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Abstract 

Background:  Vestibular deficits can impair an individual’s ability to maintain postural and/or gaze stability. Charac-
terizing gait abnormalities among individuals affected by vestibular deficits could help identify patients at high risk 
of falling and inform rehabilitation programs. Commonly used gait assessment tools rely on simple measures such 
as timing and visual observations of path deviations by clinicians. These simple measures may not capture subtle 
changes in gait kinematics. Therefore, we investigated the use of wearable inertial measurement units (IMUs) and 
machine learning (ML) approaches to automatically discriminate between gait patterns of individuals with vestibular 
deficits and age-matched controls. The goal of this study was to examine the effects of IMU placement and gait task 
selection on the performance of automatic vestibular gait classifiers.

Methods:  Thirty study participants (15 with vestibular deficits and 15 age-matched controls) participated in a single-
session gait study during which they performed seven gait tasks while donning a full-body set of IMUs. Classification 
performance was reported in terms of area under the receiver operating characteristic curve (AUROC) scores for 
Random Forest models trained on data from each IMU placement for each gait task.

Results:  Several models were able to classify vestibular gait better than random (AUROC > 0.5), but their perfor-
mance varied according to IMU placement and gait task selection. Results indicated that a single IMU placed on the 
left arm when walking with eyes closed resulted in the highest AUROC score for a single IMU (AUROC = 0.88 [0.84, 
0.89]). Feature permutation results indicated that participants with vestibular deficits reduced their arm swing com-
pared to age-matched controls while they walked with eyes closed.

Conclusions:  These findings highlighted differences in upper extremity kinematics during walking with eyes closed 
that were characteristic of vestibular deficits and showed evidence of the discriminative ability of IMU-based auto-
mated screening for vestibular deficits. Further research should explore the mechanisms driving arm swing differ-
ences in the vestibular population.
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Background
Vestibular disorders such as bilateral/unilateral vestibular 
hypofunction can impair an individual’s ability to main-
tain postural and/or gaze  stability during standing and 
walking [1, 2]. The loss of vestibular function may result 
in symptoms of dizziness, unsteadiness and an increased 
risk for near-falls and falls during mobility and gait [3, 4]. 
Prior studies have estimated that up to 35% of Americans 
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experience vestibular-related issues during their lifetime 
[1, 5, 6]. Typically, a vestibular diagnosis is determined 
through a battery of specialized tests (e.g., Computerized 
Dynamic Posturography, Videonystagmography (VNG) 
and Rotational Chair Testing). Access to such diagnos-
tic tools relies, however, on the referral to specialists by 
primary care providers, but referral rates remain low [7], 
leaving affected individuals under-diagnosed.

Prior to in-depth diagnostic testing, screening tests are 
typically used to determine whether an individual would 
benefit from such specialized testing. Bedside screen-
ing tests for vestibular deficits consist of tests to assess: 
vestibular-ocular reflex (VOR) such as head impulse tests 
[8], spatial orientation such as the Fukuda Stepping test 
[9], and balance performance during static (standing bal-
ance) and dynamic tasks (walking balance) [10]. Addi-
tionally, the Dix-Hallpike and supine roll tests can be 
used to screen for Benign Paroxysmal Positional Vertigo 
(BPPV) [11]. However general providers may have lim-
ited knowledge and experience in performing and inter-
preting such tests accurately.

Clinicians typically assess balance and fall risk during 
gait using conventional gait assessment tools that include 
the Functional Gait Assessment (FGA) [12], the Dynamic 
Gait Index (DGI) [13], 10-Meter Walk Test [14], and 
Timed Up and Go (TUG) [15]. However, these conven-
tional clinical assessments rely on timed tests and obser-
vations of path deviations that do not consider the subtle 
changes in full-body kinematics resulting from vestibular 
deficits. Observational assessments allow clinicians to 
examine the overall movements of individuals to assess 
their reactions but may not detect changes to the pat-
terns of individual body segments during gait. Vestibular 
deficits have been shown to affect spatiotemporal gait 
parameters (such as cadence, step length [16], step width, 
path adherence [17], etc.) and cause gaze stability defi-
cits, often resulting in abnormal head-trunk stabilization 
during stepping and walking [18]. Standard clinical gait 
assessment tools do not capture features related to spati-
otemporal gait parameters and upper-body coordination 
and therefore offer limited insights into the complex kin-
ematics of vestibular gait.

Wearable sensors such as inertial measurement units 
(IMUs) present an opportunity to measure and charac-
terize gait by quantifying the movement of various body 
segments throughout the gait cycle. While other move-
ment tracking technologies such as motion capture have 
been used in research settings, IMUs are better adapted 
to clinical use as they are more cost-effective, require 
minimal set-up, and are easily integrated into portable/
wearable electronics. IMUs have been used to detect gait 
events and estimate spatiotemporal gait parameters such 
as stride length, stride time, stance time, swing time and 

gait speed [19], as well as to estimate upper-body kine-
matics [20]. Wearable IMUs have been used to estimate 
spatiotemporal gait metrics of individuals with vestibular 
deficits during the 2-Minute Walk Test [21], and measure 
walking/turning times during conventional gait tests such 
as the FGA [22] and TUG [23], thus providing a quantita-
tive measurement of kinematic changes that occur dur-
ing gait tasks when the vestibular system is affected.

