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ABSTRACT Gait analysis identifies the posture during movement in order to provide the correct actions for
a normal gait. A person’s gait may differ from others and can be recognized by specific patterns. Healthy
individuals exhibit normal gait patterns, while lower limb amputees exhibit abnormal gait patterns. To better
understand the pitfalls of gait, it is imperative to develop systems capable of capturing the gait patterns
of healthy individuals. In this research, spatio-temporal parameters were computed using the concepts of
static and dynamic equilibrium to analyze the gait cycle. A relationship was also developed among static
equilibrium, dynamic equilibrium, speed, and body states. A sensing unit was installed on the designed
metal-based leg mounting assembly on the lateral side of the leg. An algorithm was proposed based on two
variables: the position of the leg in space and the angle of the knee joint measured by using an inertial
measurement unit (IMU) sensor and a rotary encoder. It was acceptable to satisfy the static conditions
when the body was in a fixed orientation, whether lying down or standing. While walking and running, the
orientation was determined by the position and knee angle variables, which fulfill the dynamic condition.
High speed reveals a rapid change in orientation, while slow speed reveals a slow change in orientation.
The proposed encoder-based feedback system successfully determined the flexion at 47◦, extension at 153◦,
and all seven gait cycle phases were recognized within this range of motion. Computed spatio-temporal
parameters may help individuals avoid slipping or falling.

INDEX TERMS Gait analysis, IMU sensor, rotary encoder, spatio-temporal parameters, static and dynamic
equilibrium, body orientation.

I. INTRODUCTION
Clinicians and researchers have always been required to ana-
lyze gait for rehabilitation purposes and it compensates for
the lost mobility of amputees wearing prostheses. The use
of sensing devices is common for monitoring and analyzing
gait. There are significant benefits of both wearable and
non-wearable sensing devices. Wearable sensing devices are
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attached to human limbs and may better observe the behavior
of the limbs during movements.

In the past, gait analysis was performed with expensive
equipment, but now wearable sensors facilitate clinicians and
researchers in analyzing the gait with more reliable results.
Both IMUs (inertial measurement unit) and rule-based meth-
ods are the optimal choices for gait analysis [1]. It seems a
convenient way of gait analysis to epitomize the gait con-
straints like gait parameters, environment, and the walking
persons. The specific walking pattern of a person differen-
tiates from the others and they can easily be recognized by
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their gait. The walking pattern defines human movement in
the environment [2].

An environment and surroundings are the 3D spaces in
which a body can move. The human gait cycle is the interval
between two heel strikes on the same leg. The stance and
swing phases are two major sub-phases of the gait cycle.
The stance phase occurs when the foot is in contact with the
ground while the swing phase is when the foot is in the
air. According to a new study, about ‘‘60%’’ of the gait
cycle consists of the stance phase, and ‘‘40%’’ of the gait
cycle comprises the swing phase [3], [4], [5]. For a thorough
understanding of the gait cycle, the secondary phases of gait
are grouped into ‘‘7’’ sub-phases including initial contact or
heel strike, foot flat, toe-off, pre-swing, initial swing, mid
swing, and terminal swing as shown in Figure 1.

It is important to mention that despite the availability of
various parameters, the outcome of the research relies mainly
on the selection of appropriate gait parameters. In this way,
better algorithms and techniques can be chosen for the classi-
fication of gait phases [6], [7]. The spatial-temporal measures
of gait may be affected by small variations in a person’s
weight, height, and age, resulting in deviations from an ideal
gait cycle [8].

Zhang et al. presented a straight-forward linear model to
connect the stride length and typical angular swing speed.
An effective method for estimating the parameters was also
offered to calibrate the model for various themes [9]. Sizhe
et al. offered a useful step-length estimation method that
makes use of bend and inertial wearable sensors. An essential
step in the diagnosis and treatment of various diseases is gait
analysis. Step length and stride lengths, in particular, offer
important information regarding gait quality and rehabilita-
tion [10]. In order to keep a balanced movement avoiding
falls, spatio-temporal parameters like step width, step length,
stride length, walking speed, cadence, etc. are essential [11].
Figure 2 explains the temporal measures with the following
variables;
• Gait cycle time (sec): Time between the two successive
heel strikes of the same foot.

• Stance phase (%): Phase in which a foot is in contact
with the ground within a single gait cycle.

• Stance time (sec): Amount of time between the heel
strike and the successive toe-off of the same foot.

• Swing phase (%): Swing phase, during which the foot
does not touch the ground.

• Swing time (s): The time between the toe-off and the
heel strike of the same foot.

• Cadence (steps/min): Number of steps per minute.
• Stride length (m): Distance between the two successive
heel strikes of the same foot.

• Step length (m): Step length is the distance between the
point of initial contact of one foot and the point of initial
contact of the opposite foot.

• Stride width (m): The distance between the heels of the
two feet during double stance.

FIGURE 1. Figure 1 presents the overall gait cycle consisting of stance and
swing phases which are divided further into ‘‘7’’ different sub-phases [13].

FIGURE 2. This Figure 2 shows, that spatio-temporal parameters of
functional gait performance include step length, step width, stride length,
and direction of propagation [8].

• Stride velocity (m/s): Defined as the ratio between
stride length and gait cycle time [12].

