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Abstract—Visual Inertial Odometry (VIO) is one of the most es-
tablished state estimation methods for mobile platforms. However,
when visual tracking fails, VIO algorithms quickly diverge due
to rapid error accumulation during inertial data integration. This
error is typically modeled as a combination of additive Gaussian
noise and a slowly changing bias which evolves as a random walk.
In this work, we propose to train a neural network to learn the
true bias evolution. We implement and compare two common
sequential deep learning architectures: LSTMs and Transformers.
Our approach follows from recent learning-based inertial estima-
tors, but, instead of learning a motion model, we target IMU bias
explicitly, which allows us to generalize to locomotion patterns
unseen in training. We show that our proposed method improves
state estimation in visually challenging situations across a wide
range of motions by quadrupedal robots, walking humans, and
drones. Our experiments show an average 15% reduction in drift
rate, with much larger reductions when there is total vision failure.
Importantly, we also demonstrate that models trained with one
locomotion pattern (human walking) can be applied to another
(quadruped robot trotting) without retraining.

Index Terms—YVisual-inertial SLAM, sensor fusion, deep
learning methods.

1. INTRODUCTION

TATE estimation for lightweight, mobile systems is a funda-

mental problem in robotics. Visual Inertial Odometry (VIO)
1S a common solution due to the small size and low cost of
cameras and IMUs. The main weak-point of VIO is that when
visual feature tracking fails, only the Inertial Measurement Unit
(IMU) can be used.
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Fig. 1. Two of the platforms used in this work. Left: handheld device including
aSevenSense AlphaSense visual-inertial sensor. Right: the same device mounted
on a Boston Dynamics Spot quadruped. An IMU bias model from a neural
network trained on handheld data was used to infer the biases on the Spot dataset
without any retraining — despite the significantly different motion pattern. The
lidar was not used in these experiments.

Inexpensive and miniaturized micro-electromechanical sys-
tems (MEMS) IMUs have become ubiquitous in robotics and
pedestrian tracking [1], [2], [3], [4], however IMU-only state
estimation is severely affected by drift. This drift is the result
of the accumulation of various errors in IMU integration collec-
tively modeled as a combination of additive zero-mean Gaussian
noise and a slowly changing bias. As a result, estimation which
relies purely on IMU measurement integration is not feasible for
more than a few seconds due to explosive accumulation of drift.

VIO is effective so long as visual features are available
because they constrain the drift of IMU integration [5] and
estimate the biases. When visual tracking fails completely, the
system relies purely on IMU integration. When there is error
in visual tracking, the estimator may update the bias estimates
to make sense of the data. In other words, the estimated bias is
not necessarily related to the underlying physical process, but a
quantity that minimizes the residuals. If there were another way
to infer the IMU biases, these problems could be mitigated.

Most VIO works have focused on improving visual tracking,
however in this work we take a novel approach of improving IMU
bias modeling. We propose a new method which uses deep learn-
ing to estimate IMU biases directly from IMU measurements
and past biases. We train a neural network to learn the evolution
process of the biases of a specific IMU rather than assuming
Brownian Motion. As a result, our method is device specific, not
locomotion specific, unlike similar IMU learning approaches,
and does not require periodic motion. Our contributions can be
listed as follows:

® A neural network capable of estimating IMU biases from

a history of measurements and biases. To the best of the
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authors’ knowledge, this is the first method capable of
explicitly inferring the bias evolution of an IMU.

® A performance comparison of two different network imple-
mentations (LSTM and Transformer) and their integration
as unary factors into a state estimator based on factor
graphs, for improved estimation in visually challenging
scenarios.

e Real-world experiments on three different platforms
with different types of motions: pedestrian handheld,
quadrupedal robot and drones. To the best of the authors’
knowledge, this is the first work that demonstrates an IMU
learned model trained on one locomotion modality and
tested on another (handheld to quadrupedal).

An additional minor contribution is the development of a ROS

compatible, open-source tool for calibrating an IMU using the
Allan Variance method.!