Machine learning (ML) methods have further enabled 
the use of wearable IMUs in a variety of balance assess-
ment and gait analysis contexts to automatically detect 
balance deficiencies and classify pathological gait due 
to Parkinson’s disease [24–28], cerebellar ataxia [29–
31], and cerebral thrombosis [32]. However, few stud-
ies have applied ML methods to IMU-based kinematic 
data to classify and screen for gait abnormalities related 
to vestibular deficits. Namely, a study by Ikizoglu et  al. 
[33] reported a binary (vestibular/control) classification 
model based on a dataset of kinematic data captured 
using IMUs placed on the feet, knees and lower back 
while participants walked along a 11.5  m path. Because 
the IMUs in this study were only placed on the lower 
body, abnormalities in the upper-body coordination 
strategies observed in populations with vestibular deficits 
were not captured. In addition, participants performed 
a single simple gait task. Another study by Nguyen et al. 
[34] demonstrated a binary (vestibular/control) classi-
fication model based on kinematic data from one IMU 
placed on the upper back while participants performed 
the DGI. A single IMU on the upper back was used in 
this study resulting in the capture of movements from 
one segment of the participants’ bodies during gait tasks 
involving head movements, stepping over an obstacle, 
changing speed and a pivot turn. While these studies 
provide evidence of the feasibility IMU-based automatic 
classification of vestibular gait, they investigated only a 
limited set of IMUs and gait tasks.

The number and placement of IMUs as well as the 
selection of gait tasks used to classify vestibular gait have 
impacts on model performance and practical implications 
when such systems are deployed for clinical use. Different 
IMU placements measure features related to the move-
ment of different body segments and therefore capture 
various compensatory strategies or adaptations reported 
within the vestibular population such as changes to spa-
tiotemporal gait parameters [16, 17, 35] and abnormal 
head-trunk stabilization [18]. The choice of IMU place-
ment on different body segments was shown to have an 
effect on model performance in the context of gait-based 
classification of stroke and other neurological disorders 
[36], and the choice of IMU placement on a given body 
segment was shown to affect the accuracy of estimated 
spatio-temporal gait parameters [37, 38] and measures of 
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stability [39]. In addition, the number of IMUs and their 
placement are important factors for technology adoption 
within clinical settings - fewer sensors and ease of place-
ment are preferable [40]. Similarly, gait task selection can 
affect classification performance as different gait tasks 
within common functional assessments challenge partic-
ipants’ sensory compensation strategies in different ways 
[41, 42], and therefore highlight their gait deficits under 
different sensory conditions. The number of tasks needed 
to screen for vestibular deficits also has practical implica-
tions on the duration of testing. Therefore, the goals of 
this study were to examine the effects of IMU placement 
and gait task selection on the performance of automatic 
vestibular gait classifiers in order to inform the design of 
accurate, reliable and adoptable IMU-based automatic 
screening tools.

Methods
In this study, we aimed to identify wearable IMU place-
ments and gait tasks best suited for the automatic clas-
sification of vestibular gait through ML. We used a set of 
full-body (including the head, trunk, arms, wrists, thighs, 
shanks, and feet) wearable IMUs to capture the kinemat-
ics of various body segments among participants with 
vestibular deficits and age-matched controls during a 
variety of gait tasks. We then used the kinematic data col-
lected to extract descriptive features and train ML mod-
els to classify vestibular gait. We assessed the predictive 
power of models trained on features extracted from vari-
ous combinations of single IMU placements and different 
gait tasks in terms of area under the receiver operating 
characteristic curve (AUROC) scores.

Participant recruitment
Thirty study participants were recruited to participate 
in a single-session gait study. Fifteen of the participants 
were diagnosed with vestibular deficits (11 females, 4 
males, 58 ± 16 y) and fifteen were age-matched controls 
(11 females, 4 males, 56 ± 13 y) (see Table 1). Participants 
were included if they had a diagnosed vestibulopathy as 
determined through a medical chart review by a physi-
cal therapist at the Michigan Balance Clinic, and if they 
were able to ambulate more than 10 m and to stand for 
at least 30 s without support. Participants were excluded 
if they scored < 24/30 on the Mini Mental State Exam 
(MMSE) [43], had a musculoskeletal disorder that lim-
ited their ability to walk, or had a severe visual or hear-
ing impairment. All participants gave written informed 
consent. The study protocol was reviewed and approved 
by the University of Michigan Institutional Review Board 
(HUM00152737).

Data collection was conducted between May 2019 and 
June 2021. Nine study participants (six diagnosed with a 

vestibular deficit and three controls) participated in the 
study after March 2020 and therefore performed the gait 
tasks in the study protocol while wearing face masks due 
to COVID-19 constraints. These participants were iden-
tified in Table 1 with an asterisk (*).

