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Abstract: About 40% of the US construction workforce experiences high-level fatigue, which leads
to poor judgment, increased risk of injuries, a decrease in productivity, and a lower quality of work.
Therefore, it is essential to monitor fatigue to reduce its adverse effects and prevent long-term
health problems. However, since fatigue demonstrates itself in several complex processes, there
is no single standard measurement method for fatigue detection. This study aims to develop a
system for continuous workers’ fatigue monitoring by predicting the aerobic fatigue threshold (AFT)
using forearm muscle activity and motion data. The proposed system consists of five modules:
Data acquisition, activity recognition, oxygen uptake prediction, maximum aerobic capacity (MAC)
estimation, and continuous AFT monitoring. The proposed system was evaluated on the participants
performing fourteen scaffold-building activities. The results show that the AFT features have achieved
a higher accuracy of 92.31% in assessing the workers’ fatigue level compared to heart rate (51.28%) and
percentage heart rate reserve (50.43%) features. Moreover, the overall performance of the proposed
system on unseen data using average two-min AFT features was 76.74%. The study validates the
feasibility of using forearm muscle activity and motion data to workers’ fatigue levels continuously.

Keywords: fatigue monitoring; construction labor shortage; muscle activity; activity recognition;
oxygen prediction; wearable sensor; aerobic fatigue threshold; scaffold building; work-related
musculoskeletal disorders

1. Introduction

The construction industry is one of the leading industries in the world, which spends
$10 trillion on construction-related goods and services annually [1]. However, the construc-
tion industry faces a massive workforce shortage of skilled craft workers [2]. More than
eight out of ten construction firms report having a hard time finding qualified workers. One
of the significant causes of workforce shortage is the premature retirement of skilled craft
workers due to safety and health issues. Due to a lack of proper safety training and moni-
toring systems, the construction workforce is exposed to fatal and non-fatal injuries such
as Work-related Musculoskeletal Disorders (WMSDs). According to the report released
by the International Labor Organization (ILO) in 2015, it was estimated that there are at
least 60,000 construction-related fatalities all over the world each year [3]. Similarly, in the
United States, 971 (18.9%) out of 5147 fatal injuries occurred in the construction industry in
2017, based on occupational injury reports released by the Bureau of Labor Statistics [4].
In addition, the estimated non-fatal injury rate in the construction industry was 5.3 cases
per 10,000 full-time workers in 2018 [5]. According to the 2018 Liberty Mutual Workplace
Safety Index, businesses spent more than one billion dollars per week for non-fatal severe
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workplace injuries. The high rate of non-fatal injuries in the construction industry is mainly
due to WMSDs. WMSDs are among construction workers’ most prevalent occupational
health problems due to highly labor-intensive construction tasks.

The construction industry often involves highly labor-intensive and repetitive tasks,
which results in worker physical fatigue. About 40% of the US construction workforce ex-
periences high-level fatigue, leading to poor judgment, increased risk of injuries, decreased
productivity, and a lower quality of work [6,7]. Further, excessive fatigue due to working in
unpleasant conditions, long working hours, and heavy workloads can aggravate fatigue’s
adverse effects and lead to WMSDs and productivity loss. Moreover, fatigue has been
shown to result in impairing physical and cognitive functions [8] and identified as a possi-
ble risk factor for slip-induced falls, which is one of the “fatal four” causes of fatalities in
the construction industry, according to Occupational Safety and Health Administration [9].

A significant number of craft workers (20% to 40%) routinely exceed generally accepted
physiological thresholds for manual work shifts [6]. Physical fatigue and impaired mental
capacity lead to a high risk of accidents in any environmental condition [10] and affects
workers’ safety performance [11]. Since physical fatigue is a predominant risk factor for
injuries and illnesses in the construction industry, it is essential to monitor fatigue to
reduce its adverse effects and prevent long-term health problems. However, since fatigue
demonstrates itself in several complex processes, there is no single standard measurement
method for fatigue detection. For example, if a specific physiological function is altered, it
only reflects the body’s adaptive behavior instead of the level of fatigue [12,13].

Moreover, overall physical fatigue is a result of the interaction between local (muscular
fatigue) and central factors (such as metabolic, cardiovascular, and thermoregulatory) [14].
Therefore, fatigue quantification typically involves a combination of kinematic and kinetic
measurements, often supplemented or substituted by physiological (body temperature,
heart rate, or muscle activity) and subjective measures (perceived exertion or discomfort).
Physical fatigue is always associated with a high workload as physical demand. The
evaluation of measured workloads involves two phases: assessment and evaluation. The
assessment phases involve measuring physiological response to work as a measure of
physical demand. The evaluation phase involves determining whether a task’s physical
demand (workload) is excessive and workers performing the task may suffer from physical
fatigue. The physical demand evaluation techniques include the classification of work
severity based on recommendations for oxygen uptake, energy expenditure, and heart rate
and the evaluation of physical fatigue based on aerobic fatigue threshold, absolute energy
expenditure, and heart rate limits [6].

Even though there is no gold standard for fatigue measurement, several subjective and
objective techniques are adapted for occupational use. The subjective evaluation of fatigue
involves workers’ feedback to the questionnaire, and several construction studies used
various fixed sets of questions and feedback scales related to fatigue [11,15–21]. However,
subjective assessments rely on workers’ internal perceptions, previous experiences and
interrupt the ongoing work. Furthermore, most of these measurement techniques are
cumbersome and impractical on construction sites, emphasizing the need for a continuous
fatigue monitoring system with minimal obstruction to construction tasks [10,22].

With advancements in wearable sensing technology, a few researchers have devel-
oped objective techniques using physiological sensors to assess the workers’ overall
physical fatigue by monitoring the physiological responses of the worker to physical
demand [10,13,22,23]. In recent studies, Jebelli, Choi and Lee [22] have recognized physical
demand during on-site work by training the machine learning model on workers’ pho-
toplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (ST) with
an energy expenditure of the task, which was determined using the Energy Expenditure
Prediction Program (EEPP). Aryal, Ghahramani and Becerik-Gerber [10] used skin temper-
ature and heart rate for fatigue detection based on workers’ ratings of perceived exertion.
Hwang and Lee [13] used heart rate reserve (%HRR) as a metric to distinguish different
levels of physical demand. Maman, et al. [24] have estimated the RPE fatigue level of
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an individual performing assembly, manual material handling, and supply pick-up tasks
using four inertial measurement units (IMU) attached to the human body. Even though
these studies have established the potential of physiological responses to determine the
worker’s physical demand for a long duration, they still have limitations, such as being
unable to identify the physical demand of individuals with different characteristics (such
as work experience, work conditions, age, and health status), previous studies are limited
to classifying individual physical demand based on work severity, not capable of continu-
ous workers’ fatigue level monitoring for multiple tasks performed in short intervals, the
measurements such as heart rate, skin temperature, and electrodermal activity are highly
influenced by external factors, which may not yield reliable results on construction sites,
and an inability to determine direct impacts of fatigue on construction activities. Moreover,
the previous studies focused on work severity classification rather than determining the
workers’ real-time physical fatigue.