II. RELATED WORK

In this section, we summarize the growing field of inertial
learning from which our work follows. In Section II-A, we
discuss methods which learn motion models from inertial data,
while Section II-B covers methods which learn IMU noise
models primarily for drone state estimation.

A. Learning Inertial Motion Models

Recent works have trained neural networks with IMU data
to learn motion models (typically of pedestrians) and to output
estimates of velocity directly from IMU measurements.

The first data driven Inertial Navigation System (INS) was
IoNet by Chen et al. [6] which inferred 2D displacement and ori-
entation change from buffered IMU data. Later, Herath et al. [7]
proposed RoNIN, a similar network which inferred 2D velocity
and orientation from raw IMU data. Liu et al. [8] proposed
TLIO, a method to infer 3D motion and estimate high-fidelity
trajectories in a filtering framework. They used an Extended
Kalman Filter (EKF) to estimate the full 6 DoF state. Process up-
dates were performed by traditional IMU mechanization while
measurement updates from the network were used as relative
position measurements. This allowed the filter to implicitly
estimate IMU biases.

In our prior work [9], we adapted the approach of [8] to
incorporate additional sensors such as cameras, lidar or legged
robot kinematics in a factor graph. However, this method, like
the ones discussed above, was based on learning a motion model
and was therefore susceptible to failure if applied outside of the
training domain. For example, in Fig. 2 we show results of TLIO
which was trained with handheld walking data on flat ground.
As shown in Fig. 2(a)), the velocity estimates are reasonable for
IMU-only odometry. In Fig. 2(b)), we applied the same network
to stair climbing, which was not present in the training set and as
aresult, the z velocity estimation fails completely. In Fig. 2(c))
we tested the network with a quadruped and the model fails
completely. This motivates the need for methods which are more
IMU specific rather than locomotion specific.

B. Learning IMU Noise Models

A different approach is to learn the IMU noise model. In
this case, the IMU measurements are passed through a network

1 [Online]. Available: https://github.com/ori-drs/allan_variance_ros
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Fig. 2. Top: TLIO [8] trained on handheld data on flat ground, tested on flat
ground. Middle: same network tested on a sequence in which the person walks
up and down stairs. Because stair climbing was not present in the training set,
inference fails significantly (Note z velocity estimates). Bottom: when applied to
a quadrupedal robot, because of the completely different locomotion modality,
TLIO is unable to estimate velocity.

trained to “denoise” them and output an estimate of the perfect
IMU measurements. These denoised signals can then be used
directly as input to a VIO pipeline.

Brossard et al. [10] used a Convolutional Neural Network
(CNN) to denoise a gyroscope using the output to correct
for the true angular velocity. The CNN used dilated convolu-
tions to increase the temporal coverage over longer sequences.
Zhang et al. [11] trained a Recurrent Neural Network (RNN)
to denoise both gyroscope and accelerometer measurements.
Their network used IMU measurements as input to estimate a
corrected measurement which, when integrated, reduced pose
error. This eliminated the need for the model to learn the under-
lying mechanization equations. Similarly, Steinbrener et al. [12]
performed denoising on IMU measurements, comparing LSTM
and Transformer architectures, finding the LSTM to be more
effective.

The main drawback of these methods is that they do not
distinguish between different noise sources and, as a result, it
is not clear what the network has learned to remove from the
IMU measurements. For example, most results were primarily
demonstrated on drones which, when flying, introduce high
frequency vibrations affecting the IMU measurements. It is
unclear if the noise characteristics being estimated were caused
by the vibrations, the internal state of the IMU (i.e. the true
bias), the motion of the drone, or a combination of the above.
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Fig.3. Reference frames convention for the handheld device. The world frame
W is a fixed frame, while the base B, camera optical C and IMU I frames are
attached to the moving device.

By explicitly modeling the IMU bias, in this letter we seek a
motion independent method with more explainable outputs.

III. PROBLEM STATEMENT

We aim to estimate the trajectory of a mobile platform
equipped with an IMU and a stereo camera using sliding window
based smoothing. The relevant reference frames of the platform
are shown in Fig. 3 and includes an Earth-fixed world frame W,
the platform-fixed base frame B, left and right camera frames
Co, C1, and IMU sensor frame I.

