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A B S T R A C T   

An automated system that identifies work at height and the fastening state of safety hooks using wearable sensors 
was developed to prevent falls from height (FFH). This system estimates the altitudes of workers based on the 
atmospheric pressure measured by a barometer and acceleration and gyroscopic signals from an inertial mea
surement unit (IMU). The fastening state of the safety hooks of workers at height is determined with the data 
collected by the IMU sensor and machine learning algorithms. Although researchers have tried to detect unsafe 
work conditions and unsafe behaviors at height, the complicated tasks and dynamic work conditions have 
discouraged them from establishing precise methodologies for effective and timely detection. To validate the 
system of this study, on-site field experiments were conducted to collect data from 20 construction workers. The 
performance of the developed model was assessed with leave-one-subject-out cross-validation (LOSOCV) to 
accommodate a wide range of new workers and their working conditions. According to the results, the work-at- 
height identification system is 96% accurate, while the safety hook attachment detection system is 86% accurate. 
The findings of this study fill knowledge gaps by providing ways of identifying workers working at height and 
detecting the fastening state of safety hooks in a non-invasive and objective manner. The results are expected to 
improve safety management at construction sites by minimizing the FFH risk for workers working at height.   

1. Introduction 

Despite its continuous efforts to improve workplace safety, the con
struction industry still remains one of the most dangerous industries 
worldwide [1,2]. For instance, construction industry workers account 
for only 5% of all industrial workers in the US [3,4]; however, the 
proportion of work fatalities or fatal work injuries in the construction 
industry is 25% [5,104]. Approximately 36% of these fatal injuries are 
attributed to falls at height (FFH), which are one of the leading causes of 
fatalities in the construction industry [6]. Other countries, including 
Australia, China, and Korea, have also experienced enormous economic, 
productive, and human losses due to FFH [7,8]. 

According to theories concerning accident causation [9,10,11], 
safety incidents can be ascribed to the interaction among the unsafe 
behaviors of workers and unsafe working conditions. The Swiss cheese 
model [proposed by Reason [12]] demonstrates that accidents are 
subject to the interplay among unsafe conditions, unsafe behaviors, and 
other failures (e.g., organizational influences, unsafe supervision, 

preconditions for unsafe acts, and unsafe acts themselves). Working at 
height is an unsafe condition that can lead to FFH at construction sites; 
unsafe behavior represents the failure of workers at height to fasten their 
safety hook properly to an anchor point. Thus, to prevent FFH at con
struction sites, unsafe conditions (i.e., work at height) and unsafe 
behavior (i.e., improper fastening or unfastening of the safety hook to/ 
from an anchor point) must be systematically controlled. 

The Occupational Safety and Health Administration (OSHA) of the 
US imposes mandatory measures for preventing FFH during work above 
a certain height (i.e., 6 ft) [13]. A series of FFH prevention steps are 
taken at construction sites: safety training and education [14], safety 
nets or safety guardrail systems [15], and monitoring personal protec
tive equipment (PPE) [16]. Although safety training and education 
represent a proactive strategy, they have limitations regarding the direct 
prevention of FFH [17]. In addition, safety nets are not preventive; they 
are follow-up measures for FFHs [15]. Although safety guardrail systems 
can prevent FFH, they are passive and cannot proactively protect 
workers from accidents caused by their unsafe behaviors. By contrast, 
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PPE (e.g., a safety helmet, safety belt, and safety lanyard) is a useful 
proactive measure that significantly reduces the risk of fatalities and 
injuries. In particular, a properly fastened safety hook is crucial as it can 
proactively protect workers whenever the risk of FFH arises [18]. 
Nonetheless, many workers at construction sites find the safety hook 
system inconvenient and do not securely attach their safety hooks, 
which can lead to FFH [19,20,16]. Therefore, the unsafe conditions (i.e., 
work at height) and unsafe work behaviors (i.e., improper fastening or 
unfastening of the safety hook) must be closely and continuously 
monitored. 

Safety managers at a construction site depend heavily on manual and 
visual monitoring to manage the behaviors of workers [21,22]. How
ever, compared to those of other industries, the constant and dynamic 
changes in the tasks and working conditions at construction sites 
[23,24,25,26], limited number of safety managers, and time constraints 
make manual monitoring impossible [27]. To overcome these limita
tions, researchers have applied IT-based automated safety monitoring 
methods as an effective alternative [28,8,29,30]. There are two repre
sentative IT-based monitoring approaches: 1) sensor-based monitoring 
and 2) computer vision-based monitoring (Fang et al., 2018). The 
sensor-based approach enables the analysis of signals from the equip
ment, materials, and body movements and physiological state of indi
vidual workers at a construction site [31,32,33,15]. The computer 
vision-based approach facilitates the analysis of visual data (e.g., im
ages and videos) to gather data on the locations, distances, and move
ments of objects at a construction site [34,35]. 

The sensor-based approach enables inspectors or managers to collect 
signals from physiological and physical movements of individual 
workers [33,36,105]. Thus, individual workers at a construction site 
where complicated and multiple tasks are simultaneously performed can 
be micro-managed [106]. Furthermore, the recent advancement in the 
field of wearable sensor technologies enables the continuous and non- 
invasive collection of data [37]. In this study, a wearable-sensor-based 
approach was used to collect data on the movements of individual 
workers in a non-invasive manner. We tried to prevent FFH resulting 
from improper fastening or unfastening of safety hooks with continuous 
and automated monitoring with wearable sensors. Based on the analysis 
of the atmospheric pressure with a barometer, workers working above a 
certain height can be accurately identified through the differences in the 
altitudes of the sensors [38,39]. Body movement signals collected by an 
inertial measurement unit (IMU) are of great value when the behaviors 
of individual workers are classified through machine learning algo
rithms [40,41,42,43,107]. In short, by estimating the altitudes of 
workers with a barometer, workers at height (i.e., under unsafe condi
tions) can automatically be identified. In addition, IMU sensor data and 
machine learning can be employed to monitor automatically improper 
fastening or unfastening actions of the safety hook (i.e., unsafe behaviors 
of workers at height). 

Many researchers have addressed safety-related accidents at con
struction sites through automated monitoring of unsafe conditions and 
unsafe behaviors of workers, including the improper use of PPE. For 
example, Park et al. [44] developed an indoor positioning system (IPS) 
to identify workers working in unsafe areas that have been determined 
by a construction supervisor based on Internet of Things (IoT) sensors 
such as Bluetooth Low Energy. Liu et al. [38] combined the IPS, building 
information modeling, and cloud communication to develop a moni
toring system that identifies workers who are approaching predefined 
fall hazard areas. Piao et al. [22] utilized computer vision and dynamic 
Bayesian networks to develop a fall risk assessment framework for 
construction workers. 

These researchers have presented methods that identify and manage 
workers working in areas with fall hazards in a two-dimensional plane; 
they have rarely focused on identifying workers at height and had 
limited to detect their unsafe behavior (i.e., improper fastening or 
unfastening of safety hooks). Some researchers have concentrated on 
sensor- or computer vision-based automated monitoring systems to 

detect the improper use or non-use of PPE. Gomez-de-Gabriel et al. [20] 
explored the feasibility of detecting proper PPE use by detecting the 
safety belts of workers with IoT sensors. Moreover, Yang and Shami [45] 
used IoT sensors (e.g., optical pulse sensors, IMU sensors, force sensing 
resistors, and light-dependent resistors) to develop a pair check system 
for PPE (e.g., the hardhat, safety belt, safety glasses, safety gloves, and 
safety boots) and tools (e.g., hammers). However, the researchers have 
only checked whether the workers safely wore their safety belts and 
hardhats; thus, the identification of the fastening state of safety hooks is 
limited. Song et al. [101] employed an assumption pertaining to the 
safety hook fastening status: When the safety hook is securely attached 
to an anchor point, it moves considerably less than the workers do. 
Nevertheless, they focused only on identifying the status of the safety 
hook attachment and did not consider work-at-height. Fang et al. [17], 
Wang et al. [46], Wu et al. [47], and Xiong and Tang [48] developed 
computer vision-based monitoring systems to assess whether workers 
wear PPE properly. These systems also check whether the worker at 
height has properly attached the safety hook to an anchor point. To 
overcome the limitations of previously published studies, Khan et al. 
[49] and Khan et al. [13] used computer vision, IMU sensors, and ba
rometers to develop monitoring systems for safety hooks. Unfortunately, 
their monitoring system, which is suitable for scaffolds, has limited 
applicability because it does not cover the diverse range of tasks per
formed at construction sites (e.g., working on horse and mobile scaf
folds, ladders, and at ground level). Moreover, individual variations 
were not considered in the validation, which may have limited the 
generalizability of their results. 

In this study, an automated monitoring system was developed to 
identify workers working at height (i.e., under unsafe conditions) for a 
wide range of construction tasks and improperly attached safety hooks 
(i.e., unsafe behavior) to prevent FFH proactively. Therefore, signals 
from a barometer and IMU sensors and a method for identifying work at 
height and the fastening state of safety hooks at height were applied. To 
verify the applicability of the developed system at actual construction 
sites, data were collected from individual workers working under 
different conditions at a construction site (i.e., work on mobile and horse 
scaffolds, ladders, and the ground level). The developed system consists 
of a base module installed on the floor of each story, a belt module, and a 
hook module worn by workers. A barometer sensor and IMU sensors are 
embedded in each module. The signals (e.g., the atmospheric pressure 
and acceleration and gyroscopic signals) from the barometer and IMU 
sensors on the base and belt modules are processed to estimate the al
titudes of the sensors; thereby, workers working at height can be iden
tified by calculating the differences in the altitudes. Based on the 
acceleration signals of the IMU sensors in the belt and hook modules, a 
machine learning model was developed to detect the fastening state of 
safety hooks of workers at height. We believe that this study will lay the 
foundation for an automated safety monitoring framework for workers 
at height that proactively prevents FFH and ultimately improves safety 
management in the construction industry. This study contributes to the 
methodological and practical advances as follows:  

• The method proposed herein can accurately identify the workers 
working above a certain height based on an analysis of the ambient 
atmospheric pressure by using barometer data, which has rarely 
been attempted yet. The use of barometer data reduces the amount of 
calculations required because only the workers working at a height 
are screened to check whether their safety hooks are properly 
fastened.  

• In this study, the status of the safety hook (i.e., whether it is properly 
fastened) is considered, which is more critical for proactive safety 
monitoring, unlike most of the previous studies that have focused on 
the existence of PPE.  

• The applicability of the proposed method is improved by considering 
a more diverse range of tasks performed at construction sites (e.g., 
working on horse and mobile scaffolds, ladders, and at ground level). 
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• The method proposed herein considers variations in subject-specific 
characteristics while performing validation using the LOSOCV, 
which extends its generalizability to newly added workers. 

The remainder of this paper is organized as follows: The following 
section details the field experiments conducted in different scenarios at 
an actual construction site. It presents the analysis of the data collected 
from the experiments and the development of the safety monitoring 
system for identifying workers at height and detecting the fastening 
state of safety hooks. Subsequently, the results are presented, followed 
by a discussion on the validity of the system in detecting the fastening 
state of safety hooks of workers at height based on the analytical results. 
Finally, the findings are summarized. 