To overcome these challenges or limitations, this study proposes an automated contin-
uous workers’ fatigue monitoring system by measuring aerobic fatigue threshold (AFT)
using forearm muscle activity and kinematic data for an activity. The aerobic fatigue
threshold has been for the proposed system because AFT is activity-dependent, which is
appropriate for construction. Unlike heart rate, electrodermal activity, and skin temper-
ature, which are highly influenced by external factors, the forearm muscle activity, and
kinematic data are activity specific. Since the proposed system is workers’ activity-centric,
it is highly suitable for construction workers’ fatigue monitoring as they are involved in
various labor-intensive tasks throughout the day.

2. Literature Review
2.1. Definition and Causes of Fatigue

Fatigue is a declination of a person’s ability to maintain a normal level of performance
and impaired mental alertness [25]. In general, fatigue is defined as a state of feeling tired,
sleepy, or weary and results from loss of sleep, an extended period of anxiety, exposure to
an adverse environment, and prolonged physical and mental work. The unidimensional
fatigue characterization usually describes it as mental and physical fatigue [26]. Mental
fatigue results in a decrease in cognitive and behavioral performance, whereas physical
fatigue leads to a decline in the capacity to perform physical activity [27]. Fatigue is
a complex phenomenon caused by various factors in the workplace and outside of the
workplace. Outside the workplace, the lack of restorative sleep is the most common cause
of fatigue. Whereas in the workplace, fatigue is caused due to excess physical and mental
workload. The workload refers to the work assigned to a worker, categorized into a
physical load, a metal load, and an environmental load [28]. The fatigue might be due to an
individual factor or a combination of interrelated factors. Figure 1 shows the work-related
causes of fatigue [29]. Moreover, physical fatigue is identified as localized muscular fatigue
and overall physical fatigue. Compared to localized muscular fatigue, overall physical
fatigue is challenging to quantify as it is caused by the interactions between local (muscular)
and central (metabolic, thermoregulatory, cardiovascular, etc.) factors.
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2.2. Current Approaches for Fatigue Measurement

Since the human body demonstrates physical fatigue in several ways, there exist
numerous ways to measure fatigue [30]. However, these methods are limited in application
since they are developed for specific contexts and purposes [31]. The fatigue measurement
methods adopted for occupational use can be broadly classified into subjective and objective
assessment techniques (Figure 2).
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Figure 2. Physical fatigue measurement methods.

Early attempts at measuring fatigue involve subjective assessment using a fixed
questionnaire related to physical and mental fatigue [32,33]. Several studies in construction
used different questionnaires and subjective feedback scales to quantify fatigue involved in
construction activities [11,20,21,31,34]. Fang, Jiang, Zhang and Wang [11] have developed
an experimental method to understand the effect of fatigue on construction workers’
safety performance where the authors used the Fatigue Assessment Scale for Construction
Workers (FASCW) developed by Zhang, Sparer, Murphy, Dennerlein, Fang, Katz and
Caban-Martinez [31] to determine the fatigue level. The experimental study has concluded
that above fatigue level 20, there was a linear relationship between workers’ fatigue and
error rate (a measure of safety performance). Mitropoulos and Memarian [20] used the
NASA Task load index (TLX) rating scale to determine the task demands in masonry work,
where NASA TLX measures mental load, physical load, temporal load, and performance
of the worker in a particular task. Measuring the TLX index facilitated the determination
of various factors, such as task features, supervisor practices, and work conditions, which
yield high task demands [20]. Chan, Yi, Wong, Yam and Chan [21] used the Physiological
Strain Index (PSI) to determine the recovery time after the fatigue state, which was identified
by the ratings of perceived exertion (RPE) using the Borg CR10 Scale. Yi, Chan, Wang
and Wang [34] developed an early-warning system to monitor workers’ heat-strain levels
when working in a hot and humid environment using subjective index perception rating of
perceived exertion (RPE) and artificial neural network (ANN). The ANN-based prediction
model in the early-warning system uses wet bulb globe temperature (WBGT), age, BMI,
job nature, work duration, alcohol drinking habit, and smoking habit as input features to
predict RPE to monitor workers’ heat-strain level. However, subjective fatigue assessment
has two significant limitations for the field. First, the feedback assessment is strongly biased
due to the workers’ internal perceptions, ethics, and socioeconomic backgrounds [31].
Second, the subjective feedback collection on construction sites by stopping the worker
while performing a task is cumbersome and not practical.

The objective measurement of overall physical fatigue involves quantifying workers’
physiological processes and kinematic data. The physiological processes involve heart rate,
energy consumption, oxygen consumption, and EMG activity, whereas the kinematic data
includes the body motion data collected using motion capture systems such as kinetic cam-
era and inertial measurement unit sensors (IMUs). Optoelectrical measurement systems are
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considered the gold standard for body motion analysis within a research setting. However,
due to the high cost, large installation spaces, and extensive post-processing of optoelectri-
cal measurement systems, IMU sensors are widely used for full-body motion data collection.
The IMUs are non-intrusive wearable sensors integrated with accelerometers, gyroscopes,
and magnetometers to measure the body segments’ acceleration, orientation, and velocity.
IMUs are used for overall physical fatigue detection by monitoring the reduction of motor
control [35]. Motor performance and control are assessed using the motion smoothness met-
rics such as the ratio between the maximum and the mean velocity during the movement,
the number of peaks in the velocity profile, and jerk derived from kinematic data [36,37].
Jerk is the first derivative of acceleration used to determine motor control and motion
smoothness. Van Dieën, et al. [38] investigated that jerk at various joints, such as the ankle,
hip, knee, and lumbosacral joint, is increased due to fatigue during the repetitive lifting of
a barbell. Maman, Yazdi, Cavuoto and Megahed [24] developed logistic and MLR-based
physical fatigue detection models using features that included wrist and hip jerks during
simulated manufacturing tasks. The features from the sensor data are extracted using the
Least Absolute Shrinkage and Selection Operator (LASSO). The study reported that the
accelerometer located at the hip and wrist are strong predictors of physical fatigue than
heart rate features. Zhang, Diraneyya, Ryu, Haas and Abdel-Rahman [35] investigated the
feasibility of using jerk as the metric to detect physical fatigue in repetitive bricklaying
activity. The results indicate that the jerk values obtained from the upper arms and pelvis
are significant compared to the values from the hands and forearms. However, the motion
smoothness metrics, such as the jerk values, are task-dependent and highly influenced by
the worker’s repeated shocks, impacts, and skill level.