A. Definition of State Vector and Measurements

The state of the platform at time ¢, is defined as:
x; £ [Ri,pi, vi, b bf] € SO(3) x R™ ()

where: R; = Ryg(;) is the orientation of B with respect to W,
pi = wPus(t;) is the position, v; = gvyg(t;) is the linear veloc-
ity, and b? = 1b?(¢;), b? = 1b*(t;) are the IMU gyroscope
and accelerometer biases, respectively.

We indicate the set of all states in the window as X} =
{x;}iek, where K are all the keyframe indices up to ty.
Similarly, the measurements within the window are Zj =
{Z;j,Ci}i,j € Ki, where Z;; are the IMU measurements be-
tween two camera keyframes (with ¢ = 7 — 1), while C; include
the stereo image pairs at time ;.

B. Maximum-a-Posteriori (MAP) Estimation
We maximize the likelihood of the measurements Zj, given
the history of states Xj:

X]: = arngaxp(Xk\Zk) X p(X0>p(Zk|Xk) (2)
ke

The measurements are formulated as conditionally independent
and corrupted by white Gaussian noise. Therefore, (2) can be
expressed as the following least squares minimization:

Xy = argmin |[roS, + > Iz, 13,
Ak i€Kg
2

Spe T ||1“bj.|

+ Z ||rwi,me|‘2zmi,me + ||rb‘;
leM;

2
PN

3)

Fig. 4.
network Fp trained on ground truth IMU biases takes a window of past IMU
measurements Z,,; and previous bias estimates by; from the optimizer and
outputs the current bias estimate b ;. This is integrated into the factor graph as
unary factor (magenta).

Proposed factor graph framework with learned IMU estimates. A neural

where each term is the residual associated to a measurement
type, weighted by the inverse of its covariance matrix, and will
be detailed in Section IV.

IV. FACTOR GRAPH FORMULATION

A factor graph can be used to graphically represent (3) as in
Fig. 4. With slight abuse of notation, the IMU biases are shown
separately from the state nodes x; to highlight our contribution.
In addition to the prior factors (black), the graph includes: IMU
preintegration (blue), visual tracking (yellow) and our novel
deep IMU bias (magenta) factors. For convenience, the first two
are briefly reported in this section, while the last one is detailed
in Section V.

A. Preintegrated IMU Factors

We follow the standard manner of IMU measurement in-
tegration from [5] to constrain the pose, velocity, and biases
between two consecutive nodes of the graph. The residual has
the following form:

T
_ T T T T T
rIij - rARij ’ rAVij ’ rApij ) rb?j ? rb;(-]7.:| (4)

For a detailed definition of the above residuals, see [5].

B. Stereo Landmark Factors

A visual landmark in Euclidean space m, € R? is projected
onto the image plane by the function 7 : SE(3) x R? — R2,
given the platform pose T; = {p;, R;} € SE(3). Given a land-
mark my and its coordinates (ug,vp) € R? on the image plane,
the residual at state is computed as:

mo(Ti,my) —ul,
Tzim, = ’/TE(TD mf) - uzj'?ﬁ (&)
7 (T, M) — Vi
where (u”,v), (uft,v) are the pixel locations of the landmark.
> 1s computed using an uncertainty of 0.25px with the Dy-
namic Covariance Scaling robust loss function as in [13].

V. DEEP IMU BIAS FACTORS

A MEMS IMU measures its proper acceleration (e.g., equal to
Earth’s gravity at rest) a € R? and rotational rate & € R?. The
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absolute linear acceleration a (e.g., null at rest) and the rotation
rate w of a body expressed in an Earth-fixed coordinate frame W
can be recovered as follows:

a(t) = Ry:(t)(a(t) —wg) +b*(t) + (1)
w(t) = w(t) +b7(t) +n(t) (©)

Where Ry: € SO(3) is the absolute orientation of the IMU
and yg is the acceleration due to gravity expressed in W. The
quantities n* and Y represent additive noise present in all IMUs
and is modeled as zero-mean Gaussian distributions.