2. Methodology 

This section explains how workers at height and improperly attached 
safety hooks can be detected with wearable sensors. Fig. 1 presents the 
research framework. First, a preliminary experiment was conducted to 
select the location for the installation of a wearable sensor for the ac
curate identification of workers at height. Three potential locations (i.e., 
the safety helmet, safety belt, and worker’s ankle) were considered. The 
preliminary test results indicated that worker identification at height 
was the most accurate when the sensor module was attached to the back 
of the workers’ safety belt rather than the helmet or the ankle. In 
addition, the back of the workers’ safety belt was found to be a relevant 
location where the sensor was not in direct contact with the worker’s 
body, resulting in reduced discomfort during work. Therefore, the 
sensor was attached to the back of the safety belt (i.e., the belt module), 
in accordance with the results of the experiment. To verify the system’s 
applicability on site, field experiments were performed that simulate 
both work at height and a lower level (which is defined as work per
formed below the “work at height” threshold) that occur at actual 

construction sites; the data were collected from individual workers. 
Artifacts in the collected data were eliminated through data pre- 
processing. The cleaned data for work-at-height and improperly 
attached safety hooks are presented in Fig. 1(a) and (b), respectively. To 
identify work at height, the atmospheric pressure and acceleration and 
gyroscopic signals from the base and belt modules were recorded. These 
signals were fused with Kalman and complementary filters to estimate 
the altitude of each module (i.e., the base and belt module). The dif
ferences in the altitudes estimated with the base and belt modules were 
computed and analyzed with rule-based analysis to determine the work 
at height. To detect improperly attached safety hooks, acceleration 
signals were collected from the hook and belt modules; these signals 
were used to develop a machine learning classification model. When the 
safety hook is securely attached to an anchor point, it moves much less 
than the worker. By contrast, when the safety hook, which is usually 
attached to the safety belt, is not attached to an anchor point, it moves in 
a similar pattern as the worker. In other words, depending on the state of 
safety hooks, workers and their safety hooks move in similar or different 
patterns. This movement enabled us to utilize acceleration signals from 
the belt and hook modules and to train machine learning models to 
detect the state of safety hooks. Leave-one-subject-out cross-validation 
(LOSOCV), rather than the widely used cross-validation method, was 
used to evaluate the performance of the machine learning models for 
detecting the state of safety hooks for workers at height; thereby, the 
generalizability of the model to newly introduced workers was assessed 
in a more precise manner. 

2.1. Collection of field data 

Fig. 2 shows data collected from field experiments to identify 
workers at height and the fastening state of their safety hooks. The field 
experiments were conducted at an actual construction site; twenty 
subjects participated in the experiments. The tasks in the field 

Fig. 1. Research framework.  
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experiments involved typical work-at-height tasks and lower-level tasks 
based on interviews with on-site supervisors and field observations. 
Table 1 lists four work-at-height and two lower-level work types per
formed in the field experiment. Because mobile-scaffold and ladder tasks 
are performed above 2 m, they are classified as work at height according 
to the standards of OSHA (1995) [50] and Korea Occupational Safety 
and Health Agency (KOSHA) [51]; horse scaffold and ground tasks are 
classified as lower-level work. The subjects performed masonry work on 
mobile scaffolds that were more than 3 m high. During ladder tasks, the 
subjects installed plumbing in the ceiling at heights of more than 2 m. 
The mobile-scaffold and ladder tasks, which are classified as work at 
height, were further divided into two classes: the safety hook was 
securely attached and the safety hook was not attached. The experi
ments were designed to examine whether the model is capable of 
accurately distinguishing tasks that are classified as work at height from 
those that are not. For example, tasks performed on 3 m mobile scaffolds 
are clearly classified as work at height. However, tasks on ladders and 
horse scaffolds are performed at approximately 2 and 1.2 m, respec
tively, which are similar to the height standard (2 m) set by OSHA and 
KOSHA for work at height. Therefore, the experiments show the ability 
of the model to distinguish these tasks accurately. For tasks that involve 
horse scaffolds, the subjects simulated a typical job with interior finishes 

(e.g., painting and wallpapering) based on interviews with on-site su
pervisors and Jeong (2016). Finally, the subjects performed plain jobs 
and moved around workstations to simulate ground-level tasks. These 
six tasks were performed twice in twelve sections. The order of the tasks 
was randomized to avoid biases that may arise from a fixed experimental 
sequence. Each scenario took 3 min, and the experiments were con
ducted for three weeks (from November 23 to December 11, 2021). 

Data were collected from the base, belt, and hook sensor modules. 
The base module was installed on a slab, whereas the belt and hook 
modules were attached to the back of the worker’s safety belt and safety 
hook, respectively. Each module consists of a barometer and an IMU 
sensor. The atmospheric pressure signals from the barometer and the 
acceleration and gyroscopic signals from the IMU sensor were collected 
at 8 Hz. These signals were stored in a database server, pre-processed, 
and used to identify workers at height and the fastening state of their 
safety hooks. When identifying work at height, the base module serves 
as a reference point; the altitude difference between the base and belt 
modules indicates whether the corresponding task is performed at 
height. The acceleration signals from the IMU sensors on the belt and 
hook modules were employed to detect the safety hooks. The data that 
support the findings of this study are openly available in Mendely data 
[108]. 

2.2. Data pre-processing 

The first step in data pre-processing was to remove outliers from the 
atmospheric pressure, acceleration, and gyroscopic signals. In the 
removal process, the median absolute deviation (MAD) method was 
used [53]. The “outlier” definition of Aroni et al. [54] was applied: the 
observed data points that exceed 3 MAD from the median were 
excluded. The outliers were substituted with previous values, as in the 
method used by Zhao et al. [55] (Fig. 3). 

After the removal of outliers from each signal, customized filtering, 
which was tailored to the characteristics of each signal, was employed to 
remove artifacts. A low pass filter offers easy passage to low-frequency 
signals and rejects high-frequency signals, whereas a high pass filter 
does the opposite. Owing to the different frequency characteristics of 
sensor signals [56], the differences must be considered, and the two 

Fig. 2. Field experiment.  

Table 1 
Summary of tasks for field experiments.  

Task Type of work Work at 
height 

Fastening state of safety 
hook 

Height 

Task 
1 

Mobile 
scaffold 

Yes Yes >3 m 

Task 
2 

Mobile 
scaffold 

Yes No >3 m 

Task 
3 

Ladder Yes Yes >2 m 

Task 
4 

Ladder Yes No >2 m 

Task 
5 

Horse 
scaffold 

No - 0.9–1.2 
m 

Task 
6 

Ground No - 0 m  
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filters must aptly be used to remove noise. Atmospheric pressure and 
acceleration signals feature low frequencies; hence, the low pass filter 
does a better job of removing noise [56], whereas the high pass filter 
more effectively removes noise of gyroscopic signals (which have high 
frequencies) [56]. Eqs. (1) and (2) represent the low and high pass fil
ters, respectively; the coefficient alpha (α) has a value between 0 and 1: 

xn = αxn− 1 +(α − 1)xn (1)  

yn = αyn− 1 + α(un − un− 1), (y : predicted value, u∶input) (2)  

2.3. Detection of work at height 

All pre-processed signals from the base and belt modules were fused 
with Kalman and complementary filters and used to estimate the heights 
of workers. First, roll ϕ and pitch θ, which are the horizontal attitude 
angles, were estimated based on the acceleration signals. These hori
zontal attitude angles were fused with gyroscopic signals and Kalman 
filtering to estimate the final attitude angles, which were then used to 
predict the vertical acceleration from an inertial frame of reference. The 
signals collected from each acceleration sensor are represented as fol
lows: xacc = [fx fy fz]T. The attitude angles are [ roll pitch yaw ]

T, 
where ϕ and θ (i.e., the horizontal attitude angles) 

are ϕ = tan− 1
(

fy
fz

)
and θ = tan− 1

(

fx̅̅̅̅̅̅̅̅̅
f2
y+f2

z

√

)

; this results in the 

following equation: 

xAttitude acc =

⎡

⎢
⎣ϕacc = tan− 1

(
fy

fz

)

, θacc = tan− 1

⎛

⎜
⎝

fx̅̅̅̅̅̅̅̅̅
f 2

y+f 2
z

√

⎞

⎟
⎠ ψacc

⎤

⎥
⎦

.T

(3) 

The value measured using the gyroscopic sensor xgyr = [ p q r ]T 

can alternatively be expressed using the attitude angles [ϕ θ ψ ]
T. The 

following equation describes the relationship among the gyroscopic 
signals and attitude angles: 
⎛

⎝
ϕ̇
θ̇
ψ̇

⎞

⎠ =

⎡

⎣
1 sinϕ tanθ cosϕ tanθ
0 cosθ − sinϕ
0 sinϕ/cosθ cosϕ/cosθ

⎤

⎦

⎛

⎝
p
q
r

⎞

⎠ (4) 

The two attitude angles determined based on the acceleration and 
gyroscopic signals are mutually complementary and can be fused with 
the Kalman filter to estimate the final attitude angle in a more precise 
manner [57]. 

Finally, the Kalman filter algorithm calculates the estimated value x̂k 

and error covariance Pk (when the measured zk value is available); ̂xk is a 
physical variable and the final attitude angle in this case. The measured 
value zk is for xAttitude_acc. Creating the Kalman filtering system model 
entails the following equation: 

x̂k+1 = Ax̂k +wk⟺

⎛

⎝
ϕ̇
θ̇
ψ̇

⎞

⎠ =

⎡

⎣ •

⎤

⎦

⎛

⎝
ϕ
θ
ψ

⎞

⎠ (5) 

To implement the system model, the relationship between the 
quaternion and gyroscope x̂k is converted: 
⎧
⎪⎪⎨

⎪⎪⎩

q̇1
q̇2
q̇3
q̇4

⎫
⎪⎪⎬

⎪⎪⎭

=
1
2

⎡

⎢
⎢
⎣

0 − p − q − r
p 0 r − q
q − r 0 p
r q − p 0

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

q1
q2
q3
q4

⎫
⎪⎪⎬

⎪⎪⎭

(6) 

zk can be represented with a column vector and xAttitude_acc: 

Fig. 3. Differences between unprocessed and pre-processed signals.  
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zk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos
ϕ
2

cos
θ
2
cos

ψ
2
+ sin

ϕ
2

sin
θ
2
sin

ψ
2

sin
ϕ
2

cos
θ
2
cos

ψ
2
− cos

ϕ
2

sin
θ
2

sin
ψ
2

cos
ϕ
2

sin
θ
2
cos

ψ
2
+ sin

ϕ
2

cos
θ
2

sin
ψ
2

cos
ϕ
2

cos
θ
2

sin
ψ
2
− sin

ϕ
2

sin
θ
2
cos

ψ
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7) 

The matrix A, which has the form of a system model, indicates how 
the system behaves over time in implementing the Kalman filter. It can 
be expressed with the quaternions of Eq. (8) with gyroscopic signals: 

A = I+
1
2

dt

⎡

⎢
⎢
⎣

0 − p − q − r
p 0 r − q
q − r 0 p
r q − p 0

⎤

⎥
⎥
⎦ (8) 

After converting the variables x̂k, zk, and A, which have the form of 
the Kalman filter’s system model, parameters x̂0 P0, Q, H, and R used in 
the algorithm are predetermined to complete the design of the Kalman 
filter algorithm. In the Kalman filter algorithm, four calculation steps are 
performed based on the determined variables and parameters to calcu
late the final attitude angle, which is a fusion of acceleration and gy
roscopic signals. In the first Kalman filtering step, the predicted 
estimates x̂−

k and predicted error covariance Pk
− are determined: 

x̂ −

k = Ax̂k− 1 (9)  