Data collection
Participants wore a set of 13 wearable IMUs (Opal, 
APDM Inc., Portland, OR, USA) placed on the head, 
upper back, lower back, arms, wrists, thighs, shanks, and 
feet (Fig.  1). The IMUs collected synchronized tri-axial 
acceleration, angular rate, and magnetometer time-series 
measurements at a sampling rate of 128 Hz.

Participants performed a series of gait tasks along a 
6 m walkway as outlined in Table  2. Tasks varying gait 
speed were selected based on findings from previous 
studies that indicated that participants with vestibular 
deficits showed higher variability in spatiotemporal gait 
parameters when walking slowly [44]. In addition, gait 
tasks involving vertical and horizontal head turns were 
included because they have been often used in vestibular 
rehabilitation therapy to enhance the recalibration of the 
vestibulo-ocular reflex (VOR) [42]. Lastly, a task involv-
ing walking with eyes closed was selected because partic-
ipants with vestibular deficits have been reported to rely 
on somatosensory input of the lower extremities (during 
the acute stage) and visual cues (during the chronic stage) 
to compensate for the lack of vestibular input [45]. Three 
non-consecutive trials were performed for every gait 
task.

Signal processing and feature extraction
IMU axis alignment
For each IMU, the z-axis was aligned with global gravity, 
the y-axis was aligned with the participant’s frontal axis 
and the x-axis was aligned with their sagittal axis. The 
z-axis was defined as the axis along which gravitational 
acceleration was measured during a brief period of static 
standing at the beginning of each trial. The y- and x- axes 
were determined during periods of walking by perform-
ing a principal component analysis (PCA) on the angular 
velocity in the two-dimensional plane orthogonal to the 
z-axis [47, 48]. The principal vector was assumed to be 
aligned with the participant’s frontal axis (y-axis) and the 
x-axis was its orthogonal in the two-dimensional plane.

Kinematic features
For each IMU, raw acceleration and angular rate signals 
were pre-processed through a zero-phase bandpass fil-
ter with cutoff frequencies of 0.5-25 Hz to minimize drift 
and noise in the signal [36]. Angular rate signals were 
integrated to obtain angular positions, capturing sway 
throughout the gait tasks.



Page 4 of 14Jabri et al. Journal of NeuroEngineering and Rehabilitation          (2022) 19:132 

Spatiotemporal gait parameters
Raw acceleration and angular velocity signals collected 
from IMUs placed on the feet were processed to detect 
footfalls and extract spatiotemporal gait parameters. The 
raw velocity signals were corrected using Zero-Velocity-
Updates (ZUPT) to account for integration errors. Sta-
tionary periods in the gait cycle were estimated based on 
acceleration, angular velocity, and stride time thresholds, 
then a ZUPT scheme was applied to correct for drift in 
the acceleration signals. The ZUPT scheme assumed 
that (1) the foot did not slip during footfalls and there-
fore Vfootfall = 0 and, (2) the error or drift in the accelera-
tion signal between two consecutive footfalls was linear. 
Once the acceleration signals were corrected, velocity 

and position signals for the foot mounted IMUs were 
obtained through integration allowing foot speed, stride 
length/time, and stride frequency to be computed. The 
kinematic and spatiotemporal gait features extracted 
from each IMU placement are described in Table 3. Fea-
tures included ones that have been previously reported 
to show differences between gait patterns from individu-
als with vestibular deficits and controls [33, 34] as well 
as features commonly used to quantify balance perfor-
mance during gait.

Datasets
For each trial of each type of gait task performed 
(Table 2), a dataset of features and corresponding labels 

Table 1  Demographic information of study participants

Participants were considered to have acute, sub-acute or chronic vestibular deficits if data collection was conducted in the first two weeks, between two weeks and 
three months, or three months after the onset of symptoms, respectively [46]

ABC The Activities-Specific Balance Confidence Scale, DHI The Dizziness Handicap Inventory

*Participants wore a face mask during the experiment following safety measures during the COVID-19 pandemic

Participant ID Age Sex Diagnosis Stage ABC DHI

Participant 1V 61 Female Right Unilateral Vestibular Hypofunction (UVH) Chronic 93 10

Participant 2V 49 Female Right Unilateral Vestibular Hypofunction (UVH) Sub-acute 91 14

Participant 3V 66 Female Benign Paroxysmal Positional Vertigo (BPPV) - Unresolved Sub-acute 81 26

Participant 4V 81 Female Benign Paroxysmal Positional Vertigo (BPPV) - Unresolved Chronic 96 22

Participant 5V 55 Female Bilateral Vestibular Hypofunction (BVH) Chronic 32 72

Participant 6V 42 Male Right Unilateral Vestibular Hypofunction (UVH) Chronic 88 12

Participant 7V 73 Male Bilateral Vestibular Hypofunction (BVH) Chronic 95 0

Participant 8V 32 Female Bilateral Vestibular Hypofunction (BVH) Chronic 66 34

Participant 9V 80 Male Right Unilateral Vestibular Hypofunction (UVH) Chronic 95 0