A. Bias Noise Model

The IMU biases b* and b¥ are due to physical properties of
the IMU. They change with each power cycle and continue to
change slowly during operation [14]. Typically, their evolution
is modeled as a Brownian noise process, whose derivatives are
sampled from zero-mean Gaussian distributions:

b(t) = n" )

This can be re-written in discrete time by integrating between
two time steps [t;, ¢;]:

b (t) = n"

bf =bf + 1" b =b] +n"* ®)
Where ¢ and n9¢ are discrete zero mean Gaussian distri-
butions with covariance X"*? and 3%9% respectively [5].

B. Learning the Bias Process Model

The Brownian noise model for IMU biases in (8) is an approx-
imation which does not hold for long periods of time. In practice,
the true underlying dynamics are a highly nonlinear function
depending on vibrations, impacts, and physical properties of the
device [14]. Thus, modeling the IMU dynamics is a problem that
lends itself to deep learning as it allows us to approximate highly
nonlinear functions. To this end, instead of (8), we propose a
deep neural network F with parameters 6 defined as follows:

Fo'+ (Tng, Bsisb%,) > (b5, ©

where the inputs are a buffer of IMU measurements Z,,, ; between
times t,,, and ¢;, and the previous bias values b, bfu. between
t,, and t;. The network outputs (b$, b?) are the estimates of the
IMU bias value at time ¢;. Without foss of generality, in this
section we assume the output of the network is generated at the

camera keyframe rate.

C. Deep IMU Bias Factors

We incorporate the bias estimates from the network into a
factor graph-based state estimator. The estimates are modeled
as unary factors on the bias state, as shown in Fig. 4. The last
two residuals of (3), I'ba and rys correspond to:

E J
S NN N7 N N N}
I‘szz = bj — bj rb;’ = bj — bj (10)

The covariances 3 and Sps were tuned to fixed values
for our experiments, with 3pa =I5 -2.5¢73 and X = I3 -
2.5¢7°. In future work, we intend to train the networks to provide
measurement uncertainty estimates as in [8], [9].
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Fig. 5. LSTM architecture. A IMU data window Z,,; of size w (with m =
J — w) and the previous bias b; are first normalized then passed to the LSTM.
The hidden state is preserved for the next inference step and the output is passed
through a fully connected layer to predict a bias.
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Fig.6.  Transformer architecture. A history of | IMU windows Z,,,; and biases
b; are concatenated and summed with a positional encoding before being passed
to the Transformer.

VI. NETWORK ARCHITECTURE

Since our learning task involves sequential data, two common
network architectures are well suited when implementing (9).
The first one is based on Long Short-Term Memory (LSTM) [15]
which is lightweight (see Fig. 5) and the second is based on
Transformers [16] which have been shown to have better per-
formance for longer-term sequences (see Fig. 6).

A. LSTM

The input to the LSTM is a single window of size w of IMU
measurements Z,,; (with m = j —w) and the previous bias
estimate b; (i.e., t,, = t;), which comes from the factor graph
optimizer. This exposes the network to bias estimates resulting
from the fusion of additional sensors. These are normalized then
passed to the LSTM with states h; and c; which are preserved for
the next bias estimate. In this way, the LSTM receives batches
of w IMU measurements while the memory can observe the bias
evolution over time. One limitation to this method is that, over
a long trajectory, the LSTM will eventually forget information
from old inputs.

B. Transformer

The Transformer input is a history of [ windows of IMU
measurements and biases (i.e.,m = j — [ - w,n = [). Similar to
the LSTM, biases added to the history come from the estimator’s
optimizer. A history of information allows the Transformer
attention mechanism to recall older information.
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TABLE I
DATASETS USED FOR EXPERIMENTS

Dataset \ Duration [s] Length [m] IMU Locom.
NCD-Multi 3163 4512 BMI0O85* Handheld
Spot 515 399 BMIO85* Quadruped
EuRoC 1349 893 ADIS16448 Drone

*Same IMU device.