Harnessing the workers’ physiological processes, such as oxygen consumption, heart
rate, skin temperature, muscle engagement, and blood pressure, determines physical work-
load or fatigue level [6,23,39–41]. Measuring the physiological workload can assess the level
of physical fatigue. The physiological workload can be determined by measuring oxygen
uptake while performing work. With advancements in wearable sensing technologies and
machine learning, the oxygen uptake or VO2 can be estimated using sensor data such as
heart rate and IMU. According to NIOSH recommendation, the average oxygen uptake
during an eight hour workday should not exceed 33% of activity-specific maximum aerobic
capacity [42–44]. Abdelhamid and Everett [6] reported that 20–40% of craft workers exceed
physiological thresholds daily by measuring the workers’ oxygen uptake and heart rate.

Most construction studies focused on measuring workload and work severity classi-
fication based on physiological responses [6,23,45,46]. Abdelhamid and Everett [6] used
oxygen uptake and heart rate to determine the physical demands required for different
construction activities. Wong del, Chung, Chan, Wong and Yi [45] proved that the energy
required to perform bar fixing tasks was more than bar bending tasks in a hot and humid
environment. Chan, Yi, Wong, Yam and Chan [21] determined the optimal recovery time
for rebar workers after working to exhaustion in a hot and humid environment using blood
pressure, heart rate, and subjective rating fatigue. However, heart rate alone is insufficient
for monitoring fatigue. This is because heart rate is influenced by various physiological
and behavioral factors such as cigarette smoking, mentally stressful situation, alcohol
consumption, and energy drinks intake [47]. To address this issue, Aryal, Ghahramani and
Becerik-Gerber [10] used heart rate in combination with human body thermoregulatory
changes to monitor fatigue in construction workers. Hwang and Lee [13] showed the
potential of using a wristwatch-based heart rate sensor to determine the levels of phys-
ical demands by measuring heart rate variability metrics. Maman, Yazdi, Cavuoto and
Megahed [24] used jerk as a metric to derive from IMU sensors placed at the ankle, wrist,
hip, and torso to detect physical fatigue. The study presents logistic regression models
trained on the rating of perceived exertion. Jebelli, Choi and Lee [22] used PPG, EDA, and
ST physiological signals of the worker in association with energy expenditure to determine
the workers’ physical demands. The energy expenditure of the task was determined using
the energy-expenditure prediction program (EEPP). However, several limitations exist in
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the current objective measurement systems for fatigue monitoring, such as the individual
variability was not considered in the models, not applicable in a case where several tasks
were performed in a short time, and most studies considered a subjective measurement
of fatigue.

3. Proposed Fatigue Monitoring Framework

Figure 3 shows the proposed fatigue monitoring framework using forearm-based EMG
and IMU data. The proposed system predicts the workers’ fatigue level by monitoring the
aerobic fatigue threshold (AFT), which is the ratio of the average oxygen consumption to
the activity-specific maximum aerobic capacity (MAC) value, as shown in Equation (1).
The oxygen consumption and workers’ activity were predicted using forearm EMG and
IMU data. Once the activity was recognized, the corresponding MAC value was obtained
from the database to monitor AFT continuously. The proposed system can identify the
activities and oxygen uptake every second. However, to predict the workers’ fatigue level,
authors have considered the average AFT over five minutes. The predicted AFT using
forearm EMG and IMU data was further validated using the data from metabolic analyzer
and heart rate sensor. The proposed framework is highly suitable for the construction
domain because it uses one single armband for data acquisition and uses the AFT metric,
which is activity-dependent. Moreover, physiological signals such as EMG and IMU are
activity-dependent and help in recognizing complex activities performed in a short interval
of time.

Aerobic Fatigue Threshold =
Average VO2

Activity Specific MAC
(1)
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As shown in Figure 3, the proposed framework consists of six steps: (i) Data acquisition
and preprocessing, (ii) activity recognition, (iii) oxygen uptake predictions, (iv) construction
activity-specific MAC value, (v) continuous measurement of AFT, and (vi) workers’ fatigue
monitoring. All these six steps were integrated to develop a real-time fatigue monitoring
system. Each of these steps is discussed in detail in the following subsections.

3.1. Data Acquisition and Preprocessing

In the proposed framework, three wearable devices were used, namely Myo armband
(EMG and IMU), metabolic analyzer, and heart rate monitor. The armband data was
used to predict workers’ activities and AFT. However, the metabolic analyzer data was
used as ground truth to develop the oxygen prediction model and heart rate for system
validation. Since the data acquired from three devices were at different frequencies, data
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were preprocessed before feeding into the model. Later, the actual oxygen uptake and
heart rate measured using a VO2 analyzer and Tickr heart rate monitor were at 1 Hz
frequency, 289 statistical features were extracted from EMG and IMU raw data for every 1 s
window. Since not all features add value to the model, only a few features were selected
using feature selection techniques. For the activity classification, the top 100 features were
selected using the SelectKBest with the ANOVA F-value function. However, for the oxygen
uptake prediction, the features with Pearson’s correlation and mutual information greater
than 0.1 were selected, there were 69 such features. Later, the selected EMG and IMU feature
data was synchronized with VO2 (mL/kg/min), HR (bpm), and activity labels at 1 Hz
frequency for ground truth. Finally, the data was normalized and standardized for oxygen
uptake prediction and activity recognition models, respectively. After preprocessing, the
ten participants’ data consisted of 48,515 samples. The input data was transformed into
3D shapes [100, 100, 14] and [48515, 100, 69] for activity recognition models and oxygen
uptake prediction, respectively.