Participant 10V* 53 Male Bilateral Vestibular Hypofunction (BVH) Chronic 83 18

Participant 11V* 60 Female Left Unilateral Vestibular Hypofunction (UVH) Sub-acute 96 4

Participant 12V* 52 Female Bilateral Vestibular Hypofunction (BVH) Chronic 98 14

Participant 13V* 71 Female Left Unilateral Vestibular Hypofunction (UVH) Sub-acute 76 58

Participant 14V* 30 Female Bilateral Vestibular Hypofunction (BVH) Chronic 87 24

Participant 15V* 65 Female Right Unilateral Vestibular Hypofunction (UVH) Chronic 71 40

Participant 1H 50 Male Age-matched control 96 2

Participant 2H 51 Female Age-matched control 99 0

Participant 3H 46 Female Age-matched control 98 0

Participant 4H 59 Female Age-matched control 98 0

Participant 5H 68 Female Age-matched control 97 0

Participant 6H 41 Female Age-matched control 99 0

Participant 7H 61 Female Age-matched control 96 0

Participant 8H 57 Female Age-matched control 98 0

Participant 9H 64 Female Age-matched control 96 0

Participant 10H 67 Female Age-matched control 98 0

Participant 11H 72 Male Age-matched control 94 0

Participant 12H 68 Male Age-matched control 99 0

Participant 13H* 67 Female Age-matched control 98 0

Participant 14H* 29 Male Age-matched control 99 0

Participant 15H* 38 Female Age-matched control 100 0
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was created. Each gait trial for each study participant 
represented a row (30 participants × 3 trials = 90 rows) 
with 590 features extracted from the data collected via 
IMUs and one label corresponding to the diagnosis of the 
study participant (1 if vestibular or 0 if age-matched con-
trol). For each of the seven gait tasks performed, a sepa-
rate dataset was created on which to train and test ML 
models.

Machine learning
Given the feature vectors for a trial/task, we trained a 
Random Forest classifier to classify gait trials from par-
ticipants with vestibular deficits and age-matched con-
trols. We repeatedly split the data 80/20 train/test 50 
times such that the data for six study participants at a 

time (three with vestibular deficits and three controls) 
were selected to be part of the testing set (Fig.  2). This 
stratified split based on participants eliminates the pos-
sibility of a model learning individual characteristics of a 
participant’s gait instead of the underlying commonalities 
characteristic of vestibular gait. Hyperparameters (such 
as the number of estimators, the maximum number of 
features, the maximum depth, and the minimum number 
of samples per leaf ) were selected based on training data 
using a group k-fold cross validation scheme, optimizing 
for the area under the receiver operating characteristic 
curve (AUROC) scores on the validation data.

To determine the effects of IMU placement and gait 
task selection for a single IMU on classification perfor-
mance, models were trained on data from one IMU at 

Fig. 1  Illustration of IMU placements. Study participants wore 13 IMUs while performing gait tasks. IMUs were placed on the head, upper back, 
lower back, both arms, wrists, thighs, shanks, and feet

Table 2  List of gait tasks performed in a 6 m walkway. Instructions adapted from the FGA [12]

Gait task Instructions

Gait at Self-selected Speed (SSGS) Walk at your normal speed until I tell you to stop.

Gait with Change of Speed (CGS) Begin walking at your normal pace. When I tell you “fast” walk as fast as you can. When I tell you “slow” walk as slowly 
as you can.

Gait with Vertical Turns (GVHT) Walk straight at your normal pace. After three steps tip your head up and keep walking straight. After three more 
steps tip your head down and keep walking. Continue alternating head movement every three steps.

Gait with Horizontal Turns (GHHT) Walk straight at your normal pace. After three steps turn your head left and keep walking straight. After three more 
steps turn your head right and keep walking. Continue alternating head movement every three steps.

Gait with Eyes Closed (GEC) Walk at your normal speed with eyes closed until I tell you to stop.

Fast Gait (FGS) Walk as fast as you safely can until I tell you to stop.

Slow Gait (SLGS) Walk as slowly as you can until I tell you to stop.
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a time (i.e., 44 features for IMUs attached to the upper 
limbs and legs, 46 features for the head and trunk, and 50 
features for feet were included in each model, see Table 3) 
for each task, resulting in 7 IMUs × 7 tasks = 49 models. 
Features introduced in each model were standardized 
such that µ = 0 , σ = 1 to avoid introducing bias in the 
model due to the different measurement scales used.

Model evaluation
For each model, we evaluated performance across all 50 test 
sets. We report the overall AUROC score across all test folds 
with bootstrapped 95% confidence intervals (CI) by merging 
the instances from all folds together by their assigned pre-
diction probability scores into one large test set [49] (Fig. 2). 
Such an evaluation relies on having good model calibration.