C. Loss Function

We use the Mean Square Error (MSE) as a loss function:

n A
> bk = byf?
k=1

where two separate instances of the network are trained with
(11) for accelerometer and gyroscope biases, respectively.

L(b,b) = (11)

S|

VII. NETWORK IMPLEMENTATION

A. Datasets

The datasets used for training and experiments are listed in
Table I. The first is the Newer College Multi-Camera Dataset
(NCD-Multi) [17] which uses an AlphaSense inertial and multi-
camera sensor (see Fig. 1), although we only use the front facing
stereo cameras. NCD-Multi was collected by a human operator
walking while carrying the device inside New College, Oxford.
An additional non-public sequence was collected using the same
device in a limestone mine [18].

The second dataset, Spot, was recorded to demonstrate gen-
eralization to motions patterns unseen in training. We placed the
same sensor payload used in NCD-Multi on a quadruped robot
(see Fig. 1, right) and recorded two sequences only for testing.

Finally, we present results with the public EuRoC dataset [19].
We included this dataset to show results alongside similar meth-
ods and to demonstrate application to a very different platform:
a drone.

B. Training

We trained one LSTM and one Transformer each for the public
datasets (NCD-Multi and EuRoC), for a total of four models. For
each dataset, we selected hard sequences for testing (see VIII-A)
and the remaining were split 75:25 for training and validation.
The Spot dataset was only used for testing because, as detailed
in Section VIII, we demonstrate generalization to different lo-
comotion modalities by training a model on NCD-Multi and
testing it on the Spot dataset.

For training, we used teacher forcing [20], providing the
network with ground truth biases. The ground truth biases for
NCD-Multi were estimated using the lidar and a high resolution
3D model of the environment while the EuRoC dataset provides
IMU bias estimates. We added noise to the ground truth biases
which was sampled from a zero-mean Gaussian distribution
with covariances 3¢ and %97 estimated from Allan Variance
analysis.

As in [8], we rotate the IMU measurement windows Z,, ; into
a gravity aligned frame. This prevents the effect of gravity from
significantly changing the apparent accelerometer biases.

We used the Adam optimizer with a learning rate of 10~° and
batch size of 32. Training lasted 200 epochs for both LSTM and

Transformer with the model minimizing validation error used.
Both networks take ~ 2 h to train on a desktop computer with
one Nvidia Titan X with 12 GB of memory.

C. Networks Models

1) LSTM: We used a 2-layer single direction LSTM with
hidden state size of 256. We found that a larger network provided
no improvement in performance while a lighter-weight LSTM
is capable of running online with several inferences per second
on a standard laptop with low-grade GPU. After testing different
options, we found that 1 s of IMU data (i.e., w = 10 for 100 Hz
IMU) and an inference rate of 2 Hz (50% data overlap between
consecutive inferences) to give the best performance and used
these settings for all experiments.

2) Transformer: We used an 8 headed Transformer with 2
encoder and decoder layers and an embedding size of 512.
Similar to LSTM, we used 1 s IMU windows with a maximum
history size of [ = 100. This was based on analysis of the Allan
Variance plots which found the IMU bias instability to dominate
noise generally around 100 s sampling times. Inference was kept
at 1 Hz since using a history of IMU windows makes overlapping
of input data unnecessary.

VIII. EXPERIMENTAL RESULTS

In this section, we describe the experiments and results of
the proposed state estimator. We report relative position and
orientation errors as described in [21]. We compare our method
which uses bias predictions as in Fig. 4 to our baseline method,
which consists of the same factor graph but without the unary
factor described in Section IV.

A. Handheld Experiments

There are many common situations or environments in which
visual odometry systems degrade or even fully fail such as door-
opening, narrow spaces or fast rotations. We selected several
sequences from NCD-Multi which exhibit these challenges to
test our method. These sequences were only used for testing and
contained situations unseen in training.

1) NCD-Multi Stairs: This sequence included narrow
spaces, mirrors, door opening and large rotations as shown in
Fig. 7. As aresult, the baseline stereo visual odometry struggled
and lost track of all features several times.