3.2. BiLSTM-Based Activity Recognition and Oxygen Uptake

This study proposes bidirectional long-short-term memory (BiLSTM)-based recurrent
neural network for activity recognition and oxygen uptake prediction. The overall archi-
tecture of the proposed BiLSTM models is shown in Figure 4. The activity recognition
and oxygen uptake prediction models consist of two BiLSTM layers, dropout layers and
dense layers. Additionally, the Softmax activation function was used in the last layer of the
activity recognition model. The categorical cross-entropy and MSE loss functions were used
for training the classification and regression models. The models were trained using the
ten participants’ data collected while performing fourteen scaffold-building activities. The
leave-one-subject-out cross-validation (LOSO CV) was used to evaluate the performance of
both models.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 22 
 

 

Figure 3. Proposed fatigue monitoring framework. 

As shown in Figure 3, the proposed framework consists of six steps: (i) Data acquisition 

and preprocessing, (ii) activity recognition, (iii) oxygen uptake predictions, (iv) construction 

activity-specific MAC value, (v) continuous measurement of AFT, and (vi) workers’ fatigue 

monitoring. All these six steps were integrated to develop a real-time fatigue monitoring 

system. Each of these steps is discussed in detail in the following subsections. 

3.1. Data Acquisition and Preprocessing 

In the proposed framework, three wearable devices were used, namely Myo arm-

band (EMG and IMU), metabolic analyzer, and heart rate monitor. The armband data was 

used to predict workers’ activities and AFT. However, the metabolic analyzer data was 

used as ground truth to develop the oxygen prediction model and heart rate for system 

validation. Since the data acquired from three devices were at different frequencies, data 

were preprocessed before feeding into the model. Later, the actual oxygen uptake and 

heart rate measured using a VO2 analyzer and Tickr heart rate monitor were at 1 Hz fre-

quency, 289 statistical features were extracted from EMG and IMU raw data for every 1 s 

window. Since not all features add value to the model, only a few features were selected 

using feature selection techniques. For the activity classification, the top 100 features were 

selected using the SelectKBest with the ANOVA F-value function. However, for the oxy-

gen uptake prediction, the features with Pearson’s correlation and mutual information 

greater than 0.1 were selected, there were 69 such features. Later, the selected EMG and 

IMU feature data was synchronized with VO2 (mL/kg/min), HR (bpm), and activity labels 

at 1 Hz frequency for ground truth. Finally, the data was normalized and standardized 

for oxygen uptake prediction and activity recognition models, respectively. After prepro-

cessing, the ten participants’ data consisted of 48,515 samples. The input data was trans-

formed into 3D shapes [100, 100, 14] and [48515, 100, 69] for activity recognition models 

and oxygen uptake prediction, respectively. 

3.2. BiLSTM-Based Activity Recognition and Oxygen Uptake 

This study proposes bidirectional long-short-term memory (BiLSTM)-based recur-

rent neural network for activity recognition and oxygen uptake prediction. The overall 

architecture of the proposed BiLSTM models is shown in Figure 4. The activity recognition 

and oxygen uptake prediction models consist of two BiLSTM layers, dropout layers and 

dense layers. Additionally, the Softmax activation function was used in the last layer of 

the activity recognition model. The categorical cross-entropy and MSE loss functions were 

used for training the classification and regression models. The models were trained using 

the ten participants’ data collected while performing fourteen scaffold-building activities. 

The leave-one-subject-out cross-validation (LOSO CV) was used to evaluate the perfor-

mance of both models. 

 

Figure 4. The overall architecture of the proposed BiLSTM model for activity recognition and oxy-

gen prediction. 
Figure 4. The overall architecture of the proposed BiLSTM model for activity recognition and oxygen
prediction.

3.3. Construction Activity—Specific Maximum Aerobic Capacity (MAC)

In this study, authors have determined the construction activity-specific MAC value
using a submaximal experiment protocol. The MAC value for four construction activities
was determined by conducting submaximal experiments on ten participants. The MAC
values of the four activities are shown in Table 1. For simplicity, the fourteen construction
activities fall into one of these categories. For example, the carrying scaffold, crossbars,
guardrail, and baseboard use the MAC value of carrying activity.

3.4. Aerobic Fatigue Threshold and Fatigue Monitoring

According to the National Institute of Safety and Health (NIOSH), the average oxygen
during an eight hours workday is recommended to be no more than 33% VO2max. In other
terms, the AFT value cannot exceed 33%. The forearm EMG and IMU data, activity recogni-
tion model, oxygen consumption model, and MAC values help continuously monitor AFT
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at a one-second level. Since the fatigue level rating was collected every five minutes, the
average AFT was calculated every five minutes. Using the proposed system, the workers’
fatigue level can be assessed either by monitoring the AFT over the period or use of AFT
variable to classify into one of the fatigue levels (i.e., None, Low, Moderate, High, and Very
High—Fatigue).

Table 1. MAC values for different construction activities.

Activities MAC (L/min) Scaffold Activities

Walking 2.946 WALK

Carrying 2.552 CPSF, CLJ, CC, CDB, CG

Lifting 2.816 IBDL

Combined 2.304 IALJ, IC, HAM, WRE, DG, IG, GUDVL

4. System Feasibility Validation and Performance Evaluation

In order to test the feasibility of using AFT for assessing the fatigue level and for
evaluating the performance of the automated fatigue monitoring system, collected oxy-
gen uptake (VO2), heart rate (HR), and forearm inertial measurement unit (IMU) and
electromyography (EMG) data from ten participants while performing simulated scaffold
building activities.

4.1. Case Study of Scaffold Builder Activities

To evaluate the proposed fatigue monitoring framework, authors have considered one of
the highly labor-intensive and repetitive construction activities, i.e., scaffold building. The
scaffold-building activities involve complex body motions (free motion, repetitive motion,
and impulsive motion) and different body parts (wrist, upper body, forearm, lower body,
and whole body), which are commonly observed in various construction activities [48,49].
By observing the scaffold-building activities on construction sites, this study has considered
fourteen scaffold-building activities, as shown in Table 2. The activities involve carrying,
lifting, and installing various scaffold-related objects, such as scaffold frames, leveling jacks,
guardrails, baseboards, and crossbars, which vary in weight and size. Other activities include
walking, going up/down vertical ladders, hammering, and wrenching.

4.2. Experiment Setup
4.2.1. Participants

Ten male active college students participated in this study (27 ± 1.70 years,
171.7 ± 4.13 cm, 76.70 ± 8.25 kg). All the participants were right-handed, non-smokers,
and had no musculoskeletal disorders. Moreover, the activity level of the participants was
moderate to vigorous. None of the participants had prior scaffold-building experience, but
all the activities were demonstrated before the start of the experiment. After explaining
the objective of the study and experiment procedures, written consent was obtained from
the participants before starting the experiment. The experiment protocol consistent with
the Declaration of Helsinki was reviewed and approved by the Institutional Review Board
(IRB) at Louisiana State University (ID: IRBAM-20-0539).