To examine the effects of IMU placement and gait task 
selection on model performance, we calculated the aver-
age AUROC score of each IMU placement, averaged 
across gait tasks, and the average AUROC score of each 
task, averaged across IMU placements.

The model with the highest test AUROC score for 
a given IMU placement and a given gait task was 

identified as the highest performing single-IMU model. 
In addition, the accuracy, F-1 score, specificity, sen-
sitivity and confusion matrix assuming a classifica-
tion threshold of 0.50 were reported for this highest 
performing single-IMU model. Feature permutation 
importance analysis was performed to identify kin-
ematic feature clusters driving classification perfor-
mance. To account for multi-collinearity between the 
kinematic features introduced to the model, we cal-
culated pairwise Pearson’s correlations for features 
and identified feature groups or clusters using Ward’s 
method for hierarchical clustering. Feature permu-
tation performance was calculated by evaluating the 
decrease in each model’s test AUROC scores when the 
values of each feature cluster were shuffled. Feature 
clusters were ranked according to the observed drop in 
test AUROC scores.

An independent Welch t-test analysis was then per-
formed on the features in the most important cluster to 
examine the directionality of the differences captured 
through these features among the two classes (vestibu-
lar and age-matched controls).

Table 3  List of features extracted. For each feature category, features describing the movement of participants in each gait task were 
summarized by applying the corresponding statistical descriptors

Feature category Definition Statistical descriptor Number 
of 
features

IMUs

Angular velocity (rad/s) Angular velocities in x-, y-, and z-axes Maximum, Minimum, Mean,RMS, Range 15 All 13 IMUs

Acceleration (m/s2) Acceleration in x-, y-, and z-axes Maximum, Minimum, Mean, RMS, Range 15 All 13 IMUs

Total angular
velocity (rad/s)

Square-root of the sum of squared angular velocities in 
x-, y- and z-axes

Maximum, Minimum, Mean, RMS, Range 5 All 13 IMUs

Total
acceleration (m/s2)

Square-root of the sum of squared accelerations in x-, 
y- and z-axes

Maximum, Minimum, Mean, RMS, Range 5 All 13 IMUs

Pitch (rad) Angular displacement around the frontal axis perpen-
dicular to the direction of walking (y-axis)

Mean, Range 2 All 13 IMUs

Roll (rad) Angular displacement around the sagittal axis in the 
direction of walking (x-axis)

Mean, Range 2 All 13 IMUs

Area of Sway
Velocity (rad2/s2)

Angular velocity in both pitch and roll directions 95% CI
Ellipse Area (EA)

1 Head,
Upper Back,
Lower Back

Area of Sway
(rad2)

Angular displacement in both pitch and roll directions 95% CI
Ellipse Area (EA)

1 Head,
Upper Back,
Lower Back

Stride Length
(m)

Distance traveled between two footfalls of the same foot Mean,
Variance

2 Left Foot,
Right Foot

Stride Time (s) Time elapsed between two footfalls of the same foot Mean,
Variance

2 Left Foot,
Right Foot

Stride
Frequency (Hz)

Number of strides per second Mean 1 Left Foot,
Right Foot

Foot Speed
(m/s)

Distance traveled per second Mean 1 Left Foot,
Right Foot
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Results
Test AUROC scores based on data collected from each 
IMU are reported in Table 4 for each of the seven gait 
tasks performed. Several models were able to predict 
vestibular diagnosis better than a random assignment 

(AUROC > 0.5). IMU placement had an effect on 
model performance. An IMU mounted on the left arm 
achieved the highest mean performance across all gait 
tasks (AUROC = 0.76 [0.68, 0.88]).

Fig. 2  Overview of model training and evaluation scheme. A Random Forest (RF) classifier was trained to predict participants’ diagnoses based 
on kinematic features extracted from the IMUs. For each fold, the datasets were split into a training set (24 study participants) and a testing set (six 
study participants) such that both classes were evenly represented. Classification performance was assessed by calculating the AUROC score for the 
merged predictions on held-out test sets
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Gait task selection also had an effect on model perfor-
mance. The highest mean performance across all IMUs 
for a given gait task (AUROC = 0.74 [0.61, 0.88]) was 
achieved when the classifier was built with data collected 
while participants walked with eyes closed.

The highest classification performance overall 
(AUROC = 0.88 [0.84, 0.89]) was achieved when pre-
dicting study participants’ diagnoses based on features 
extracted from the IMU placed on the left arm while 
they performed the walking with eyes closed task. The 
receiver operating characteristic (ROC) curve (Fig.  3) 

reflects the trade-off between sensitivity and specific-
ity in this model. For a classification threshold of 0.50, 
this model had an accuracy of 80% [78%, 83%] and an F-1 
score of 0.81 [0.78,  0.83]. The confusion matrix for this 
model is reported in Table 5.

Based on the feature correlation analysis and Ward’s 
hierarchical clustering (Fig.  4), we identified three main 
feature clusters as outlined in Table 6. Features from clus-
ter 1, related to angular velocities and angular displace-
ments, had the greatest impact on model performance. 
Clusters 2 and 3 included features related to accelerations 

Table 4  Classification results: Test AUROC scores and 95% CI for each IMU placement and gait task performed
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and were not associated with significant changes in 
model performance.