We show in Fig. 8 that the learned bias predictions reduced
relative pose errors. This is most clearly seen in the magnified
area where the door opening caused a significant drop in tracked
visual features. Our proposed approach improves upon pure
IMU-only mechanization in these situations where visual feature
tracking fails.

2) NCD-Multi Mine: The Mine sequence was recorded in an
abandoned limestone mine in Corsham, U.K.. It was dark and
dusty and the handheld platform was intentionally held up very
close to walls as shown in Fig. 7 on several occasions. This was
also the longest trajectory.

The results can be seen in Fig. 9, where we highlight two
particular sections in which the baseline VIO became unstable.
In one section the camera faced a wall for several seconds and
another involved large rotations in the dark. We see that by
adding the bias prediction, trajectories are smoother and have
lower error overall.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 07,2022 at 09:26:24 UTC from IEEE Xplore. Restrictions apply.



46

Fig. 7. Visual challenges in the NCD-Multi Dataset. Top Row: Images from
NCD-Multi Stairs sequence with door opening (obscuring the cameras) shown
on the left. On the right is a tight space about 1.5 m wide and a mirror. Bottom
Row: Images from NCD-Multi Mine sequence with darkness and the challenge
of camera being held up close to a wall.

TABLE 1T
10M RELATIVE TRANSLATION/ROTATION ERROR [M]/[°]

Experiment \ VIO baseline LSTM Transformer
NCD-Multi Stairs* 0.23/3.22 0.19 /2.88 0.17 / 2.70
NCD-Multi Mine 0.46 / 2.59 0.33/1.71 0.42 /226
NCD-Multi Quad 0.35/1.38 0.28 /1.36 0.25/1.29
Spot Easy 0.31/1.21 0.27 / 1.02 0.31/0.88
Spot Hard 0.38 / 1.57 0.34 /1.42 0.30 / 1.42

*5m RPE due to shorter total distance traveled.

3) NCD-Multi Quad: This sequence is long and in a large-
scale open space and includes several dynamic motions when
the handheld platform was shaken. Our method reduces error
compared to the baseline. A summary of these results and for
the other NCD-Multi sequences is provided in Table II.

B. Quadruped Robot Experiments

For the Spot dataset, the same handheld sensor used in the
NCD-Multi dataset was mounted on a Boston Dynamics Spot
(See Fig. 1) which was then teleoperated around a courtyard
in two separate trajectories. The Easy trajectory is entirely on
flat ground in good lighting conditions while the Hard trajectory
includes transitions from well-lit to shady areas and walking on
small ramps.

For these experiments, both the LSTM and Transformer were
trained using only handheld data. There was no fine-tuning for
the quadrupedal robot. The information used for training and
testing was therefore exactly the same as in Fig. 2. Numerical
results are provided in Table II. This demonstrates that our
method is independent from the locomotion modality and that
the model can generalize across different modalities.

C. Drone Experiments

Two similar works to ours are Zhang et al. [11] and Brosard
et al. [10]. Zhang et al. used an LSTM to denoise accelerometer
and gyroscope measurements which are then passed to their
visual-inertial pipeline based on [22]. Brossard et al. used a
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Fig. 8. NCD-Multi Stairs results. Top: Position of the baseline VIO, LSTM
and Transformer methods on zy-plane. We magnify the door opening section
of the trajectory where the baseline clearly diverges due to loss of visual feature
tracking and poor bias estimation. Middle: Position of the trajectory for the
z-axis. Bottom: 5 m RPE for each algorithm.

TABLE III
EUROC: ABSOLUTE POSITION ERROR & IMPROVEMENT [M (%)]

Zhang et al. [11] Ours
Seq. Baseline Method Baseline LSTM Transformer
MHO02 0.19 0.15 (21%) 0.37 0.23 (38%) 0.13 (65%)
MHO04 0.15 0.14 (7%) 0.33 0.25 (24%)  0.25 (24%)
V101 0.08 0.07 (13%) 0.17 0.08 (53%)  0.08 (53%)
V103 0.27 0.15 (44%) 0.27 0.27 (0%) 0.17 (37%)
V202 0.11 0.10 (9%) 0.29 0.23 (21%) 0.10 (66%)
TABLE IV