4.2.2. Measurements

To test the feasibility and performance of the proposed workers’ fatigue monitoring
framework, three wearable sensors were used to collect the forearm IMU and EMG, oxygen
uptake, and heart rate data while performing simulated scaffold-building activities. The
forearm motion and muscle activity data were collected using the Myo armband developed
by Thalmic Lab Inc., which captures IMU and EMG data at frequencies of 50 and 200 Hz [48].
The armband consists of 8-EMG electrodes and a nine-axis IMU sensor. A second-by-second
oxygen uptake was measured using a portable metabolic analyzer, the VO2 Master Analyzer
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(VO2 Master Health Sensor Inc., Vernon, British Columbia, CA). Figure 5 shows the Myo
armband and portable metabolic analyzer. In addition, the participant’s heart rate was
recorded at a frequency of 1 Hz using a chest-strapped Wahoo Tickr heart rate monitor
(Wahoo Fitness, Atlanta, GA, USA). Additionally, a rating of fatigue scale (ROF) on a scale
of 0–10 was used to collect the participants’ perceived fatigue levels before and after the
activity session [50]. Table 3 shows the rating of fatigue level and the corresponding label.

Table 2. Scaffold building activities.

SL. No. Activities Activity ID

1 Walking WALK

2 Carrying/Positioning Scaffold Frame CPSF

3 Carrying Leveling Jacks CLJ

4 Inserting/Adjusting Leveling Jacks IALJ

5 Carrying Crossbars CC

6 Installing Crossbars IC

7 Hammering HAM

8 Wrenching WRE

9 Carrying/Dragging Baseboard CDB

10 Installing Baseboard on Different Levels IBDL

11 Carrying Guardrail CG

12 Dragging Guardrail DG

13 Installing Guardrail IG

14 Going Up/Down Vertical Ladder GUDVL
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4.2.3. Experiment Procedure

Once the written consent form was obtained from the participants, they were asked to
warm up to prevent any injuries. Once the participant was ready, three sensors (metabolic
analyzer, Myo armband, and heart rate monitor) were attached to the body. All the devices
were calibrated for each participant, following the manufacturer’s guidelines. All the
participants performed fourteen activities for five minutes each. The oxygen uptake, heart
rate, and forearm IMU and EMG data were continuously recorded for each activity. The
participants’ rating of fatigue (ROF) was collected before and after each activity (i.e., ROF
value was captured every five minutes). The order of the activities was randomized for
each participant. All the activities were performed in a warehouse environment at 72 F.
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Table 3. Fatigue rating scale and corresponding fatigue labels.

Fatigue Rating Verbal Anchors Fatigue Level & Labels

0 Not Fatigued at All 0—None

1
A Little Fatigued 1—Low

2

3

Moderately Fatigue 2—Moderate4

5

6
High Fatigue 3—High

7

8

Very High Fatigue 4—Very High9

10

4.3. Data Analysis Protocol
4.3.1. Aerobic Fatigue Threshold—Feasibility Validation and Performance Evaluation

Previous studies used aerobic fatigue threshold or exercise intensity to assess the
worker capabilities or task workload evaluation [51–53]. Therefore, evaluating the use
of AFT for workers’ fatigue monitoring is essential. Figure 6 presents the data analysis
protocol to evaluate the feasibility and performance of AFT for fatigue monitoring. The
best classifier was developed to predict the fatigue level on the unseen dataset using
suitable features.
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The oxygen uptake (VO2) and heart rate (HR) data were collected using a VO2
metabolic analyzer and Tickr chest strap HR monitor from ten participants (age:
27 ± 1.70 years, weight: 76.70 ± 8.25 kg, and height: 171.7 ± 4.13 cm) while perform-
ing scaffold building activities was used for this analysis. The oxygen uptake and heart
rate data were recorded at 1 Hz frequency. Each participant performed fourteen scaffold-
building activities listed in Table 2 for a maximum of five minutes or until they were
exhausted. All the activities were randomized for each participant. In addition to VO2
and HR data, the participants’ rating of fatigue (ROF) was collected before and after each
activity. The ROF was reported using the rating of the fatigue scale (0–10) and verbal
anchors shown in Table 3 [10,50]. Using the rating of fatigue, the level of fatigue was
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assigned to one of the labels, i.e., none, low, moderate, high, and very high. To compare the
performance of AFT to other fatigue assessment metrics such as heart rate (HR) [10] and
percentage of HR reserve (%HRR) [13], the %HRR was calculated using Equation (2) for
every one second.

Percentage of HR Reserve (%HRR) =
HRWorking− HRResting

HRMaximum− HRResting
(2)

where HRWorking = average working heart rate [bpm]; HRResting = resting heart rate [bpm];
and HRMaximum = maximum heart rate is estimated using 220 age [bpm] [54,55].

The AFT, HR, and %HRR data obtained from ten participants for every one second
were used to extract statistical features such as mean, minimum, maximum, and standard
deviation for the duration of activity. In total, there are twelve features and 140 samples
(10 participants × 14 activities). Since all the features are in different units, the features
were normalized to scale all the features between zero and one. Later, the feature data was
labeled with the level of fatigue (i.e., none, low, moderate, high, and very high) for each
activity performed by the participant. There were no data samples with the “none” label.

The labeled feature data was further used to train ten commonly used machine
learning-based classifiers, including Random Forest (RF), Decision Trees (DT), Naïve Bayes
(NB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Sup-
port Vector Machine (SVM), Ada Booster (ADA), Logistic Regression (LR), K Nearest
Neighbors (KNN), and Multilayer Perceptron (MLP). The classification analysis was per-
formed using PyCaret—an open-source, low-code machine learning library in Python [56].
The models were evaluated using a 10-fold cross-validation technique, and the performance
of the models was assessed using accuracy, precision, recall, and F1 Score. To evaluate
the feasibility and performance of using AFT for fatigue level assessment, the classifier’s
performance was compared for different feature combinations such as AFT, HR, %HRR,
AFT + HR, AFT + %HRR, HR + %HRR, and AFT + HR + %HRR. However, the best fatigue
level classifier was selected and used for further analysis on the unseen dataset.