P−
k = APk− 1AT +Q (10)  

where “− “ represents a predicted state, A is identical to that in Eq. (9), 
and Q is a matrix determined by a designer before building the Kalman 
filter algorithm. In the second step, the Kalman gain Kk is calculated; it is 
the weight given to the Pk

− − based calculation of estimates in the pre
vious step: 

Kk = P−
k HT (HP−

k HT + R
)− 1 (11)  

where H and R are both matrices that are determined before imple
menting the Kalman filter algorithm. In the third step, x̂k is computed 
with zk and Kk: 

x̂k = x̂ −

k +Kk
(
zk − Hx̂ −

k

)
(12) 

In the last step, Pk is calculated with the values obtained in the 
previous steps: 

Pk = P−
k − KkHP−

k (13) 

x̂k and Pk are updated and become x̂k− 1 and Pk− 1 in Eqs. (9) and (10) 
of the first step, respectively. We referred to Zhang and Liao [58] to set 
the parameters: x̂0 = [1 0 0 0 ], P0 = I, Q = 0.01 × I, H = I, and R =
0.01 × I, where I represents a unit matrix. The calculated estimates x̂k =

[ q1 q2 q3 q4 ]
T are converted into the final attitude angle (xAttitude =

[ phi theta psi ]T) with Eqs. (14)–(16): 

phi = atan2
(
2q3q4 + q1q2, 1 − 2

(
q2

2q2
3

) )
, (14)  

theta = − asin(2(q2q4 − q1q3) ) (15)  

psi = atan2
(
2q2q3 + q1q4, 1 − 2

(
q2

3q2
4

) )
(16) 

The estimated final attitude angle xAttitude is expressed as the tilt Z: 

Z =

⎡

⎣
Zx
Zy
Zz

⎤

⎦ =

⎡

⎣
sin(theta)

− cos(theta)sin(phi)
− cos(theta)cos(phi)

⎤

⎦ (17) 

To derive the external acceleration as from a sensor-based frame of 
reference, Z is multiplied by the gravitational acceleration g and then 

subtracted from each signal: xacc =
[
fx fy fz

]T Lee [57]; this results in 

as =

⎡

⎢
⎢
⎣

as
x

as
y

as
z

⎤

⎥
⎥
⎦ =

⎡

⎣
fx − gZx
fy − gZy
fz − gZz

⎤

⎦. When the transpose of as is multiplied by Z, 

the vertical acceleration az = (as)TZ can be estimated from an inertial 
frame of reference. 

When fused with the barometer’s atmospheric pressure signal 
through the complementary filter, az can be used for the estimation of 
the vertical position. The complementary filter can be applied to signals 
that are mutually complementary; it is widely used to calibrate the 
altitude obtained from vertical acceleration signals based on the atmo
spheric pressure [59]. The atmospheric pressure P can be converted into 
the vertical displacement h based on the atmospheric pressure at sea 
level: 

SB = h = 44330

(

1 −
(

P
P0

)0.19
)

(18)  

the unit of h is m, and P0 is the atmospheric pressure at sea level 
(101,325 Pa). The fusion of h and the previously estimated az through 
the complementary filter results in the calculation of the vertical ve
locity vz and vertical position hz. When the state vector derived through 
the complementary filter is defined as x2 = [ hz vz ]

T, the complemen
tary filter can be represented as follows [57]: 

x2,t =

[
1 Δt
0 1

]

x2,t− 1 +

[
1 Δt/2
0 1

]

KcΔt × εh,t− 1 +

[
Δt/2

1

]

Δvz,t− 1 (19)  

where εh is the difference between SB calculated from the atmospheric 
pressure at sea level and hz, which is the estimated vertical position and 
can be written as follows: εh, t− 1 = SB, t− 1 − hz, t− 1 [57]. The change in the 
velocity over time is Δvz = Δt × az. The complementary filter gain of Kc 

is
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2(σacc/σB)
√

σacc/σB

]

, and σacc and σB are the standard deviations of az and 

SB, respectively. 
The hz values estimated from the base and belt modules were used to 

identify workers at height through rule-based analysis. Any difference in 
the estimated vertical position of each module that exceeded the 
threshold was classified as “work at height”. It is defined as work per
formed at more than six feet (1.83m) by the OSHA [13]and at more than 
2 m by the KOSHA [51]. This analysis is based on the KOSHA standard. 
Since the belt module was attached to the back of a worker’s safety belt 
(i.e., a person’s back), it was above the ground on which the workers 
stepped on. Therefore, the height of the sensors attached to the back was 
considered the height of the back of a typical safety belt: above 70% of 
1.65 m, which is the average height of Koreans according to the Korean 
Statistical Information Service [60]. Thus, 1.2 m were added to the 
KOSHA’s standard for work at height; the final threshold was 3.2 m. 

2.4. Detection of fastening state of safety hook 

The acceleration signals obtained from the belt and hook modules 
were used to detect fastening state of safety hooks. In this study, the 
velocity and displacement data, which can be obtained by integrating 
the acceleration data, were combined with acceleration signals, and the 
data were labeled according to the state of the safety hooks determined 
by the sequence of tasks of each subject. From the velocity and 
displacement data, the features were extracted according to the window 
size. The moving window with 25% shift (i.e., 75% overlap), which 
means if the window size is 100 seconds, the neighboring window shares 
75 seconds of signals, is applied to extract the features. In total, 66 
features were extracted, which represent the maximum, minimum, 
mean, standard deviation, sum, and cross-correlation of the velocity and 
displacement data for the x-, y-, and z-axes of each sensor. 

The extracted features were used to train the representative machine 

H. Choo et al.                                                                                                                                                                                                                                    



Automation in Construction 147 (2023) 104714

7

learning algorithms to develop models for the detection of the fastening 
state of safety hooks; subsequently, the best-performing model was 
selected. Single and ensemble algorithm classifiers were chosen, which 
were used in previous studies for the classification of the activities of 
workers through IMU sensors [61,13,43]. For the single algorithm 
classifiers, decision trees [30], k-nearest neighbors (KNNs) [62,43], and 
support vector machines (SVMs) with the radial basis function (rbf) 
kernel (Gaussian rbf SVM) [63] were trained. For the ensemble algo
rithm classifier models, random forests (RFs; bagging on decision trees) 
[64,65] and the boosting algorithm of AdaBoost [43] were trained. All 
machine learning classifier models were subject to changes in the win
dows of up to 180 s (which is the duration of one section of the exper
iment) for comparative analysis of their accuracy. Through this process, 
we identified the window size with the best performance. The following 
section presents the trained classifier models. 

Decision Tree (DT) takes advantage of training datasets to predict 
the labels of new datasets based on if-then-else decision rules [66]. In the 
decision tree algorithm, a tree represents decision making; it consists of 
a root node that constitutes all data, an internal node that represents 
attributes, and a leaf node that holds a class label [67.66]. Each node in 
the DT algorithm has only one parent node and two or more descendant 
nodes [67]. In the training stage, training datasets are grouped 
depending on their homogeneity; they branch out into either internal 
nodes or leaf nodes, whereas the root becomes the rules [66]. This 
process iterates until all leaf nodes form a tree. The test datasets follow 
the tree rules by which they are trained and identify leaf nodes to assign 
class labels [68]. DT makes no assumption about data distribution and is 
a strictly non-parametric algorithm [67] that ensures tree-based data 
classification; thereby, it simplifies visualization, understanding, and 
interpretation [66]. 

k-Nearest Neighbors (KNNs) is one of the non-parametric learning 
methods for regression and classification [66]. Such as DT, KNN makes 
no assumption about data distribution and is thus nonparametric. In 
KNN, k is the number of nearest neighbors, and the data labels for new 
data points are predicted by finding k nearby data points with similar 
features. In this process, the labels for the k nearest data points are 
determined by measuring the distances between new and trained data 
points. Finally, KNN casts a majority vote for adjacent labels and assigns 
the most voted label to new data. KNN is simple and intuitive because it 
makes no assumptions about the data in the training stage [66]. How
ever, it has some limitations; it is sensitive to the magnitudes of datasets 
and outliers since it is based on the distance of data points when 
selecting neighbors. 

Support Vector Machine (SVM) with rbf kernel (Gaussian rbf 
SVM) is one of the machine learning algorithms that can adjust the 
datasets of workers’ body movements to the designated label for rele
vant classification. As an algorithm, SVM creates a non-probabilistic 
binary linear classifier that assigns classes to new data when a dataset 
that belongs to a certain class is available [69]. It assigns data classes 
based on the maximum-margin hyperplane that maximizes the margin 
(i.e., the distance between the hyperplane and nearest data point) for the 
training data mapped in space [70]. When new datasets are available, 
the algorithm assigns new data to classes that are closest to each margin. 
With SVM, it is challenging to address real-world classification problems 
in a simple hyperplane owing to their high level of complexity [70]. 
Through the use of kernel functions (e.g., Gaussian RBF, polynomial 
functions, etc.), it is possible to classify complex problems with 
nonlinear mapping in high-dimensional space [71,70]. In this study, we 
trained the SVM model by using the Gaussian radial basis function (RBF) 
kernel [72], which is the most widely used among various kernel 
functions. 

Random Forest (RF) is an ensemble learning method that employs 
bagging to combine multiple decision trees with the decision tree al
gorithm as a base learner [73,45]. The method uses bootstrapping from 
training datasets to draw bootstrap samples for classification and 
regression [74,73]. For each bootstrap sample, a regression or 

classification tree is developed to select the best split for the predictors at 
each node. The RF method uses all random prediction results of the 
sample tree and forecasts the class labels for new datasets [75,73]. 
Furthermore, this method induces diversity between trees and maintains 
the prediction strength by selecting the best split among random subsets 
at each node [76]. Random predictor selection reduces the correlation 
among the trees and mitigates bias; in addition, it can reduce variance 
through the ensemble of unpruned trees [76,73]. Because RF can assess 
variable importance, the results can be used to compare the relative 
weights of predictors [76]. 

AdaBoost is an iterative algorithm that enhances the performance of 
combined classifiers by boosting any learning algorithm [77]. The core 
idea of AdaBoost is to train different weak classifiers with the same 
training sets and to combine these weak classifiers to turn them into 
stronger final ones [78]. The AdaBoost algorithm changes the data 
distribution based on the accuracy of a sample’s correct classification 
and prior overall classification in each training set and determines the 
weight of each sample. New datasets with modified weights are trained 
in lower classifiers, which in turn undergo the fusion process to become 
stronger final ones [78]. The AdaBoost algorithm can improve predic
tion accuracy by enhancing the functions of weak classifiers while 
reducing bias and variance through continuous training to strengthen its 
data classification ability [78,79]. 

