimation 0.027 0.010 0.025 0.001 -

B1 (10 cm) MoCap Tracking 0.025 0.002 0.025 0.001 0.006
State Estimation 0.026 0.018 0.018 0.001 0.002

B2 (15 cm) MoCap Tracking 0.023 0.002 0.023 0.001 0.008
State Estimation 0.026 0.017 0.019 0.001 0.008

0.10

0.15

x
[m

]

feedback

setpoint

0.00

0.02

y
[m

]

0 20 40 60 80 100
Time [s]

0.75

0.80

0.85

z
[m

]

(a)

0.05
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x
[m

]

feedback
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0.00

0.02

y
[m

]

0 20 40 60 80 100
Time [s]

0.75

0.80

0.85
z

[m
]

(b)

Figure 7. Squatting experiments S1, where the robot CoM position on x and y-axis and the floating
base position on the z-axis are tracked by the whole-body controller using (a) motion capture state
feedback and (b) proprioceptive state estimation. (a) Squatting motion using external motion capture
state feedback with the respective RMSE as follows: Ec,x = 0.004, Ec,y = 0.001 and Ec,z = 0.001.
(b) Squatting motion using proprioceptive state estimation feedback with the respective RMSE as
follows: Ec,x = 0.007, Ec,y = 0.004 and Ec,z = 0.001.

3.2. One Leg Balancing Experiment

During the balancing experiments, the robot starts with both feet in contact with the
ground. From the double leg support phase, the robot switches to the single leg support
phase by shifting the CoM to the right foot and raising the left foot to a 15 cm height, as
shown in Figure 8.

We achieved this behavior using Whole-Body Control, with a Cartesian task for raising
the left foot and a CoM task for constraining the position of the robot’s center of mass. To
achieve human-like motion, both wrists are constrained by Cartesian tasks to keep them in
front of the torso. Moreover, the contact constraint of the left foot is dynamically disabled
during the lift-off phase and re-enabled during touchdown.

The setpoints for the tasks are generated using a trajectory interpolator and executed
at joint level using the PD position controller in [20]. To enforce static balance of the robot,
larger weights have been chosen for the x and y-axes of the CoM position with respect to
the CoM vertical axis, as shown in Table 1.

We successfully performed experiments on balancing on one leg by tracking the robot’s
floating base using (i) a motion capture system and (ii) proprioceptive pose estimation. We
defined two scenarios, namely experiment B1 and B2, in which the vertical setpoint of the
left foot reaches a height of 10 cm and 15 cm, respectively. In both experiments, the center
of mass has been lowered by 4 cm on the z-axis to increase stability.
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15 cm

Figure 8. Time lapse of the humanoid robot RH5 balancing on the right leg, while raising the left leg
at 15 cm above the ground.

The results of experiment B2 are shown in Figure 9. We notice larger oscillations on the
x and y-axis when using proprioceptive state estimation feedback, as opposed to external
motion capture feedback. In both balancing experiments with motion capture feedback, we
observe stable single leg balancing, as summarized in Table 2.
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C
x

[m
]

−0.2

0.0
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[m
]
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(a)
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C
y

[m
]

1.025
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C
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[m
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Time [s]

0.0

0.1

P
z

[m
] feedback

setpoint

(b)

Figure 9. Single leg balancing experiments B2, where the robot CoM position Cx, Cy, and Cz on the x,
y and z-axis, respectively, as well as the foot position Pz on the z-axis are tracked by the whole-body
controller using (a) motion capture state feedback and (b) proprioceptive state estimation. (a) One
leg balancing using external motion capture state feedback with the respective RMSE as follows:
Ec,x = 0.002, Ec,y = 0.023, Ec,z = 0.001 and Ep = 0.008. (b) One leg balancing using proprioceptive
state estimation feedback with the respective RMSE as follows: Ec,x = 0.017, Ec,y = 0.019, Ec,z = 0.001
and Ep = 0.008.

4. Discussion

The experiments with the RH5 humanoid on squatting and single leg balancing
compare two approaches for providing state feedback for Whole-Body Control, namely an
external motion capture system and proprioceptive state estimation.

Proprioceptive state estimation provides fast state estimates relying only on pro-
prioceptive sensors such as IMU, position readings from the joints and contact sensors.
However, it suffers from yaw unobservability, and we apply an additional transformation
to the desired COM trajectory to cope with the initial yaw estimation error. Moreover, the
results show that both squatting and single leg balancing motions with proprioceptive state
estimation feedback suffer from oscillations when the speed or complexity of the motion
increases. This might be caused by the uncertainties in the “Imperfect InEFK” estimation,
since the IMU biases from the state vector do not satisfy the matrix Lie group properties.
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In contrast, the external motion capture system consists of cameras tracking reflective
markers on the robot’s IMU frame. The employed motion capture system is able to provide
accurate and fast state feedback to the whole-body controller with minimal setup and
calibration efforts. The results show that external motion capture feedback contributes
to more stable motions in the squatting and single leg balancing experiments. Due to its
robustness and suitability for high-frequency closed-loop control, this method could enable
the robot to execute more complex motions in the future, such as walking, climbing stairs
and multi-contact tasks. Thus, external motion capture feedback can contribute to the
development and testing of robot capabilities and Whole-Body Control algorithms.

5. Conclusions

Floating base state estimation plays a key role in bipedal locomotion of a humanoid
robot since state estimation errors can affect the robot’s balance in double or single leg
support phases. In this work, we show investigations on the use of external motion capture
feedback for humanoid robot control and compare it with a state-of-the-art propriocep-
tive state estimation method. We perform two different whole-body motions with the
humanoid robot RH5, namely squatting and single leg balancing and track the robot’s
floating base using external cameras. We demonstrate that high-frequency external motion
capture feedback can be reliably used for Whole-Body Control of humanoid robots and
shows better stability than proprioceptive sensing, which is subject to noise and drift. As
possible applications, external motion capture could be used both in industrial workspaces
such as factories and in research laboratories in parallel with the development of better
proprioceptive state estimation approaches to improve Whole-Body Control algorithms
and explore the capabilities of humanoid robots.

In future work, we consider addressing possible MoCap errors such as outlier rejection
and marker placement in order to increase performance. Moreover, fusion of proprioceptive
state estimation and real-time motion capture data could reduce the state estimation drift
and enable the robot to perform robust bipedal locomotion or other multi-contact tasks.

Supplementary Materials: The following supporting information can be accessed at: https://www.
youtube.com/watch?v=bqiBvVHf2i0, Video S1: Experimental Investigations into Using Motion
Capture State Feedback for Real-Time Control of a Humanoid Robot.
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