To examine the directionality of the differences 
between the two classes (vestibular and age-matched 
controls) based on the features that emerged as impor-
tant from the feature permutation importance analysis, 
independent Welch t-test results for features included in 
cluster 1 are outlined in Table 7.

Compared to age-matched controls, participants with 
vestibular deficits showed a decrease in left arm angular 
velocity and range of angular displacement. A similar but 
less pronounced trend was observed for the right arm 
(Fig. 5). Notably, the range of angular displacement in the 
roll direction was not significantly different between the 
two classes (vestibular and age-matched controls).

Discussion
This study trained ML models to automatically classify 
vestibular gait based on kinematic IMU data and exam-
ined the effects of IMU placement and gait task selection 
on classification performance. The models presented in 
this study were able to learn to accurately classify par-
ticipants with vestibular deficits based on kinematic data 
collected with wearable IMU sensors during a variety of 
gait tasks.

IMU placement affected model classification per-
formance. An IMU on the left arm enabled better clas-
sification of participants with vestibular deficits and 
age-matched controls across all gait tasks with a mean 
AUROC of 0.76 [0.68, 0.88]. Other IMU placements 
also achieved good classification performance for some of 
the gait tasks (AUROC ≥ 0.70) (Table 4). Previous studies 
have reported ML-based classification models based on 
kinematic data collected from IMUs placed on the lower 
limbs and/or trunk during gait for participants with ves-
tibular deficits [33, 34], but they have not explored upper 
extremity placements of IMUs. In a previous study exam-
ining the effect of IMU placement on the classification 
of stroke and other neurological disorders [36], a shank 
IMU placement resulted in better model performance 
compared with feet, thighs, and lower back placements. 
Our results (Table 4) also showed that on average, plac-
ing an IMU on the left or right shank resulted in simi-
lar or slightly higher performance than placing IMUs on 
other lower-body segments.

Gait task selection also affected classification perfor-
mance. The walking with eyes closed gait task was best 
able to discriminate between participants with vestibular 
deficits and age-matched controls across all IMU place-
ments with a mean AUROC of 0.74 [0.61, 0.88]. This 
finding agrees with previous studies that have described 
increased deficits in vestibular gait when individuals 
lacked visual input [16, 22, 50]. In addition, prior stud-
ies have also indicated differences between individuals 
with vestibular deficits and controls when they walked 
and turned their heads [42, 50, 51] or walked slowly [35, 
44, 52]. However, we found that walking with eyes closed 
enabled better discrimination between the two groups. 
The models trained on IMU data from other gait tasks 
were able to achieve good classification performance 
(AUROC ≥ 0.70) for some IMU placements (Table 4), but 
walking with eyes closed yielded a more consistent clas-
sification performance across IMU placements.

The best preforming model across all IMU placements 
and gait tasks achieved an AUROC score of 0.88 [0.84, 
0.89] based on IMU data collected from the left arm dur-
ing walking with eyes closed. Specifically, participants 
with vestibular deficits had reduced left arm angular 

Fig. 3  Receiver-Operating Characteristic (ROC) curve for the highest 
performing single-IMU model. The model based on data from the left 
arm during gait with eyes closed achieved an average AUROC score 
of 0.88 [0.84, 0.89]

Table 5  Confusion matrix [95% CI] for the highest performing 
single-IMU model trained on kinematic data collected from the 
left arm during walking with eyes closed. Predicted labels were 
defined with a 0.5 prediction threshold
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Fig. 4  Correlation-based feature clusters. Dendrogram showing hierarchical clustering of correlated features according to Ward’s method. Three 
main feature clusters were identified (shown left to right): the first cluster included angular velocities and displacements, the second included 
accelerations, and the third included a combination of both accelerations and angular velocities

Table 6  Feature permutation importance results for the highest performing single-IMU model trained on kinematic data collected 
from the left arm during walking with eyes closed

Feature cluster Features AUROC drop [95% CI]

Cluster 1 Range of angular velocity ( ωtotal,ωx,ωy,ωz) 0.25 [0.20, 0.29]

Maximum angular velocity ( ωtotal,ωx,ωy,ωz)

Minimum angular velocity ( ωtotal,ωx,ωy,ωz)

Mean angular velocity ( ωtotal,ωy)

RMS angular velocity ( ωtotal,ωx,ωy,ωz)

Range of pitch angular displacement ( θy)

Range of roll angular displacement ( θx)

Mean of pitch angular displacement ( θy)

Mean of roll angular displacement(θx)

Cluster 2 Range of acceleration ( atotal,ay,ay,az) 0.01 [0.00, 0.01]

Maximum acceleration ( atotal,ay,az)

Minimum acceleration ( ay,ay,az)

Cluster 3 Maximum acceleration ( ay) 0.01 [0.00, 0.01]

Minimum acceleration ( atotal)