Before evaluating each model’s performance, a randomized search 
algorithm was used for the hyperparameter tuning of each model. Since 
the performance of the machine learning models depends on the set 
hyperparameters, optimal hyperparameters must be chosen [80,45]. 
Grid search and randomized search are typical methods used for 
hyperparameter tuning [81]. Whereas grid search computes all combi
nations of parameters within the set range, randomized search computes 
randomly selected combinations within the set range; thus, it is time 
efficient. To test the performance of the hyperparameter combinations 
obtained through randomized search, the datasets were classified into 
training and testing sets (in a ratio of 8:2): 20% of the data were not used 
in the training processes; they were used exclusively to test the models. 
The models were trained with the frequently used 10-fold cross- 
validation method [82,81], where k is divided into 10 folds. The pre
viously reserved testing set was used to evaluate the trained models. This 
testing process yielded the final combination of hyperparameters with 
the highest accuracy for the proposed models. This testing process 
yielded the final combination of hyperparameters with the highest ac
curacy for the models as summarized in Table 2. 

In the DT algorithm, hyperparameters (e.g., the maximum depth, 
maximum number of branching leaf nodes, and classification criteria of 
nodes) can affect the DT performance [83]. Thus, we tried to adjust 
these hyperparameters to identify a valid DT model. Because k, which 
represents the nearest neighbors, is the most critical hyperparameter, 
the number of neighbors was adjusted [45]. The functions that compute 
weights assigned to nearest neighbors as well as the hyperparameters 
used to compute nearest neighbors were also adjusted because of their 
potential impact on the model performance [45]. The predictive per
formance of the SVM algorithm is affected by hyperparameters such as 
the kernel function, width (gamma), and regularization parameter (C) 
[84]. We employed the widely used rbf kernel and adjusted C repre
senting the size of gamma (which is used to calibrate the impact between 
specific training data and the separation line) and margin [85]; in 
addition, we determined how much misclassification can be accepted. 
The RF method (a DT-based algorithm) can build an effective model 
with hyperparameters that represent the quality of splits and split pro
cesses [45]. The number of base learners must be prioritized when using 
the bagging method [45]. In the RF model, the tree’s maximum depth 
was adjusted like the hyperparameters in DT. To build an effective RF 
model, the hyperparameters representing the quality of splits, split 
processes, and number of trees were further calibrated. Because the 
AdaBoost algorithm is also a DT-based ensemble method, the number of 
estimators can be a critical hyperparameter for the model performance 
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[86,45]; therefore, the number of trees was adjusted. The AdaBoost 
model was developed by using a learning algorithm that represents a 
boosting method as a hyperparameter. Stagewise additive modeling 
with a multi-class exponential loss function (SAMME) and SAMME.R 
algorithm, which utilizes real values of the probability of input samples 
belonging to different classes, have potential effect on the model per
formance [87,88]. Therefore, SAMME and SAMME. R algorithms, hav
ing been adjusted as hyperparameters, were used for model training. 

Through the hyperparameter optimization of various algorithm 
models and the subsequent LOSOCV for the evaluation of the model 
performance, we selected the candidate model with the highest accu
racy. Developing a model and evaluating its performance require the 
consideration of the individual characteristics of workers, such as the 
body movements, task performance, and individual variability [89]. 
Unlike k-fold cross-validation, LOSOCV, which treats one subject as a 
test set, trains models with the remaining subjects as training sets, 
computes their accuracy, and evaluates them based on the average of the 
accuracies derived from repeated testing on all subjects [90,33]. In this 
way, the LOSOCV method can be used to assess how precisely the 
developed model classifies data from new subjects that are not included 
in the training data, thus offering more realistic and accurate estimates 
in practice [91]. To monitor successfully new workers at a construction 
site, a model designed to detect the fastening state of safety hooks of 
workers at height must be able to make valid predictions for new sub
jects with different individual characteristics. By evaluating trained 
models with LOSOCV, this method intends to ensure generalizability 
such that the fastening state of safety hooks of new workers at height in 
different construction settings can be accurately monitored and 
detected. 

3. Results 

As described in Section 2.4, workers at height can be identified with 
the signals collected from the IMU and barometric sensors on the base 
and belt modules. The accuracy, precision, and recall of the rule-based 
model, which is used to identify workers at height, were assessed. A 
total of 43,200 data points were tested to identify workers at height; the 
developed model accurately classified 27,338 out of 28,800 datasets as 
“work at height”. From 14,400 datasets not considered “work at height”, 

the model accurately classified 14,187 datasets as “work at a lower 
level”. Fig. 4 shows that workers at height can be identified with high 
accuracy (96.1%). “Precision” is the index indicating the number of 
datasets of actual workers at height out of the datasets classified by the 
model as workers at height; “recall” is the index indicating the number 
of datasets identified by the model as “workers at height” out of the 
datasets of actual workers at height. The developed model has 99.3% 
precision and 94.9% recall; hence, it can accurately identify workers 
working at height in different construction environments. 

As discussed in Section 2.5, a model was developed based on accel
eration signals from the IMU sensor on the back and hook modules to 
detect the fastening state of safety hooks. Machine learning classifiers 
such as decision trees, KNNs, RFs, SVMs with rbf kernel, and AdaBoost 
were used to develop the model. The performance of the model identi
fying work at height was assessed in terms of accuracy, precision, and 
recall. Fig. 5 summarizes the results of the model accuracy evaluation 
(window sizes: 1–180 s) after hyperparameter tuning through 10-fold 
cross-validation and LOSOCV. The highest accuracy (86.0%; window 
size = 30 s) was achieved with the RF model, followed by AdaBoost 
(85.3%, window size = 20 s), decision tree (79.3%, window size = 40 s), 
SVM with rbf kernel (76.3%, window size = 4 s), and KNN (75.9%, 
window size = 20 s). Fig. 6 presents the precision and recall of the RF 
model depending on the window size; evidently, the values of precision 
and recall are reversed when the window is larger than 30 s. Because 
precision and recall have a trade-off relationship (i.e., one increases 
when the other decreases) [92], the results are best when the two strike a 
balance at a 30 s window. 

In summary, the worker-at-height identification model is 96% ac
curate (as seen in Fig. 4), while the safety hook attachment detection 
model, which uses the RF algorithm, is 86% accurate for a 30 s window. 
All in all, the results of the safety monitoring system for workers at 
height are 83% accuracy, 86% precision, and 82% recall. In other words, 
the developed system can identify workers at height and detect the 
fastening state of safety hooks with 83% accuracy. In particular, the 
detection system can detect workers at height whose safety hooks are 
not fastened with 86.4% accuracy. 

4. Discussion 

4.1. Role of Kalman and complementary filters 

We combined acceleration and gyroscopic signals from the IMU 
sensor with atmospheric pressure signals from the barometer to predict 
the altitudes of sensors with Kalman and complementary filters. Workers 
at height were identified based on the estimated altitude differences 
between the base and belt modules. The use of the Kalman and com
plementary filters yielded 96.12% accuracy; the accuracy without 
filtering method was 94.83%. The standard deviation of the accuracy by 
subject was 2.17% when the Kalman and complementary filters were 
used, which is approximately 1.6 times lower than when no filtering 
method was used (3.47%). Although the accuracy of identifying workers 
at height without filtering method is only approximately 2% lower than 
in the case with filtering method, the larger deviation causes the accu
racy to decrease to 80% within the six-sigma range. When the Kalman 
and complementary filters were used, at least 90% accuracy was 
maintained within the six-sigma range. This is because the Kalman and 
complementary filters can aptly calibrate barometer signal errors that 
are caused by the body movements of workers with the IMU’s acceler
ation and gyroscopic signals. Hence, the filters enable the consistent and 
accurate identification of workers working in different construction 
environments at height (Fig. 7). 

4.2. Feature importance of detection model for fastening state of safety 
hooks 

The model converts acceleration signals from the hook and belt 

Table 2 
List of hyperparameters used in randomized search.  

Classifier Hyperparameters Range of values 

Decision 
Tree 

Maximum depth {10–100} (Increase by 1) (48) 
Maximum number of 
branching leaf nodes 

{5–100} (Increase by 5) (100) 

Classification criteria for 
nodes {entropy algorithm, gini algorithm} 

k-Nearest 
Neighbors 

Number of neighbors {10–~20}(Increase by 1) (2) 

Weight function {uniform algorithm, distance 
algorithm} 

Algorithm used to 
compute the nearest 
neighbors 

{auto algorithm, ball_tree algorithm, 
kd_tree algorithm, brute algorithm} 

Gaussian 
RBF SVM 

Kernel function {Gaussian RBF, polynomial} 

Kernel width (gamma) 
{0.01, 0.1, 1, 10, 100} 
(0.001683375945728094) 

Regularization parameter 
(C) 

{0.01, 0.1, 1, 10, 100} 
(4.627917891485669) 

Random 
Forest 

Maximum depth of tree {1–40} (Increase by 1) (19) 
Quality of splits {entropy algorithm, gini algorithm} 
Split processes 
(min_samples_split) {1–21} (Increase by 1) (4) 

Split processes 
(min_samples_leaf) {1–21} (Increase by 1) (3) 

Number of trees {10–500} (Increase by 10) (280) 

AdaBoost Number of trees {10–1000} (Increase by 10) (920) 
Learning algorithm {SAMME, SAMME.R algorithm} 

(Bold: optimal value). 
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modules into velocity and displacement data and extracts features 
depending on the size of the sliding window to train the RF algorithm. 
Selecting relevant features according to their importance can compress 
data and facilitate data processing, which is crucial for the development 
of future models [93]. Saving computation time and simplifying the 
process can be achieved with fewer resources [94]. We identified the 
features that played a pivotal role in the safety hook attachment 
detection model. The RF algorithm (window size = 30 s) with the 
highest accuracy was employed to determine the features of high sig
nificance. Fig. 8 shows the important features. 

Evidently, the cross-correlation between the velocity and displace
ment of the safety belt and hook on the x- and y-axes (i.e., vx_corr, dx_ 
corr, vy_corr, and dy_corr) all rank in the top ten out of 66 features. This 
indicates that the correlation between the safety hook and workers’ 
front-to-back and side-to-side movements (x, y) is particularly impor
tant. When the safety hook of a worker at height at a construction site is 

securely attached to an anchor point, the safety hook does not move 
much, even when the worker moves a lot; this results in extremely low 
correlation. By contrast, improper attachment (e.g., when a worker at
taches his/her safety hook to their own belt and not the anchor point) 
results in high correlation. Thus, the correlation between the safety belt 
and safety hook in terms of the workers’ front-to-back and side-to-side 
movements (x- and y-axes) must be considered when developing a 
safety hook attachment detection model. Furthermore, out of the 22 
features regarding front-to-back movements (x-axes), 16 features 
(approximately 73%) had a feature importance level higher than 0.01. 
This implies that the front-to-back movements of workers and their 
safety hooks were critical factors for the detection performance of the 
model. Twenty-five out of the 39 features with a feature importance 
level higher than 0.01 were safety hook-related; they confirm the 
importance of safety hook-related movements for the detection 
performance. 

Fig. 4. Confusion matrix for detecting workers at height.  

Fig. 5. Comparison of accuracy of classifier models.  
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The accuracy results of different types of features in the same RF 
machine learning model were comparatively analyzed. Fig. 9 compares 
the accuracy of the safety hook attachment detection model depending 
on the combinations of features. Accordingly, using only velocity fea
tures results in a higher accuracy than using only displacement features. 
Together with the previously presented analytical results, this finding 
confirms the significance of the correlation between the movements of 
the safety belt and safety hook. Fig. 8 also emphasizes the role of velocity 
features compared to that of displacement features. Because of the 
essential role of the correlation of velocity features, velocity-only 

training (rather than displacement-only training) resulted in higher 
model accuracy. 