EUROC: ABSOLUTE ROTATION ERROR & IMPROVEMENT [DEG (%)]

Brossard et al. [10] Ours
Seq. Baseline Method Baseline LSTM Transformer
MHO02 1.11 1.21 (-9%) 3.21 3.10 3%) 2.86 (11%)
MHO04 1.60 1.40 (13%) 0.89 1.00 (-12%) 0.76 (15%)
V101 0.80 0.80 (0%) 2.56 1.17 (54%) 1.66 (35%)
V103 2.32 2.25 3%) 4.78 3.54 (26%) 1.87 (61%)
V202 1.85 1.81 2%) 378 2.53 (33%) 1.31 (65%)

CNN to denoise gyroscope measurements only which are then
passed to Open-VINS [3]. Since both works presented their
results using the EuRoC dataset [19], we also use this dataset to
demonstrate that our method can be applied to drones. Because
the baselines were evaluated differently, drawing conclusions
from direct comparisons is difficult. Therefore, we show relative
improvement for each method.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 07,2022 at 09:26:24 UTC from IEEE Xplore. Restrictions apply.



BUCHANAN et al.: DEEP IMU BIAS INFERENCE FOR ROBUST VISUAL-INERTIAL ODOMETRY WITH FACTOR GRAPHS 47

== Ground Truth== VIO baseline == VIO w/LSTM

Position XY [m]
i\\'\\ﬂ

Camera held
close to wall

VIO w/Transf.

O Start
% End

10 m

Fast Rotation

Position Z [m]

1 1 1 1
0 25 50 75 100 125 150 175

RPE (10 m)
20k Camera held
close to wall
151

Fast Rotation

1.0f mw’l
05F fr
Ll M.M A ek

0
0 5 100 125 175
Time [s]
Fig. 9. Results from the Mine sequence. Top: Position on xy-plane of

the baseline VIO, LSTM and Transformer methods. We magnify a part of
the sequence where the camera was held facing and very close to a wall. The
baseline diverges due to loss of visual feature tracking and poor bias estimation.
We also highlight a section with large rotations where the baseline has multiple
divergences. Middle: Position on z-axis. Bottom: 10 m RPE for each algorithm.

Tables IIT and IV summarize these results in terms of absolute
error. Note that [11] reported positional RMSE while [10] re-
ported orientation RMSE and therefore we report both. For the
V101 sequence, we use the updated ground truth from [3] as did
Brossard et al. [10].

Brossard et al. additionally reported relative orientation errors
by averaging 7m, 21m and 32m relative orientation error for all
trajectories. Averaged over the three distances they report 1.59°
while we achieve 1.41° and 1.36° for LSTM and Transformer
respectively.

D. Illustrative Experiments

We present two additional experiments to further analyze our
system’s performance. In both cases we used the Spot Easy
trajectory and models trained with only handheld data.

1) Blackout: We “black out” the images for 5 s, setting all
pixels to 0. As shown in Fig. 10 there is an error spike during
the blackout where the estimator must rely on IMU data only.

—VIO baseline RPE (5 m intervals)
— VIO w/Bias Lock blackout
12 —VIO w/LSTM
10k VIO w/Transformer
E 0.8
w 0.6
o
x 04F
0.2~
0.0E
Fig. 10.  Blackout Experiment: 5 m RPE Performance where the cameras were

disabled for 5 s (gray area) during the Spot Easy trajectory. Mean 5 m RPE was
0.26 m, 0.28 m, 0.22 m and 0.20 m for the baseline, bias-lock, LSTM and
Transformer methods respectively.

—Ground Truth —VIO baseline —VIO w/LSTM VIO w/Transf.  dist.
< le-d Z-axis Gyroscope Bias [rad/s]
6.0
4.0 ~‘,&/\ Lt — - o
2.0 W——A y
0.0 =y
-2.0 . . . !
50 75 100 125 150
Time [s]
Fig. 11. Image Distortion Experiment: At 100 s of the Spot Easy trajectory

we apply a small distortion to both stereo images (pink area). The baseline VIO
develops a significant offset in z bias as the error is attributed to the gyroscope.
LSTM and Transformer methods have reduced magnitude of error and recovery
time.