4.3.2. Fatigue Monitoring—Feasibility Validation and Performance Evaluation

Figure 7 presents the data analysis protocol to evaluate the feasibility and performance
of the proposed fatigue monitoring framework. The authors have used the trained BiLSTM
activity recognition model, MAC values for construction-specific activities, trained BiLSTM
oxygen prediction model, and fatigue level classifier obtained using the ten participant data.

For the proposed system feasibility and performance evaluation, EMG and IMU data
were collected from a participant (age = 29 years, height = 168 cm, weight = 75 kg, and
Resting HR = 96) performing all fourteen scaffold building activities for approximately
85 min (5088 samples). The sequence of the activities and duration of the activities are
shown in Table 4. Some of the IALJ, CDB, and IG activities are performed for a longer
duration because they involve multiple tasks. For example, IALJ involves two tasks
installing and adjusting leveling jacks performed for five minutes each continuously. In
contrast, the activities such as GUDVL were performed for a short duration because the
participant was completely exhausted after 1.40 min. In addition to armband data, VO2
and HR data were continuously recorded for the entire session. Moreover, a rating of the
fatigue level was collected for every one minute.

First, the EMG and IMU data were preprocessed for activity recognition and oxygen
uptake prediction. The oxygen uptake and heart rate data recorded every second were
synchronized with the preprocessed EMG and IMU features. Additionally, the features
dataset was labeled with actual activity ID for ground truth. Once the dataset was prepared,
the trained activity recognition and oxygen uptake models developed in the previous
chapters were implemented on unseen datasets to recognize activities and oxygen uptake
for every one second. Using the model predictions and MAC values from Table 1, the
authors determined AFT for every one second on the unseen dataset. The actual and
predicted AFT values were analyzed using linear regression analysis to see how well the
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proposed system monitored AFT for one second, one-min, two-min, and over the entire
activity duration.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 7. Data analysis protocol to evaluate the feasibility and performance of the proposed fatigue 

monitoring system. 

For the proposed system feasibility and performance evaluation, EMG and IMU data 

were collected from a participant (age = 29 years, height = 168 cm, weight = 75 kg, and Resting 

HR = 96) performing all fourteen scaffold building activities for approximately 85 min (5088 

samples). The sequence of the activities and duration of the activities are shown in Table 4. 

Some of the IALJ, CDB, and IG activities are performed for a longer duration because they 

involve multiple tasks. For example, IALJ involves two tasks installing and adjusting leveling 

jacks performed for five minutes each continuously. In contrast, the activities such as GUDVL 

were performed for a short duration because the participant was completely exhausted after 

1.40 min. In addition to armband data, VO2 and HR data were continuously recorded for the 

entire session. Moreover, a rating of the fatigue level was collected for every one minute. 

Table 4. Activity sequence and duration of unseen dataset. 

Sequence Activity ID Duration (min) 

1 WALK 3.27 

2 CG 4.98 

3 CLJ 4.95 

4 IALJ 10.03 

5 CPSF 5.00 

6 HAM 5.02 

7 WRE 5.02 

8 CC 5.00 

9 CPSF 4.97 

10 IC 5.02 

11 CDB 10.10 

12 IBDL 5.02 

13 DG 5.02 

14 IG 10.02 

15 GUDVL 1.40 

First, the EMG and IMU data were preprocessed for activity recognition and oxygen 

uptake prediction. The oxygen uptake and heart rate data recorded every second were 

synchronized with the preprocessed EMG and IMU features. Additionally, the features 

dataset was labeled with actual activity ID for ground truth. Once the dataset was 

Figure 7. Data analysis protocol to evaluate the feasibility and performance of the proposed fatigue
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Table 4. Activity sequence and duration of unseen dataset.

Sequence Activity ID Duration (min)

1 WALK 3.27

2 CG 4.98

3 CLJ 4.95

4 IALJ 10.03

5 CPSF 5.00

6 HAM 5.02

7 WRE 5.02

8 CC 5.00

9 CPSF 4.97

10 IC 5.02

11 CDB 10.10

12 IBDL 5.02

13 DG 5.02

14 IG 10.02

15 GUDVL 1.40

For the fatigue level assessment, the predicted AFT values for every second were used
to extract statistical features (i.e., mean, minimum, maximum, and standard deviation) for
every one-min, two-min, and activity. The extracted AFT features were labeled with the
subjective rating of fatigue level for ground truth. The best fatigue level classifier obtained
in the previous section was used to predict the fatigue level of the unseen dataset. The
actual and predicted fatigue levels were analyzed to see how well the predicted AFT can
recognize workers’ fatigue levels compared to HR and %HRR.
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5. Results
5.1. Aerobic Fatigue Threshold—Feasibility Validation and Performance Evaluation

First, the average AFT value for each fatigue level was estimated using the ten par-
ticipants’ data, as shown in Table 5. The average AFT is above 33% for the high and very
high fatigue levels where an individual is getting tired or very tired, which aligns with the
NIOSH recommendation that an individual cannot sustain if AFT exceeds 33%. Moreover,
Figure 8 shows the average AFT value for each activity where activities CPSF, CDB, and
GUDVL are above the 33% threshold and align with the subjective fatigue rating rated as
high or very high fatigue level activities. This shows that the subjective fatigue ratings are
reliable for further analysis.

Table 5. Average AFT for each fatigue level.

Fatigue Level Average AFT

Low 22.03%

Moderate 28.91%

High 36.00%

Very High 43.63%
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Further, the classification accuracy for the tested machine learning algorithms for
different feature combinations is shown in Table 6. The results show that the highest
classification accuracy was obtained using the decision tree classifier algorithm for AFT
features. Also, the classification accuracy is highest for the features in combination with
AFT (i.e., AFT + %HRR = 91.45%, AFT + HR + %HRR = 90.60, and AFT + HR = 90.60%). The
highest classification accuracy for different feature combinations is highlighted in Table 6.
Low classification accuracies were observed for HR (51.28%) and %HRR (50.43%) features.
Similarly, the F1 Scores for the AFT (92.40%) are the highest compared to other features
shown in Table 7. Moreover, Figure 9 shows the confusion matrix for the decision tree
classifier using AFT features. It is observed that the model is classifying all four levels with
90% accuracy with a high misclassification rate of 11% between high and very high levels.
From the accuracy, F1 Scores, and confusion matrix, the performance of the classifiers using
AFT features is highest compared to HR and %HRR features. This analysis concludes that
AFT features are highly suitable for assessing all four fatigue levels compared to %HRR and
HR. The decision tree classifier built using the AFT features was further used to evaluate
the fatigue levels of unseen data.
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Table 6. Classification accuracies for different feature combinations.