Wearing too many sensors can cause workers at actual construction 
sites to feel uncomfortable [95,96]. Using the minimum number of 
sensors can save money and time and is more practical at construction 
sites [43]. For example, when the number of modules (either one or two) 
has no effect on the performance of the model, using only one module is 
better. However, Fig. 10 shows that using only one module results in 
poorer performance than the model proposed in this study; thus, the 
safety belt and safety hook require two modules to assess the fastening 

Fig. 6. Precision and recall of random forest (RF) model with optimal hyperparameter.  

Fig. 7. Effect of filters on accuracy of identifying work at height.  
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state of safety hooks of workers at height. Fig. 8 demonstrates that the 
correlation between the safety belt and safety hook cannot be empha
sized enough; the use of both modules is indispensable. Furthermore, 
using only the safety hook module yielded higher accuracy than using 
only the safety belt module when detecting the fastening state of safety 
hooks. In Fig. 8, among the features that rank within the top 39, the 
features extracted from the hook module are more important than the 
ones extracted from the belt module. Thus, the hook module can be more 
helpful for detecting the fastening state of the safety hook because when 
the latter is securely attached, it rarely moves and when it is not 

attached, it moves much, such as the safety belt. This also implies that 
the movements of workers alone cannot help in the accurate detection of 
the fastening state of safety hooks. 

4.3. Validation method 

Ten-fold cross-validation, which is the most widely used method for 
the validation of machine learning classification, classifies data into ten 
folds. Nine folds are used for training, and the remaining fold is reserved 
for cross-validation, thereby increasing the possibility for the data of all 

Fig. 8. Feature importance levels of RF models.  

Fig. 9. Comparison of accuracy results of different features.  
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subjects to be included in the training set [97]. Thus, the evaluation of 
models through k-fold cross-validation cannot ensure independence 
among subjects [89]. Because subject-specific body movements (e.g., 
the physical condition, motion, and posture) vary even for the same task 
[98,36], between-subject independence must be considered. By 
contrast, when LOSOCV is employed to evaluate the performance with 
one subject as a test set and the remaining subjects as training data, the 
accuracy of models for new subjects can be measured. This method 
considers variations in subject-specific characteristics when evaluating 
the performance of models and can, thus, assess the model’s generaliz
ability. We thoroughly reviewed previous studies [including those of 
Bangaru et al. [90], Lee et al. [33], Roberts et al. [99], and Wang et al. 
[100]] to check whether they confirm the validity of LOSOCV so that the 
models designed to classify the activities of construction workers can 
accept new subjects. Based on these considerations, LOSOCV was used 
for model evaluation (rather than the widely used k-fold cross-validation 
method) to determine the validity of the models developed to monitor 
and detect the fastening states of safety hooks of newly added con
struction workers during different tasks. Fig. 11 compares the evaluation 

method with k-fold cross-validation and the LOSOCV method used in 
this study. Evidently, the evaluation method using 10-fold cross- 
validation reaches 100% accuracy as the window size increases, 
whereas the accuracy of LOSOCV gradually decreases after achieving 
the highest accuracy. Thus, the safety hook attachment detection model 
developed in this study could have overfitted and overestimated the 
results if it had been combined with 10-fold cross-validation. The per
formance of the detection model with LOSOCV does not exhibit over
fitting and overestimation for the fastening states of safety hooks of a 
wide array of workers. 

To reiterate, the model proposed in this study can detect workers at 
height whose safety hooks are not fastened with 86.4% accuracy, which 
is comparable to the results obtained in previous studies (Khan et al. 
[102]: 99.8%, Lee et al. [103]: 96.58%, Song et al. [101]: 90.64%) on 
detecting the status of safety hooks. Considering that the results in this 
study were obtained using LOSOCV, the generalizability of the model in 
terms of adding new subjects is validated, and the level of accuracy 
achieved demonstrates the model’s advancement. 

Fig. 10. Comparison of accuracy of RF models by module change.  

Fig. 11. Comparison between leave-one-subject-out cross-validation (LOSOCV) and 10-fold cross-validation methods.  

H. Choo et al.                                                                                                                                                                                                                                    



Automation in Construction 147 (2023) 104714

13

4.4. Limitations and future works 

We conducted a series of experiments under different working con
ditions by using mobile scaffolds and ladders for work at height and 
horse scaffolds and ground level work for work at a lower level. At actual 
construction sites, other types of work at height are performed, 
including work on mobile elevated work platforms and high-rise steel 
construction. In addition, we did not cover the case in which the safety 
hook is not attached to any point, for example, when it is lying on the 
floor, because such a case rarely occurs at construction sites. Therefore, 
more elaborate designs are required to extend the system’s applicability 
for identifying a wider range of construction tasks in different con
struction environments. Regarding the field experiments at the con
struction site, the employed non-construction workers do not have 
enough experience regarding work at height. To generalize the model, 
further research is required to compile datasets from construction 
workers who have more experience. Last, the optimal window size of 30 
s results in a 7.5 s time delay between the fastening state of the safety 
hook and model output. Considering that a worker at a site usually 
maintains a specific task for at least a few minutes [109], the time delay 
may not be a critical issue in monitoring the fastening state of the safety 
hook. However, further study, such as moving the window with a 1s 
shift, is required to detect unfastening or improper fastening of the 
safety hook immediately. Nonetheless, the results of the safety hook 
attachment detection system and its framework can prevent safety ac
cidents, in particular, FFH. We believe that our detection system will be 
useful for the existing body of knowledge on FFH prevention in the 
construction industry. 

5. Conclusion 

We developed a safety monitoring system with IMU and barometer 
sensors to identify workers at height and the fastening state of safety 
hooks at complex and dynamic construction sites in real time. To verify 
the applicability of the developed safety monitoring system for practical 
use at construction sites, field experiments were conducted under 
different working conditions. Workers working at height were identified 
based on the atmospheric pressure and acceleration and gyroscopic 
signals from the IMU and barometer sensors that were attached to the 
workers. The fastening states of the safety hooks were determined with 
acceleration signals from the IMU sensor. The system with the rule- 
based approach identified workers at height with 96% accuracy. Ac
cording to the performance evaluation of the safety hook attachment 
detection model (RF hyperparameter tuning) with LOSOCV, the model 
accuracy reached 86%. Thus, the performance of the model can be 
evaluated for new subjects, and the model can be used for different 
workers under different working conditions. Finally, the accuracy of the 
safety monitoring system (which combines the worker-at-height iden
tification system with the safety hook attachment detection system) was 
83%, which is high enough for efficient use in practice. This system 
enables on-site safety supervisors to monitor and detect improper 
fastening or unfastening actions of safety hooks by workers at height and 
to take necessary precautions to prevent FFH fatalities. 

Declaration of Competing Interest 

Byungjoo Choi reports financial support was provided by National 
Research Foundation of Korea. 

Data availability 

I have shared the link to the data in the manuscript. 

Acknowledgement 

This work was supported by the National Research Foundation of 

Korea (NFR) grant founded by the Korea Government (MSTI) 
(No.2020R1G1A1004797). The authors wish to thank their industry 
partners for their help in data collection, as well as anonymous partic
ipants who participated in the data collection. 

References 

[1] B. Choi, S. Lee, The psychological mechanism of construction workers’ safety 
participation: The social identity theory perspective, J. Saf. Res. 82 (2022) 
194–206, https://doi.org/10.1016/j.jsr.2022.05.011. 

[2] B. Choi, S. Ahn, S. Lee, Construction workers’ group norms and personal 
standards regarding safety behavior: Social identity theory perspective, J. Manag. 
Eng. 33 (4) (2017) 04017001, https://doi.org/10.1061/(ASCE)ME.1943- 
5479.0000511. 

[3] B. Choi, H. Jebelli, S. Lee, Feasibility analysis of electrodermal activity (EDA) 
acquired from wearable sensors to assess construction workers’ perceived risk, 
Saf. Sci. 115 (2019) (2019) 110–120, https://doi.org/10.1016/j. 
ssci.2019.01.022. 

[4] J. Seo, S. Han, S. Lee, H. Kim, Computer vision techniques for construction safety 
and health monitoring, Adv. Eng. Inform. 29 (2) (2015) 239–251, https://doi. 
org/10.1016/j.aei.2015.02.001. 

[5] U.S. Bureau of Labor Statistics (BLS), Table a-1. Fatal Occupational Injuries by 
Industry and Event or Exposure, All United States, 2020. https://www.bls.gov/ 
iif/oshwc/cfoi/cftb0340.htm, 2021 (Accessed: Mar. 12, 2022). 

[6] U.S. Bureau of Labor Statistics (BLS), Fatal and Nonfatal Falls, Slips, and Trips in 
the Construction Industry, 2020. www.bls.gov/opub/ted/2021/fatal-and- 
nonfatal-falls-slips-and-trips-in-the-construction-719, 2021 (Accessed: Mar. 12, 
2022). 

[7] W. Umer, H. Li, W. Lu, G.P.Y. Szeto, A.Y. Wong, Development of a tool to monitor 
static balance of construction workers for proactive fall safety management, 
Autom. Constr. 94 (2018) 438–448, https://doi.org/10.1016/j. 
autcon.2018.07.024. 

[8] K. Yang, C.R. Ahn, M.C. Vuran, H. Kim, Collective sensing of workers’ gait 
patterns to identify fall hazards in construction, Autom. Constr. 82 (2017) 
166–178, https://doi.org/10.1016/j.autcon.2017.04.010. 

[9] T.S. Abdelhamid, J.G. Everett, Identifying root causes of construction accidents, 
J. Constr. Eng. Manag. 126 (1) (2000) 52–60, https://doi.org/10.1061/(ASCE) 
0733-9364(2000)126:1(52). 

[10] Y. Khosravi, H. Asilian-Mahabadi, E. Hajizadeh, N. Hassanzadeh-Rangi, 
H. Bastani, A.H. Behzadan, Factors influencing unsafe behaviors and accidents on 
construction sites: A review, Int. J. Occup. Saf. Ergon. 20 (1) (2014) 111–125, 
https://doi.org/10.1080/10803548.2014.11077023. 

[11] M. Shin, H.-S. Lee, M. Park, M. Moon, S. Han, A system dynamics approach for 
modeling construction workers’ safety attitudes behaviors, Accid. Anal. Prev. 68 
(2014) 95–105, https://doi.org/10.1016/j.aap.2013.09.019. 

[12] J. Reason, Human error, Camb. Univ. Press (1990), https://doi.org/10.1017/ 
CBO9781139062367. 

[13] M. Khan, R. Khalid, S. Anjum, N. Khan, S. Cho, C. Park, Tag and IoT based safety 
hook monitoring for prevention of falls from height, Autom. Constr. 136 (2022), 
104153, https://doi.org/10.1016/j.autcon.2022.104153. 

[14] M. Loosemore, N. Malouf, Safety training and positive safety attitude formation in 
the australian construction industry, Saf. Sci. 113 (2019) 233–243, https://doi. 
org/10.1016/j.ssci.2018.11.029. 

[15] K. Yang, C.R. Ahn, M.C. Vuran, S.S. Aria, Semi-supervised near miss fall detection 
for ironworkers with a wearable inertial measurement unit, Autom. Constr. 68 
(2016) 194–202, https://doi.org/10.1016/j.autcon.2016.04.007. 