We also experiment with “locking” the IMU biases during the
blackout rather than allowing the random walk.

2) Image Distortion: When there are errors in visual track-
ing, such as poor camera calibration or wrong correspondences,
the associated error can be erroneously attributed to the IMU
bias. Learned bias estimates can mitigate this by providing esti-
mates of the correct bias. To demonstrate this, we intentionally
inject visual tracking error by left shifting both stereo images by
10 pixels for 10s. This is interpreted as an apparent rotation on the
z-axis, attributed by the system to a change in yaw gyro bias. In
Fig. 11 we plot the bias estimates during this time. Even though
we initialize all methods with the ground truth bias and use a
robust loss function, each method’s estimate of the gyroscope z
bias incorrectly drifts during the period of image distortion.

IX. DISCUSSION

In Section VIII-A we show our methods achieving reduced
error compared to the baseline in several visually challenging
situations. On average, the LSTM and Transformer have reduced
error in Table II by 15%, but in certain situations, for example
the camera held close to the wall in the Mine trajectory, the
improvement is over 300%. This is both because the learned
estimates improve bias estimation and because they stabilize
the optimizer in situations where error is incorrectly attributed
to the IMU bias.

In Section VIII-B we take a model trained with handheld data
and apply it to quadrupedal data to demonstrate our method is
locomotion agnostic. Additionally, it should be noted the Stairs
trajectory is the only handheld trajectory with stair climbing
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and therefore also demonstrates locomotion agnosticism. The
reduced error of our method compared to the baseline shows
our method is sensor specific and not locomotion specific.

In the Section VIII-C drone experiments, our method has
similar accuracy as other methods. However, each method uses a
different VIO baseline. Our method improves upon our baseline
VIO more so than other methods improve on their baselines.
Also, as the EuRoC dataset provides ground truth bias estimates,
we examine the accelerometer and gyroscope bias (Ba,fng )
estimation errors and find that, on average, error is reduced by
(35%, 23%) for LSTM and (32%, 12%) for Transformer.

In the illustrative experiments in Section VIII-D we first
present the Blackout experiment where our proposed methods
reduced error during IMU-only estimation when no visual fea-
tures could be tracked. Locking the bias did not improve on
the baseline. This is because the bias random walk is already
sufficiently constrained due to calibration. There is a second
spike in error for all methods after vision is restored. This
is because the pose estimate is suddenly corrected by a large
amount, which locally appears as a relative error spike.

In the Image Distortion experiment, a bias shift affects all
methods but the learned methods experience less error over the
10s and a faster recovery period. During distortion, the error
of LSTM and Transformer methods are 41% and 12% lower
(RMSE) than the baseline.

LSTM and Transformer provide similar improvements to
positional error with Transformer slightly better at rotational
error. This makes sense because the gyroscope biases change
more slowly and we expect the Transformer to be more accurate
with longer-term dependencies. In the distortion experiment
the Transformer instead performs more poorly than the LSTM,
which we believe is due to the LSTM operating at 2 Hz allowing
it to react to disturbances more quickly. In terms of model
size, the LSTM is superior with learned models as small as
30 MB compared to 200 MB for the transformer. Additionally,
the LSTM forward pass takes less than 6 ms as compared to
20 ms for the Transformer.

X. CONCLUSION

We present a novel application of machine learning to inertial
navigation which is more interpretable than similar methods. By
learning bias predictions the proposed method is more generally
applicable because it is not robot specific and does not require
periodic locomotion which we demonstrate with a wide variety
of experiments on quadrupeds, handheld sensors and drones.
We show that our method reduces 5 m RPE of our baseline
VIO system by 15% on average in handheld and quadrupedal
experiments with RPE being reduced by as much as 300%
in certain situations where vision fails. In the future, we will
build on this work by integrating uncertainty estimation into the
model and experimenting with non-patterned locomotion such
as wheeled robots.
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