Mean acceleration ( atotal,ay,ay,az)

RMS acceleration ( atotal,ay,ay,az)

Mean angular velocity ( ωy,ωz)
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velocities and pitch angular displacements when they 
walked with eyes closed. This classification performance 

was aligned with scores reported by Ikizoglu et al. ranging 
from 0.82 to 0.86 for a similar ML-based binary classifi-
cation for gait patterns from individuals vestibular defi-
cits and controls based on kinematic data extracted from 
lower-body IMUs [33]. A recent study by Grove et al. [21] 
examining the differences between gait patterns from 
individuals vestibular deficits and controls during the 
2-Minute Walk Test using statistical methods reported 
AUROCs of 0.80 and 0.79 based on right and left stride 
lengths, respectively, and an AUROC of 0.86 for peak 
turn velocity. In a different ML-based study by Nguyen 
et  al. [34], higher test AUROC scores (AUROC = 0.98) 
were achieved when classifying vestibular gait. Notably, 
in the Nguyen study, data from the same participants 
were included in both the training and testing sets. By 
holding out all instances of a subset of our participants’ 
data for model evaluation, we were able to assess classi-
fication performance on data from individuals the model 
had not trained on to mimic real-world classification 
problems. In a recent study, Grove et  al. [22] proposed 
the Gait Disorientation Test as new method to screen for 
vestibular deficits, based on the difference between the 
time it takes individuals to complete a 6 m walk with eyes 
open at self-selected speed and eyes closed. The Gait Dis-
orientation Test had an AUROC score of 0.91 [0.82, 1.0] 
on an initial dataset and AUROC = 0.89 [0.78, 1.0] on an 
external test set. Again, this performance was consistent 
with the performance achieved with our models. While 
the Gait Disorientation Test presents advantages in terms 
of cost and simplicity, the models described in our study 

Fig. 5  Mean range of arm pitch displacement for participants 
with vestibular deficits and age-matched controls. Error bars show 
standard error of the mean. On average, participants with vestibular 
deficits (M = 0.26, SD = 0.11) had decreased left arm pitch ranges 
of angular displacement while walking with eyes closed compared 
to age-matched controls (M = 0.49, SD = 0.21). The difference was 
statistically significant t(66) = 6.72, p < 0.05 with a large effect size r = 
0.64. For the right side, participants with vestibular deficits (M = 0.26, 
SD = 0.11) had decreased arm pitch ranges of angular displacement 
while walking with eyes closed when compared to age-matched 
controls (M = 0.35, SD = 0.14). While the difference was statistically 
significant t(84)= 3.24, p < 0.05, the effect size was smaller r = 0.37

Table 7  Independent Welch t-test results for features from cluster 1. Cluster 1 was identified as the group of features with the highest 
impact on classification performance of vestibular gait based on kinematic data from an IMU mounted on the left arm during walking 
with eyes closed

Feature Age-matched 
controls

Participants with 
vestibular deficits

t-value p-value Effect size r

Range of angular velocity ( ωtotal) M = 3.19
SD = 0.78

M = 2.36
SD = 1.12

t(78.3) = 9.04 < 0.05 0.42

Maximum angular velocity ( ωtotal) M = 3.30
SD = 0.80

M = 2.40
SD = 1.12

t(80.1) = 4.29 < 0.05 0.43

Minimum angular velocity ( ωtotal) M = 0.09
SD = 0.06

M = 0.04
SD = 0.03

t(60.0) = 4.99 < 0.05 0.43

Mean angular velocity ( ωtotal) M = 1.27
SD = 0.36

M = 0.67
SD = 0.26

t(79.7) = 9.04 < 0.05 0.71

RMS angular velocity ( ωtotal) M = 1.43
SD = 0.39

M = 0.78
SD = 0.28

t(80.1) = 9.11 < 0.05 0.71

Range of pitch angular displacement ( θy) M = 0.49
SD = 0.21

M = 0.26
SD = 0.11

t(66.0) = 6.71 < 0.05 0.64

Range of roll angular displacement ( θx) M = 0.13
SD = 0.06

M = 0.13
SD = 0.06

t(87.8) = -0.17 0.79 -

Mean of pitch angular displacement ( θy) M = 0.11
SD = 0.05

M = 0.05
SD = 0.03

t(64.0) = 7.65 < 0.05 0.69

Mean of roll angular displacement(θx) M = 0.02
SD = 0.05

M = 0.02
SD = 0.03

t(87.5) = 0.85 0.39 -



Page 12 of 14Jabri et al. Journal of NeuroEngineering and Rehabilitation          (2022) 19:132 

provide additional insights into the characteristic move-
ments of individuals with vestibular deficits during gait.

Based on the features extracted from the IMU placed 
on the left arm, participants diagnosed with vestibular 
deficits tended to reduce their left arm swing compared 
to age-matched controls as reflected through their lower 
range, maximum, minimum, mean, and RMS angular 
velocities, and reduced range and mean pitch angular 
displacements. A similar but less pronounced trend was 
also observed on the right arm whereby participants with 
vestibular deficits had reduced arm swing on both sides 
compared to age-matched controls.