[16] T.K.M. Wong, S.S. Man, A.H.S. Chan, Critical factors for the use or non-use of 
personal protective equipment amongst construction workers, Saf. Sci. 126 
(2020), 104663, https://doi.org/10.1016/j.ssci.2020.104663. 

[17] W. Fang, L. Ding, H. Luo, P.E. Love, Falls from heights: A computer vision-based 
approach for safety harness detection, Autom. Constr. 91 (2018) 53–61, https:// 
doi.org/10.1016/j.autcon.2018.02.018. 

[18] X.S. Dong, J.A. Largay, S.D. Choi, X. Wang, C.T. Cain, N. Romano, Fatal falls and 
PFAS use in the construction industry: Findings from the NIOSH FACE reports, 
Accid. Anal. Prev. 102 (2017) 136–143, https://doi.org/10.1016/j. 
aap.2017.02.028. 

[19] C.-F. Chi, T.-C. Chang, H.-I. Ting, Accident patterns and prevention measures for 
fatal occupational falls in the construction industry, Appl. Ergon. 36 (4) (2005) 
391–400, https://doi.org/10.1016/j.apergo.2004.09.011. 

[20] J.M. Gomez-de Gabriel, J.A. Fernandez-Madrigal, A. Lopez-Arquillos, J.C. Rubio- 
Romero, Monitoring harness use in construction with BLE beacons, Measurement 
131 (2019) 329–340, https://doi.org/10.1016/j.measurement.2018.07.093. 

[21] M.-W. Park, N. Elsafty, Z. Zhu, Hardhat-wearing detection for enhancing on-site 
safety of construction workers, J. Constr. Eng. Manag. 141 (9) (2015) 04015024, 
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000974. 

[22] Y. Piao, W. Xu, T.-K. Wang, J.-H. Chen, Dynamic fall risk assessment framework 
for construction workers based on dynamic Bayesian network and computer 
vision, J. Constr. Eng. Manag. 147 (12) (2021) 04021171, https://doi.org/ 
10.1061/(ASCE)CO.1943-7862.0002200. 

[23] H. Li, X. Yang, M. Skitmore, F. Wang, P. Forsythe, Automated classification of 
construction site hazard zones by crowd-sourced integrated density maps, Autom. 
Constr. 81 (2017) 328–339, https://doi.org/10.1016/j.autcon.2017.04.007. 

H. Choo et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jsr.2022.05.011
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000511
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000511
https://doi.org/10.1016/j.ssci.2019.01.022
https://doi.org/10.1016/j.ssci.2019.01.022
https://doi.org/10.1016/j.aei.2015.02.001
https://doi.org/10.1016/j.aei.2015.02.001
https://www.bls.gov/iif/oshwc/cfoi/cftb0340.htm
https://www.bls.gov/iif/oshwc/cfoi/cftb0340.htm
http://www.bls.gov/opub/ted/2021/fatal-and-nonfatal-falls-slips-and-trips-in-the-construction-719
http://www.bls.gov/opub/ted/2021/fatal-and-nonfatal-falls-slips-and-trips-in-the-construction-719
https://doi.org/10.1016/j.autcon.2018.07.024
https://doi.org/10.1016/j.autcon.2018.07.024
https://doi.org/10.1016/j.autcon.2017.04.010
https://doi.org/10.1061/(ASCE)0733-9364(2000)126:1(52)
https://doi.org/10.1061/(ASCE)0733-9364(2000)126:1(52)
https://doi.org/10.1080/10803548.2014.11077023
https://doi.org/10.1016/j.aap.2013.09.019
https://doi.org/10.1017/CBO9781139062367
https://doi.org/10.1017/CBO9781139062367
https://doi.org/10.1016/j.autcon.2022.104153
https://doi.org/10.1016/j.ssci.2018.11.029
https://doi.org/10.1016/j.ssci.2018.11.029
https://doi.org/10.1016/j.autcon.2016.04.007
https://doi.org/10.1016/j.ssci.2020.104663
https://doi.org/10.1016/j.autcon.2018.02.018
https://doi.org/10.1016/j.autcon.2018.02.018
https://doi.org/10.1016/j.aap.2017.02.028
https://doi.org/10.1016/j.aap.2017.02.028
https://doi.org/10.1016/j.apergo.2004.09.011
https://doi.org/10.1016/j.measurement.2018.07.093
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000974
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002200
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002200
https://doi.org/10.1016/j.autcon.2017.04.007


Automation in Construction 147 (2023) 104714

14

[24] M. Liu, L. Xu, P.-C. Liao, Character-based hazard warning mechanics: A network 
of networks approach, Adv. Eng. Inform. 47 (2021), 101240, https://doi.org/ 
10.1016/j.aei.2020.101240. 

[25] M. Niu, R.M. Leicht, S. Rowlinson, Developing safety climate indicators in a 
construction working environment, Pract. Period. Struct. Des. Constr. 22 (4) 
(2017) 04017019, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000340. 

[26] X. Xing, B. Zhong, H. Luo, T. Rose, J. Li, M.F. Antwi-Afari, Effects of physical 
fatigue on the induction of mental fatigue of construction workers: A pilot study 
based on a neurophysiological approach, Autom. Constr. 120 (2020), 103381, 
https://doi.org/10.1016/j.autcon.2020.103381. 

[27] T. Cheng, J. Teizer, Real-time resource location data collection and visualization 
technology for construction safety and activity monitoring applications, Autom. 
Constr. 34 (2013) 3–15, https://doi.org/10.1016/j.autcon.2012.10.017. 

[28] M.J. Skibniewski, Information technology applications in construction safety 
assurance, J. Civ. Eng. Manag. 20 (6) (2014) 778–794, https://doi.org/10.3846/ 
13923730.2014.987693. 

[29] M. Zhang, T. Cao, X. Zhao, Applying sensor-based technology to improve 
construction safety management, Sensors 17 (8) (2017) 1841, https://doi.org/ 
10.3390/s17081841. 

[30] M. Zhang, S. Chen, X. Zhao, Z. Yang, Research on construction workers’ activity 
recognition based on smartphone, Sensors 18 (8) (2018) 2667, https://doi.org/ 
10.3390/s18082667. 

[31] C.R. Ahn, S. Lee, C. Sun, H. Jebelli, K. Yang, B. Choi, Wearable sensing technology 
applications in construction safety and health, J. Constr. Eng. Manag. 145 (11) 
(2019) 03119007, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001708. 

[32] L. Chen, J. Hoey, C.D. Nugent, D.J. Cook, Z. Yu, Sensor-based activity 
recognition, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42 (6) (2012) 
790–808, https://doi.org/10.1109/TSMCC.2012.2198883. 

[33] G. Lee, B. Choi, H. Jebelli, C.R. Ahn, S. Lee, Noise reference signal–based 
denoising method for EDA collected by multimodal biosensor wearable in the 
field, J. Comput. Civ. Eng. 34 (6) (2020) 04020044, https://doi.org/10.1061/ 
(ASCE)CP.1943-5487.0000927. 

[34] J. Kim, S. Chi, J. Seo, Interaction analysis for vision-based activity identification 
of earthmoving excavators and dump trucks, Autom. Constr. 87 (2018) 297–308, 
https://doi.org/10.1016/j.autcon.2017.12.016. 

[35] D. Kim, M. Liu, S. Lee, V.R. Kamat, Remote proximity monitoring between mobile 
construction resources using camera-mounted UAVs, Autom. Constr. 99 (2019) 
168–182, https://doi.org/10.1016/j.autcon.2018.12.014. 

[36] X. Yan, H. Li, A.R. Li, H. Zhang, Wearable IMU-based real-time motion warning 
system for construction workers’ musculoskeletal disorders prevention, Autom. 
Constr. 74 (2017) 2–11, https://doi.org/10.1016/j.autcon.2016.11.007. 

[37] Y. Yu, H. Li, X. Yang, L. Kong, X. Luo, A.Y. Wong, An automatic and non-invasive 
physical fatigue assessment method for construction workers, Autom. Constr. 103 
(2019) 1–12, https://doi.org/10.1016/j.autcon.2019.02.020. 

[38] D. Liu, Z. Jin, J. Gambatese, Scenarios for integrating IPS–IMU system with BIM 
technology in construction safety control, Pract. Period. Struct. Des. Constr. 25 
(1) (2020) 05019007, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000465. 

[39] H. Ye, K. Dong, T. Gu, Himeter: Telling you the height rather than the altitude, 
Sensors 18 (6) (2018) 1712, https://doi.org/10.3390/s18061712. 

[40] J. Chen, C.R. Ahn, S. Han, Detecting the hazards of lifting and carrying in 
construction through a coupled 3D sensing and IMUs sensing system, in: 2014 
International Conference on Computing in Civil Engineering, 2014, 
pp. 1110–1117, https://doi.org/10.1061/9780784413616.138. 

[41] T. Cheng, G.C. Migliaccio, J. Teizer, U.C. Gatti, Data fusion of real-time location 
sensing and physiological status monitoring for ergonomics analysis of 
construction workers, J. Comput. Civ. Eng. 27 (3) (2013) 320–335, https://doi. 
org/10.1061/(ASCE)CP.1943-5487.0000222. 

[42] H. Jebelli, C.R. Ahn, T.L. Stentz, Fall risk analysis of construction workers using 
inertial measurement units: Validating the usefulness of the postural stability 
metrics in construction, Saf. Sci. 84 (2016) 161–170, https://doi.org/10.1016/j. 
ssci.2015.12.012. 

[43] L. Sanhudo, D. Calvetti, J.P. Martins, N.M. Ramos, P. Meda, M.C. Goncalves, 
H. Sousa, Activity classification using accelerometers and machine learning for 
complex construction worker activities, J. Build. Eng. 35 (2021), 102001, https:// 
doi.org/10.1016/j.jobe.2020.102001. 

[44] J. Park, K. Kim, Y.K. Cho, Framework of automated construction safety 
monitoring using cloud-enabled BIM and BLE mobile tracking sensors, J. Constr. 
Eng. Manag. 143 (2) (2017) 05016019, https://doi.org/10.1061/(ASCE) 
CO.1943-7862.0001223. 

[45] L. Yang, A. Shami, On hyperparameter optimization of machine learning 
algorithms: Theory and practice, Neurocomputing 415 (2020) 295–316, https:// 
doi.org/10.1016/j.neucom.2020.07.061. 

[46] Z. Wang, Y. Wu, L. Yang, A. Thirunavukarasu, C. Evison, Y. Zhao, Fast personal 
protective equipment detection for real construction sites using deep learning 
approaches, Sensors 21 (10) (2021) 3478, https://doi.org/10.3390/s21103478. 

[47] J. Wu, N. Cai, W. Chen, H. Wang, G. Wang, Automatic detection of hardhats worn 
by construction personnel: A deep learning approach and benchmark dataset, 
Autom. Constr. 106 (2019), 102894, https://doi.org/10.1016/j. 
autcon.2019.102894. 

[48] R. Xiong, P. Tang, Pose guided anchoring for detecting proper use of personal 
protective equipment, Autom. Constr. 130 (2021), 103828, https://doi.org/ 
10.1016/j.autcon.2021.103828. 

[49] M. Khan, R. Khalid, S. Anjum, N. Khan, S. Cho, C. Park, Fall prevention from 
scaffolding using computer vision and IoT-based monitoring, J. Constr. Eng. 
Manag. 148 (7) (2022) 04022051, https://doi.org/10.1061/(ASCE)CO.1943- 
7862.0002278. 