Model AFT %HRR HR AFT + %HRR AFT + HR HR + %HRR AFT + HR + %HRR

RF 90.60% 44.44% 41.88% 89.74% 90.60% 44.44% 90.60%

DT 92.31% 41.03% 44.44% 91.45% 88.03% 34.19% 90.60%

NB 82.91% 46.15% 47.01% 79.49% 78.63% 42.74% 74.36%

LDA 87.18% 46.15% 51.28% 88.89% 83.76% 42.74% 82.91%

QDA 85.47% 38.46% 36.75% 79.49% 77.78% 37.61% 67.52%

SVM 72.65% 46.15% 44.44% 72.65% 66.67% 50.43% 68.38%

ADA 52.14% 46.15% 47.86% 52.14% 52.14% 46.15% 52.14%

LR 86.32% 50.43% 46.15% 79.49% 82.05% 45.30% 79.49%

KNN 81.20% 36.75% 38.46% 72.65% 72.65% 35.04% 64.96%

MLP 91.45% 46.15% 45.30% 88.89% 87.18% 46.15% 88.03%

Table 7. Classification F1 Score for different feature combinations.

Model AFT %HRR HR AFT + %HRR AFT + HR HR + %HRR AFT + HR + %HRR

RF 90.60% 44.60% 42.10% 89.80% 90.60% 44.50% 90.70%

DT 92.40% 40.50% 43.20% 91.50% 88.10% 33.90% 90.60%

NB 82.80% 43.90% 42.20% 79.30% 78.20% 38.20% 73.90%

LDA 87.30% 44.80% 47.40% 88.90% 83.80% 41.60% 82.80%

QDA 85.30% 38.40% 36.30% 79.20% 77.30% 37.60% 65.50%

SVM 68.10% 46.20% 44.44% 70.70% 62.40% 50.40% 66.20%

ADA 52.10% 46.20% 47.90% 52.10% 52.10% 46.20% 52.10%

LR 86.30% 49.00% 42.60% 79.50% 82.10% 44.44% 79.60%

KNN 81.30% 36.20% 38.40% 72.90% 73.10% 35.30% 65.20%

MLP 91.50% 44.10% 43.50% 88.90% 87.20% 45.20% 88.20%
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5.2. Fatigue Monitoring—Feasibility Validation and Performance Evaluation

The actual and predicted AFT on the unseen dataset for one second, one-min, two-
min, and each activity over the entire experiment duration are shown in Figures 10–12,
respectively. The graphs show a peak trend for the high-intensity activities for all window
sizes. The value of AFT varied based on the intensity and complexity of the activity.
Figure 13 shows the average actual and predicted AFT for each activity, where the highest
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value was observed for GUDVL and the lowest for HAM activities. These results match
the participants’ subjective fatigue rating. A linear correlation analysis was performed
between actual and predicted AFT for one second, one-min, two-min, and each activity.
The correlation results show that the highest coefficient of determination (R2) and root
mean square error (RMSE) of 0.85 and 0.027 were observed for both one-min and two-min
AFT. The lowest correlation was observed for one second, i.e., R2 = 0.71 and RMSE = 0.040.
The goodness of fit curves for one second and five-min AFT is shown in Figure 14. The
correlation analysis shows that the predicted AFT values have achieved a good fit and
the variation in the AFT value for different activities demonstrates the feasibility of using
predicted AFT values for fatigue assessment. Additionally, using a one-min or two-min
average AFT helps to minimize errors and improves fatigue prediction accuracy.
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Further, the predicted AFT features for one-min, two-min, and each activity are used
for fatigue assessment to evaluate the performance of the proposed fatigue monitoring
system. The classifier performance on predicted AFT features for one-min, two-min, and
each activity is shown in Table 8. The results show that the overall performance of the
fatigue assessment is better for the predicted AFT values for two-min (accuracy = 76.74%)
compared to 1-min (accuracy = 71.05%) or for each activity (accuracy = 71.05%). However,
the classification accuracy using HR (35.71%) and %HRR (35.71%) features of the unseen
dataset is very low compared to AFT features. Figure 15 shows the high misclassification
rate when using AFT features was observed between low and moderate fatigue levels.
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Table 8. Fatigue level assessment using predicted AFT features for every one-min, two-min, and
each activity.

Accuracy Recall Precision F1 Score

Average Predicted AFT for 1-min 71.05% 71.10% 86.10% 72.40%

Average Predicted AFT for 2-min 76.74% 76.70% 86.10% 76.10%

Average Predicted AFT for Each Activity 71.43% 71.40% 90.50% 73.80%

HR Features for Each Activity 35.71% 35.70% 82.70% 36.20%

% HRR Features for Each Activity 35.71% 35.70% 40.50% 33.33%

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

Further, the predicted AFT features for one-min, two-min, and each activity are used 

for fatigue assessment to evaluate the performance of the proposed fatigue monitoring 

system. The classifier performance on predicted AFT features for one-min, two-min, and 

each activity is shown in Table 8. The results show that the overall performance of the 

fatigue assessment is better for the predicted AFT values for two-min (accuracy = 76.74%) 

compared to 1-min (accuracy = 71.05%) or for each activity (accuracy = 71.05%). However, 

the classification accuracy using HR (35.71%) and %HRR (35.71%) features of the unseen 

dataset is very low compared to AFT features. Figure 15 shows the high misclassification 

rate when using AFT features was observed between low and moderate fatigue levels. 

Table 8. Fatigue level assessment using predicted AFT features for every one-min, two-min, and each 

activity. 

 Accuracy Recall Precision F1 Score 

Average Predicted AFT for 1-min 71.05% 71.10% 86.10% 72.40% 

Average Predicted AFT for 2-min 76.74% 76.70% 86.10% 76.10% 

Average Predicted AFT for Each Activity 71.43% 71.40% 90.50% 73.80% 

HR Features for Each Activity 35.71% 35.70% 82.70% 36.20% 

% HRR Features for Each Activity 35.71% 35.70% 40.50% 33.33% 

 

Figure 15. Confusion matrix of fatigue level assessment using predicted AFT features (a) for one-

min, (b) for two-min, and (c) for each activity. 

Figures 16 and 17 shows the actual and predicted fatigue level over the entire duration 

of the unseen dataset, where most of the time, the low and moderate fatigue levels were mis-

classified. Figure 18 shows that the fatigue level is accurately predicted for high-intensity ac-

tivities such as GUDVL, CDB, and IBDL. Some low-intensity activities, such as ALJ, CLJ, and 

DG are misclassified as low instead of moderate. Moreover, it can be observed that the mis-

classifications of lower fatigue levels were less for two-min compared to one-min average 

AFT. This shows that the more extended window sizes are suitable for low-intensity activities. 