Reduced arm swing has been reported in literature as 
a sign of cautious gait among healthy older adults when 
compared to younger adults [53, 54]. In general, left-
dominant arm swing is common among healthy adults 
regardless of handedness [55]. However, the effect of the 
side of the vestibular deficit (i.e., left, right) for partici-
pants with unilateral vestibular hypofunction (UVH) was 
not examined in this study due to the limited sample size 
of participants with left UVH (Table 1). Prior gait stud-
ies have indicated a tendency to increase plantar pressure 
towards the side of the lesion in participants with unilat-
eral vestibular neuritis and vestibular schwannoma, espe-
cially during walking with eyes closed [56, 57], suggesting 
that a relationship between the side of lesion and arm 
swing kinematics is possible.

Arm swing has been reported to be positively corre-
lated with gait speed in healthy adults [54]. It is there-
fore possible that the reduction in arm swing observed in 
participants with vestibular deficits was associated with 
the decrease in their gait speed relative to age-matched 
controls when walking with eyes closed. In our study, gait 
speed was estimated through the foot-mounted IMUs 
and therefore was included as a feature in models based 
on foot-mounted IMUs. As shown in Table 4, the model 
using data from a left arm IMU outperformed models 
using data from foot-mounted IMUs for the same task, 
indicating that arm swing features may have captured 
more salient differences between participants with ves-
tibular deficits and age-matched controls.

Changes in arm swing kinematics have been reported 
in prior gait studies examining the effects of cognitive 
load and movement disorders. A study by Killeen et  al. 
[58] reported a unilateral reduction in arm swing on the 
right side during dual-task gait in healthy participants, 
indicating a possible relationship between cognitive load 
and arm swing during gait. In addition, arm swing ampli-
tude and asymmetry have been reported as early signs 
of other pathologies affecting gait performance such as 
Parkinson’s Disease [59–61]. Further investigation into 
arm swing kinematics during gait among individuals with 

vestibular pathologies is needed to better understand the 
differences captured in our study.

Furthermore, participants with vestibular deficits 
showed differences in their upper back and head kin-
ematics when walking with eyes closed when compared 
to age-matched controls, allowing models trained on 
data from an IMU mounted on the head and the upper 
back to achieve AUROC scores ≥ 0.70. Findings from a 
recent study by Zobeiri et  al. [62] indicated that par-
ticipants with chronic unilateral vestibular hypofunc-
tion following vestibular schwannoma surgical resection 
had a statistically significant decrease in their head 
pitch range of motion when walking with eyes closed. 
In addition, a review paper by Han et al. [42] described 
compensatory strategies employed by participants with 
vestibular lesions that aim to decrease head, neck and 
trunk rotations to reduce head movements. Previous 
studies described attempts to “lock-down” the head to 
the trunk among individuals with vestibular loss through 
co-contractions of the neck muscles in response to small 
postural perturbations to the body [63]. Similar adapta-
tion strategies have been described in the context of the 
development of independent walking in children [64], 
age-related gait changes observed in older adults [65], 
and locomotion post long-duration spaceflight [66].

The models trained on data extracted from IMUs 
mounted to the lower limbs (thighs, shanks, and feet) 
while participants walked with eyes closed were able to 
achieve AUROC scores ≥ 0.70 (with the exception of 
the IMU mounted to the left thigh). This finding indi-
cated differences between gait patterns from individuals 
with vestibular deficits and age-matched controls based 
on lower-body kinematics and agreed with results from 
previous studies [22, 34], which indicated that individu-
als with vestibular deficits walked more slowly when per-
forming a walking with eyes closed task.

The binary classification approach used in this study 
was able to classify vestibulopathic and age-matched con-
trol gait, but it did not account for other gait disorders. A 
multi-class approach could be used to examine the pos-
sibility of differentiating between vestibular and other 
sensory-related gait deficits. A second limitation relates 
to the introduction of face masks for participants who 
contributed to the study during the ongoing COVID-19 
pandemic. New studies have examined the effect of face 
masks on individuals’ abilities to detect and avoid obsta-
cles and highlighted the added restrictions to their lower 
visual fields [67]. The introduction of face masks in our 
study may have  introduced an additional challenge to 
participants who may have been more visually reliant. 
This limitation, however, would not have affected partici-
pants during the walking with eyes closed gait task since 
all participants were deprived of visual input.
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Overall, this study examined the effect of IMU place-
ment and gait task selection on the automatic detec-
tion of gait deficits due to vestibular deficits. By using 
only one IMU on the left arm while study participants 
walked with their eyes closed, the models developed 
in this study were able to identify 82% of participants 
with a vestibular diagnosis while screening out 78% of 
age-matched controls. This finding may have practical 
implications on the feasibility and usability of IMU-
based automatic screening tools for vestibular defi-
cits, as an arm or wrist placement is more convenient 
and less-obtrusive than a head, trunk, or lower body 
placement.
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