[50] Occupational Safety and Health Administration (OSHA), Duty to Have Fall 
Protection. https://www.osha.gov/lawsregs/regulations/standardnumber/1926/ 
1926.501, 1995 (Accessed: Mar. 12, 2022). 

[51] Korea Occupational Safety and Health Agency (KOSHA), Rules on Occupational 
Safety and Health Standards. https://www.law.go.kr/, 2021 (Accessed: Mar. 12, 
2022). 

[53] C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, Detecting outliers: Do not use 
standard deviation around the mean, use absolute deviation around the median, 
J. Exp. Soc. Psychol. 49 (4) (2013) 764–766, https://doi.org/10.1016/j. 
jesp.2013.03.013. 

[54] S. Aroni, R.A. Marino, K.S. Girven, J.M. Irving, J.F. Cheer, D.R. Sparta, Repeated 
binge ethanol drinking enhances electrical activity of central amygdala 
corticotropin releasing factor neurons in vivo, Neuropharmacology 189 (2021), 
108527, https://doi.org/10.1016/j.neuropharm.2021.108527. 

[55] X. Zhao, S. Barber, C.C. Taylor, Z. Milan, Classification tree methods for panel 
data using wavelet-transformed time series, Comput. Stat. Data Anal. 127 (2018) 
204–216, https://doi.org/10.1016/j.csda.2018.05.019. 

[56] H.-G. Min, J.-H. Yoon, J.-H. Kim, S.-H. Kwon, E.-T. Jeung, Design of 
Complementary Filter using Least Square Method, J. Inst. Control Robot. Syst. 17 
(20) (2011) 125–130, https://doi.org/10.5302/j.icros.2011.17.2.125. 

[57] J.K. Lee, A two-step Kalman/complementary filter for estimation of vertical 
position using an IMU-barometer system, J. Sensor Sci. Technol. 25 (3) (2016) 
202–207, https://doi.org/10.5369/JSST.2016.25.3.202. 

[58] T. Zhang, Y. Liao, Attitude measure system based on extended Kalman filter for 
multi-rotors, Comput. Electron. Agric. 134 (2017) 19–26, https://doi.org/ 
10.1016/j.compag.2016.12.021. 

[59] S. Wei, G. Dan, H. Chen, Altitude data fusion utilising differential measurement 
and complementary filter, IET Sci. Meas. Technol. 10 (8) (2016) 874–879, 
https://doi.org/10.1049/iet-smt.2016.0118. 

[60] Korea Statistical Information Service (KOSIS), Distribution of Average Height of 
Gender by Age by City and Province: General. https://kosis.kr/, 2021 (Accessed: 
Mar. 12, 2022). 

[61] M.F. Antwi-Afari, H. Li, Fall risk assessment of construction workers based on 
biomechanical gait stability parameters using wearable insole pressure system, 
Adv. Eng. Inform. 38 (2018) 683–694, https://doi.org/10.1016/j. 
aei.2018.10.002. 

[62] R. Akhavian, A.H. Behzadan, Smartphone-based construction workers’ activity 
recognition and classification, Autom. Constr. 71 (2016) 198–209, https://doi. 
org/10.1016/j.autcon.2016.08.015. 

[63] M.F. Antwi-Afari, H. Li, Y. Yu, L. Kong, Wearable insole pressure system for 
automated detection and classification of awkward working postures in 
construction workers, Autom. Constr. 96 (2018) 433–441, https://doi.org/ 
10.1016/j.autcon.2018.10.004. 

[64] M.F. Antwi-Afari, H. Li, J. Seo, A.Y.L. Wong, Automated detection and 
classification of construction workers’ loss of balance events using wearable 
insole pressure sensors, Autom. Constr. 96 (2018) 189–199, https://doi.org/ 
10.1016/j.autcon.2018.09.010. 

[65] M.F. Antwi-Afari, H. Li, W. Umer, Y. Yu, X. Xing, Construction activity 
recognition and ergonomic risk assessment using a wearable insole pressure 
system, J. Constr. Eng. Manag. 146 (7) (2020) 04020077, https://doi.org/ 
10.1061/(ASCE)CO.1943-7862.0001849. 

[66] Y. Wang, Y. Zhang, Y. Lu, X. Yu, A comparative assessment of credit risk model 
based on machine learning——a case study of bank loan data, Proc. Comput. Sci 
174 (2020) 141–149, https://doi.org/10.1016/j.procs.2020.06.069. 

[67] M.A. Friedl, C.E. Brodley, Decision tree classification of land cover from remotely 
sensed data, Remote Sens. Environ. 61 (3) (1997) 399–409, https://doi.org/ 
10.1016/S0034-4257(97)00049-7. 

[68] D. Muhajir, M. Akbar, A. Bagaskara, R. Vinarti, Improving classification 
algorithm on education dataset using hyperparameter tuning, Proc. Comput. Sci 
197 (2022) 538–544, https://doi.org/10.1016/j.procs.2021.12.171. 

[69] A.D. Dolatabadi, S.E.Z. Khadem, B.M. Asl, Automated diagnosis of coronary 
artery disease (CAD) patients using optimized SVM, Comput. Methods Prog. 
Biomed. 138 (2017) 117–126, https://doi.org/10.1016/j.cmpb.2016.10.011. 

[70] W. Wang, Z. Xu, W. Lu, X. Zhang, Determination of the spread parameter in the 
Gaussian kernel for classification and regression, Neurocomputing 55 (3-4) 
(2003) 643–663, https://doi.org/10.1016/S0925-2312(02)00632-X. 

[71] S. Suthaharan, Support vector machine, in: Machine Learning Models and 
Algorithms for Big Data Classification. Integrated Series in Information Systems 
36, Springer, Boston, MA, 2016, https://doi.org/10.1007/978-1-4899-7641-3_9. 

[72] S.S. Keerthi, C.-J. Lin, Asymptotic behaviors of support vector machines with 
Gaussian kernel, Neural Comput. 15 (7) (2003) 1667–1689, https://doi.org/ 
10.1162/089976603321891855. 

[73] S. Shakerian, M. Habibnezhad, A. Ojha, G. Lee, Y. Liu, H. Jebelli, S. Lee, Assessing 
occupational risk of heat stress at construction: A worker-centric wearable sensor- 
based approach, Saf. Sci. 142 (2021), 105395, https://doi.org/10.1016/j. 
ssci.2021.105395. 

[74] A. Liaw, M. Wiener, Classification and regression by randomforest, R News 2 
(2002) 18–22. https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf. 

[75] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[76] A.M. Prasad, L.R. Iverson, A. Liaw, Newer classification and regression tree 
techniques: bagging and random forests for ecological prediction, Ecosystems 9 
(2006) 181–199, https://doi.org/10.1007/s10021-005-0054-1. 

[77] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: 
Proceedings of the Thirteenth International Conference on International 
Conference on Machine Learning, 1996, pp. 148–156 (ISBN: 978-1-55860-419-3). 

H. Choo et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.aei.2020.101240
https://doi.org/10.1016/j.aei.2020.101240
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000340
https://doi.org/10.1016/j.autcon.2020.103381
https://doi.org/10.1016/j.autcon.2012.10.017
https://doi.org/10.3846/13923730.2014.987693
https://doi.org/10.3846/13923730.2014.987693
https://doi.org/10.3390/s17081841
https://doi.org/10.3390/s17081841
https://doi.org/10.3390/s18082667
https://doi.org/10.3390/s18082667
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001708
https://doi.org/10.1109/TSMCC.2012.2198883
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000927
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000927
https://doi.org/10.1016/j.autcon.2017.12.016
https://doi.org/10.1016/j.autcon.2018.12.014
https://doi.org/10.1016/j.autcon.2016.11.007
https://doi.org/10.1016/j.autcon.2019.02.020
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000465
https://doi.org/10.3390/s18061712
https://doi.org/10.1061/9780784413616.138
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000222
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000222
https://doi.org/10.1016/j.ssci.2015.12.012
https://doi.org/10.1016/j.ssci.2015.12.012
https://doi.org/10.1016/j.jobe.2020.102001
https://doi.org/10.1016/j.jobe.2020.102001
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001223
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001223
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.3390/s21103478
https://doi.org/10.1016/j.autcon.2019.102894
https://doi.org/10.1016/j.autcon.2019.102894
https://doi.org/10.1016/j.autcon.2021.103828
https://doi.org/10.1016/j.autcon.2021.103828
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002278
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002278
https://www.osha.gov/lawsregs/regulations/standardnumber/1926/1926.501
https://www.osha.gov/lawsregs/regulations/standardnumber/1926/1926.501
https://www.law.go.kr/
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1016/j.neuropharm.2021.108527
https://doi.org/10.1016/j.csda.2018.05.019
https://doi.org/10.5302/j.icros.2011.17.2.125
https://doi.org/10.5369/JSST.2016.25.3.202
https://doi.org/10.1016/j.compag.2016.12.021
https://doi.org/10.1016/j.compag.2016.12.021
https://doi.org/10.1049/iet-smt.2016.0118
https://kosis.kr/
https://doi.org/10.1016/j.aei.2018.10.002
https://doi.org/10.1016/j.aei.2018.10.002
https://doi.org/10.1016/j.autcon.2016.08.015
https://doi.org/10.1016/j.autcon.2016.08.015
https://doi.org/10.1016/j.autcon.2018.10.004
https://doi.org/10.1016/j.autcon.2018.10.004
https://doi.org/10.1016/j.autcon.2018.09.010
https://doi.org/10.1016/j.autcon.2018.09.010
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001849
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001849
https://doi.org/10.1016/j.procs.2020.06.069
https://doi.org/10.1016/S0034-4257(97)00049-7
https://doi.org/10.1016/S0034-4257(97)00049-7
https://doi.org/10.1016/j.procs.2021.12.171
https://doi.org/10.1016/j.cmpb.2016.10.011
https://doi.org/10.1016/S0925-2312(02)00632-X
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1162/089976603321891855
https://doi.org/10.1162/089976603321891855
https://doi.org/10.1016/j.ssci.2021.105395
https://doi.org/10.1016/j.ssci.2021.105395
https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10021-005-0054-1
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0385
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0385
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0385


Automation in Construction 147 (2023) 104714

15

[78] Y. Wu, Y. Ke, Z. Chen, S. Liang, H. Zhao, H. Hong, Application of alternating 
decision tree with adaboost and bagging ensembles for landslide susceptibility 
mapping, Catena 187 (2020), 104396, https://doi.org/10.1016/j. 
catena.2019.104396. 

[79] C. Ying, M. Qi-Guang, L. Jia-Chen, G. Lin, Advance and prospects of adaboost 
algorithm, Acta Automat. Sin. 39 (6) (2013) 745–758, https://doi.org/10.1016/ 
S1874-1029(13)60052-X. 

[80] P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, A. Brenning, Hyperparameter 
tuning and performance assessment of statistical and machine-learning 
algorithms using spatial data, Ecol. Model. 406 (2019) 109–120, https://doi.org/ 
10.1016/j.ecolmodel.2019.06.002. 

[81] L. Torre-Tojal, A. Bastarrika, A. Boyano, J.M. Lopez-Guede, Graña, M., Above- 
ground biomass estimation from lidar data using random forest algorithms, 
J. Comput. Sci. 58 (2022), 101517, https://doi.org/10.1016/j.jocs.2021.101517. 