This indicates that the proposed system can be used for continuous monitoring of fatigue lev-

els.  

Further, hypothesis testing was performed using a Chi-Squared test between actual 

and predicted fatigue levels for each window size (i.e., one-min, two-min, and average 

over each activity). The null hypothesis assumed that the actual fatigue levels are not re-

lated to predicted fatigue levels. The alternate hypothesis is that the actual fatigue levels 

Figure 15. Confusion matrix of fatigue level assessment using predicted AFT features (a) for one-min,
(b) for two-min, and (c) for each activity.

Figures 16 and 17 shows the actual and predicted fatigue level over the entire duration
of the unseen dataset, where most of the time, the low and moderate fatigue levels were
misclassified. Figure 18 shows that the fatigue level is accurately predicted for high-
intensity activities such as GUDVL, CDB, and IBDL. Some low-intensity activities, such
as ALJ, CLJ, and DG are misclassified as low instead of moderate. Moreover, it can be
observed that the misclassifications of lower fatigue levels were less for two-min compared
to one-min average AFT. This shows that the more extended window sizes are suitable for
low-intensity activities. This indicates that the proposed system can be used for continuous
monitoring of fatigue levels.

Further, hypothesis testing was performed using a Chi-Squared test between actual
and predicted fatigue levels for each window size (i.e., one-min, two-min, and average over
each activity). The null hypothesis assumed that the actual fatigue levels are not related to
predicted fatigue levels. The alternate hypothesis is that the actual fatigue levels are related
to predicted fatigue levels. The results show that the p-value for all the window sizes is less
than 0.05, therefore reject the null hypothesis and accept the alternate hypothesis, which
concludes that there exists a significant relationship between actual and predicted fatigue
levels for three window sizes (Table 9).
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6. Discussion

This study confirmed that the proposed fatigue monitoring system could continuously
assess workers’ fatigue levels. The use of the aerobic fatigue threshold (92.31%) to monitor
the fatigue level has achieved high classification accuracy compared to the previous studies,
which used energy expenditure (90%) [22] and skin temperature (80.60%) [10]. The better
performance of the system is due to the high correlation of the AFT feature with the fatigue
levels. Comparing the classification accuracy for different feature combinations shows
that the AFT features have high performance compared to HR features, which agrees
with the previous study [10]. This shows that the HR features alone are not suitable for
fatigue level assessment for the activities performed in a short interval of time. Previous
studies have considered two-min [10], 35 s [22], and 30 min [13] windows to assess the
worker fatigue level. Jebelli et al. (2019) suggested that a higher window size is required to
recognize the physical demand compared, the comparison of classification accuracy for
different window sizes identified that two-min average AFT had achieved high classifica-
tion accuracy compared to one-min over the duration of activity. This study recommends
using a higher window size for low-intensity activities and a smaller window size for
high-intensity activities.

The AFT values for the high and very high fatigue level activities such as CDB,
IBDL, and GUDVL are above 33%, which agrees with published guidelines for oxygen
uptake [6,57]. Moreover, the classification accuracy was higher for high fatigue-level
activities, which shows that AFT is a suitable metric to assess the fatigue level of high-
intensity activities. The predicted AFT values using forearm motion and muscle activity
data are highly correlated with actual values, showing that oxygen consumption is highly
influenced by the type of activity performed in a short interval. The continuous monitoring
of AFT can assess activity work severity classification based on published guidelines for
oxygen uptake.

The proposed system is highly suitable for construction applications because it uses
armband with 8-EMG electrodes and a nine-axis IMU to capture EMG and IMU data and
AFT metrics, dependent on the activity. Since the EMG and IMU signals depend on activity,
which helps recognize complex activities performed in a short time, the proposed system
can be used for any trade. Moreover, the performance of the proposed system on the unseen
dataset has shown the feasibility of using the system for complex high-intensity activities.

The previous studies classify the physical demand or fatigue level based on the
physiological signal data from the worker. Unlike previous studies, the proposed system
continuously measures the aerobic fatigue threshold using forearm EMG and IMU data
that provides an opportunity to quantify the direct impacts of fatigue on accidents, evaluate
the worker capabilities, and assess the workload evaluation of the task.

This study has successfully demonstrated forearm EMG and IMU data to monitor the
workers’ fatigue level continuously; however, it has some limitations. The proposed system
was validated and evaluated using only scaffold-building tasks. Even though the tasks were
complex and highly physically demanding, different tasks should be studied for real-world
fatigue monitoring applications. The study was conducted in a warehouse environment at
72 ◦F; however, other environmental and site conditions were not considered. Only one
participants’ data was used to assess the performance of the proposed fatigue monitoring
system. An extensive experiment needs to be performed with multiple participants of
different ages, ethnicity, work experience, and physical health to evaluate the performance
of the proposed system. The combined MAC value was used for hammering, wrenching,
and dragging activities instead of individual activity-specific MAC value, which is one of
the limitations of the study.

Future research focuses on improving the robustness and performance of the system
by training the models using data from workers with different characteristics (i.e., age, work
experience, ethnicity, and health conditions), trades, and working conditions. Moreover,
investigate the deep learning algorithms to classify fatigue levels. AFT values range from
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extensive population data to training fatigue level classifiers to reduce the possible bias
due to the subjective fatigue level rating.

7. Conclusions

This study proposes an automated framework to continuously monitor the worker
fatigue level using forearm-based EMG and IMU sensors by measuring the aerobic fatigue
threshold. The system validation and performance evaluation confirmed that the forearm
EMG and IMU data could recognize complex construction activities, instantaneous oxy-
gen uptake, continuous aerobic fatigue threshold, and classify fatigue level. The results
conclude that AFT features could classify fatigue levels with a high accuracy of 92.31%
compared to HR (51.28%) and %HRR (50.43%). Moreover, the results show that the AFT
is greater than 33% for high and very high fatigue levels, which agrees with the NIOSH
exercise intensity threshold. The proposed system is highly suitable for construction appli-
cations because the entire framework is dependent on the activity performed by the worker.
Since the proposed framework is dependent on the activity, the system can be adaptable
for any trade and site conditions. The continuous monitoring of fatigue levels helps assess
the worker’s physiological status, evaluate the physical workload of the activity, quantify
the direct impacts of the fatigue level on the accidents, and early detection of risk.
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