[82] V.A. Dev, M.R. Eden, Formation lithology classification using scalable gradient 
boosted decision trees, Comput. Chem. Eng. 128 (2019) 392–404, https://doi. 
org/10.1016/j.compchemeng.2019.06.001. 

[83] K.-M. Osei-Bryson, Evaluation of decision trees: a multi-criteria approach, 
Comput. Oper. Res. 31 (11) (2004) 1933–1945, https://doi.org/10.1016/S0305- 
0548(03)00156-4. 

[84] R.G. Mantovani, A.L. Rossi, E. Alcobaca, J. Vanschoren, A.C. de Carvalho, A meta- 
learning recommender system for hyperparameter tuning: Predicting when 
tuning improves SVM classifiers, Inf. Sci. 501 (2019) 193–221, https://doi.org/ 
10.1016/j.ins.2019.06.005. 

[85] G. Battineni, N. Chintalapudi, F. Amenta, Machine learning in medicine: 
Performance calculation of dementia prediction by support vector machines 
(SVM), Informa. Med. Unlocked 16 (2019), 100200, https://doi.org/10.1016/j. 
imu.2019.100200. 

[86] E. Sevinc, An empowered adaboost algorithm implementation: A covid-19 dataset 
study, Comput. Ind. Eng. 165 (2022), 107912, https://doi.org/10.1016/j. 
cie.2021.107912. 

[87] T. Hastie, S. Rosset, J. Zhu, H. Zou, Multi-class adaboost, Statistics and Its, 
Interface 2 (2009) 349–360, https://doi.org/10.4310/SII.2009.v2.n3.a8. 

[88] A. Taherkhani, G. Cosma, T.M. McGinnity, Adaboost-CNN: An adaptive boosting 
algorithm for convolutional neural networks to classify multi-class imbalanced 
datasets using transfer learning, Neurocomputing 404 (2020) 351–366, https:// 
doi.org/10.1016/j.neucom.2020.03.064. 

[89] G. Lee, S. Lee, Importance of testing with independent subjects and contexts for 
machine-learning models to monitor construction workers’ psychophysiological 
responses, J. Constr. Eng. Manag. 148 (9) (2022) 04022082, https://doi.org/ 
10.1061/(ASCE)CO.1943-7862.0002341. 

[90] S.S. Bangaru, C. Wang, S.A. Busam, F. Aghazadeh, ANN-based automated scaffold 
builder activity recognition through wearable EMG and IMU sensors, Autom. 
Constr. 126 (2021), 103653, https://doi.org/10.1016/j.autcon.2021.103653. 

[91] D. Gholamiangonabadi, N. Kiselov, K. Grolinger, Deep neural networks for human 
activity recognition with wearable sensors: Leave one-subject-out cross validation 
for model selection, IEEE Access 8 (2020) 133982–133994, https://doi.org/ 
10.1109/ACCESS.2020.3010715. 

[92] M. Buckland, F. Gey, The relationship between recall and precision, J. Am. Soc. 
Inf. Sci. 45 (1) (1994) 12–19, https://doi.org/10.1002/(SICI)1097-4571(199401) 
45:1%3C12::AID-ASI2%3E3.0.CO;2-L. 

[93] J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A new 
perspective, Neurocomputing 300 (2018) 70–79, https://doi.org/10.1016/j. 
neucom.2017.11.077. 

[94] G. Wei, J. Zhao, Y. Feng, A. He, J. Yu, A novel hybrid feature selection method 
based on dynamic feature importance, Appl. Soft Comput. 93 (2020), 106337, 
https://doi.org/10.1016/j.asoc.2020.106337. 

[95] S. Chernbumroong, A.S. Atkins, H. Yu, Activity classification using a single wrist- 
worn accelerometer, in: Proceedings of the 5th International Conference on 
Software, Knowledge Information, Industrial Management and Applications 
(SKIMA), IEEE, 2011, pp. 1–6, https://doi.org/10.1109/SKIMA.2011.6089975. 

[96] B. Choi, S. Hwang, S. Lee, What drives construction workers’ acceptance of 
wearable technologies in the workplace?: Indoor localization and wearable health 
devices for occupational safety and health, Autom. Constr. 84 (2017) 31–41, 
https://doi.org/10.1016/j.autcon.2017.08.005. 

[97] J.-H. Kim, Estimating classification error rate: Repeated cross validation, repeated 
hold-out and bootstrap, Comput. Stat. Data Anal. 53 (11) (2009) 3735–3745, 
https://doi.org/10.1016/j.csda.2009.04.009. 

[98] E. Valero, A. Sivanathan, F. Bosche, M. Abdel-Wahab, Analysis of construction 
trade worker body motions using a wearable and wireless motion sensor network, 
Autom. Constr. 83 (2017) 48–55, https://doi.org/10.1016/j.autcon.2017.08.001. 

[99] D. Roberts, W. Torres Calderon, S. Tang, M. Golparvar-Fard, Vision based 
construction worker activity analysis informed by body posture, J. Comput. Civ. 
Eng. 34 (4) (2020) 04020017, https://doi.org/10.1061/(ASCE)CP.1943- 
5487.0000898. 

[100] M. Wang, Y. Zhao, P.-C. Liao, EEG-based work experience prediction using 
hazard recognition, Autom. Constr. 136 (2022), 104151, https://doi.org/ 
10.1016/j.autcon.2022.104151. 

[101] K.-S. Song, S. Kang, D.-G. Lee, Y.-H. Nho, J.-S. Seo, D.-S. Kwon, A motion 
similarity measurement method of two mobile devices for safety hook fastening 
state recognition, IEEE Access 10 (2022) 8804–8815, https://doi.org/10.1109/ 
ACCESS.2022.3144144. 

[102] M. Khan, R. Khalid, S. Anjum, N. Khan, C. Park, IMU based Smart safety hook for 
fall prevention at construction sites, in: Proceedings of the 2021 IEEE Region 10 
Symposium (TENSYMP), 2021, pp. 1–6, https://doi.org/10.1109/ 
TENSYMP52854.2021.9550944. 

[103] H. Lee, N. Kim, C.R. Ahn, Detecting hook attachments of a safety harness using 
inertial measurement unit sensors, in: Proceedings of the 38th International 
Symposium on Automation and Robotics in Construction, 2021, pp. 583–589 
(ISBN 978-952-69524-1-3). 

[104] CPWR Statistics, CPWR “Fatal and Nonfatal Injuries in Construction”. https 
://www.cpwr.com/research/data-center/data-dashboards/fatal-and-nonfatal 
-injuries-in-construction/ (accessed September 20, 2022). 

[105] O. Golovina, J. Teizer, K.W. Johansen, M. König, Towards autonomous cloud- 
based close call data management for construction equipment safety, Autom. 
Constr. 132 (2021), 103962, https://doi.org/10.1016/j.autcon.2021.103962. 

[106] X. Yang, Y. Yu, S. Shirowzhan, H. Li, Automated PPE-Tool pair check system for 
construction safety using smart IoT, J. Build. Eng. 32 (2020), 101721, https://doi. 
org/10.1016/j.jobe.2020.101721. 

[107] J. Zhao, E. Obonyo, G. Bilén, S., Wearable inertial measurement unit sensing 
system for musculoskeletal disorders prevention in construction, Sensors 21 (4) 
(2021) 1324, https://doi.org/10.3390/s21041324. 

[108] B. Choi, Automated detection of construction workers that work at height and 
fastening state of safety hooks with wearable sensors, Mendeley Data V1 (2022), 
https://doi.org/10.17632/bwdvdy96mb.1. 

[109] G. Lee, B. Choi, H. Jebelli, S. Lee, Assessment of construction workers’ perceived 
risk using physiological data from wearable sensors: A machine learning 
approach, J. Build. Eng. 42 (2021), 102824, https://doi.org/10.1016/j. 
jobe.2021.102824. 

H. Choo et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.catena.2019.104396
https://doi.org/10.1016/j.catena.2019.104396
https://doi.org/10.1016/S1874-1029(13)60052-X
https://doi.org/10.1016/S1874-1029(13)60052-X
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1016/j.jocs.2021.101517
https://doi.org/10.1016/j.compchemeng.2019.06.001
https://doi.org/10.1016/j.compchemeng.2019.06.001
https://doi.org/10.1016/S0305-0548(03)00156-4
https://doi.org/10.1016/S0305-0548(03)00156-4
https://doi.org/10.1016/j.ins.2019.06.005
https://doi.org/10.1016/j.ins.2019.06.005
https://doi.org/10.1016/j.imu.2019.100200
https://doi.org/10.1016/j.imu.2019.100200
https://doi.org/10.1016/j.cie.2021.107912
https://doi.org/10.1016/j.cie.2021.107912
https://doi.org/10.4310/SII.2009.v2.n3.a8
https://doi.org/10.1016/j.neucom.2020.03.064
https://doi.org/10.1016/j.neucom.2020.03.064
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002341
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002341
https://doi.org/10.1016/j.autcon.2021.103653
https://doi.org/10.1109/ACCESS.2020.3010715
https://doi.org/10.1109/ACCESS.2020.3010715
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1&percnt;3C12::AID-ASI2&percnt;3E3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1&percnt;3C12::AID-ASI2&percnt;3E3.0.CO;2-L
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.asoc.2020.106337
https://doi.org/10.1109/SKIMA.2011.6089975
https://doi.org/10.1016/j.autcon.2017.08.005
https://doi.org/10.1016/j.csda.2009.04.009
https://doi.org/10.1016/j.autcon.2017.08.001
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000898
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000898
https://doi.org/10.1016/j.autcon.2022.104151
https://doi.org/10.1016/j.autcon.2022.104151
https://doi.org/10.1109/ACCESS.2022.3144144
https://doi.org/10.1109/ACCESS.2022.3144144
https://doi.org/10.1109/TENSYMP52854.2021.9550944
https://doi.org/10.1109/TENSYMP52854.2021.9550944
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0515
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0515
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0515
http://refhub.elsevier.com/S0926-5805(22)00584-2/rf0515
https://www.cpwr.com/research/data-center/data-dashboards/fatal-and-nonfatal-injuries-in-construction/
https://www.cpwr.com/research/data-center/data-dashboards/fatal-and-nonfatal-injuries-in-construction/
https://www.cpwr.com/research/data-center/data-dashboards/fatal-and-nonfatal-injuries-in-construction/
https://doi.org/10.1016/j.autcon.2021.103962
https://doi.org/10.1016/j.jobe.2020.101721
https://doi.org/10.1016/j.jobe.2020.101721
https://doi.org/10.3390/s21041324
https://doi.org/10.17632/bwdvdy96mb.1
https://doi.org/10.1016/j.jobe.2021.102824
https://doi.org/10.1016/j.jobe.2021.102824

	Automated detection of construction work at heights and deployment of safety hooks using IMU with a barometer
	1 Introduction
	2 Methodology
	2.1 Collection of field data
	2.2 Data pre-processing
	2.3 Detection of work at height
	2.4 Detection of fastening state of safety hook

	3 Results
	4 Discussion
	4.1 Role of Kalman and complementary filters
	4.2 Feature importance of detection model for fastening state of safety hooks
	4.3 Validation method
	4.4 Limitations and future works

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