As a result of a limb loss, an amputee is unable to perform
normal activities without assistance. Amputation is one of
the disabilities that may happen at any stage of life. In order
to compensate for the lost part, a special device is needed.
A prosthesis is a special artificial limb that helps amputees
to overcome the functionalities of the lost limb and also
facilitates them to minimize the dependency [14], [15].

A great effort is put into prosthetic research around the
world to assist amputees with lower limb loss. Due to evo-
lution and advancement in technologies, there have been a
number of artificial limbs developed that include active, semi-
active, and passive types. However, it still requires more
designs to meet the routine needs of prosthetic users despite
the advancements [16], [17]. For lower limb amputees who
wear a prosthesis, Esmaili et al. created a wearable gait mon-
itoring system with FSR and IMU sensors that are directly
connected to the customized algorithm. They evaluated the
stance and swing phases of the gait cycle, as well as the stride
length [18]. Gait analysis with a focus on the lower limbs
explores a variety of new ideas about how to observe the
movement of an individual.

This work presents a novel way to analyze the gait cycle
by computing spatio-temporal parameters using static and
dynamic equilibrium conditions as shown in Figure 3. It com-
prises a sensing unit installed on a metal-designed assembly
to be mounted on the leg of a healthy individual. The average
trained parameter values enable individuals to avoid slips or
falls while also preventing further injuries. This also results
in the emergence of relationships between static and dynamic
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FIGURE 3. Overview of current research is provided in Figure 3. It begins on the left side, mentioning a sensing unit, then a controlling unit,
and finally the predicted states of the body. The final predicted states of the body are shown at the bottom right with slow, normal, and high
speed walks. Here, the gait phases have been omitted for convenience. Static and dynamic conditions are shown at top right in the figure.

behaviors based on the speed of the body. As a result, this
research work may assist researchers, engineers, and practi-
tioners to improve the gait pattern of lower limb prosthetic
wearers in order to enhance their quality of life.

The rest of this paper is structured as follows. Litera-
ture review has been presented in section II, methodol-
ogy in section III, & results and discussions in section IV.
Section V describes the conclusion and future work.

II. LITERATURE REVIEW
This section presents the literature studied for the research
presented. Background work, importance, and state-of-the-
art are described in detail. Overall, this presents the gait
analysis systems using wearable sensors.

Qiu et al. presented a comprehensive review of wear-
able sensors, devices, and their applications. The concept of
multi-sensor fusion for human activity recognition has been
presented. Imbalanced data, complex activities, computation
cost, and were the challenges identified [19]. With sensor and
data fusion, Celik et al. developed a multi-layer framework
for gait analysis. Experimental evaluation of multimodal
fusion strategies in both a lab and free-living setting is nec-
essary before feature extraction. The IMU and EMG sensors
were utilized for stroke survivors’ rehabilitation to identify
their gait characteristics, including step length and initial
contact [20]. According to Santos et al. individual variables
and traces are more relevant for improving the subject’s gait
recognition performance. The authors investigated the impact
of each sensor’s characteristics on each subject’s performance
measure using datasets from multi-sensors [21].

In any unrestricted setting, it is possible to track the 3D
trajectory of the legs. Ahmadi et al. presented a revolutionary,

low-cost, computationally efficient way to precisely analyze
human gait. They used it to quantify the correlation between
computed and measured motions for all joints in the sagittal
plane [22].

Hessfeld et al. explored examples of the wearable sensor
system and type of threshold that are more dependable in a
postural shift scenario. Comparison of three sensing systems:
pressure insoles system (IS), multiple inertial measurement
unit systems (IMU), and a combination of both systems
to provide reliable timing for potential biofeedback applied
by a wearable device in daily activities [23]. Saboor et al.
discussed the two slashing technologies that are essential to
contemporary gait analysis. The first was the use of wearable
sensors, which offer a practical, effective, and affordable
method of gathering data for gait analysis. The second was
the use of machine learning techniques, which enable high
precision extraction of features for gait analysis [5].

Overuse injuries connected to running can be caused by a
variety of intrinsic (like gait biomechanics) and extrinsic (like
running surface) risk factors. It is unknown, nevertheless,
how variations in the weather have an impact on the biome-
chanical patterns of running stride. Ahamed et al. concluded
that the connection between gait biomechanics and external
meteorological conditions is subject-specific, complex, and
involves special interactions between intrinsic and extrinsic
components [24].

Clinical professionals use gait analysis to provide patients
with impaired gaits with optimal care and treatment. Gait
analysis is one of the standard components of kinesiology
assessments covering movement-related issues of posture
and gait. Gait analysis is also used in the treatment of
musculoskeletal disorders like polio, muscular destruction,
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amputation, osteoarthritis, & trauma and neurological disor-
ders like cerebral palsy, stroke, & brain trauma [25]. Lower
limb amputees demand wearable devices with more wearing
time to enhance their quality of life. The features of cost-
effective, bio-compatible, cosmic, and durable are still great
challenges for the research community [26].

Luksys et al. distinguished gait phases for both normal
persons and patients with Parkinson’s diseases using IMUs.
Their idea was to use the continuous relative phase tomeasure
the coordination between two joints. The raw angular velocity
signal was filtered using a low-pass Butterworth filter with
a cut-off frequency of 5 Hz [27]. Clinical gait analysis and
rehabilitation use two measures to corroborate clinical deci-
sions about treatment, namely the level of improvement in
gait and the quantification of body motion. Young people
with abnormal gait are receiving increasing attention for gait
evaluation and improvement [28]. Gait analysis has required
complex systems, such as three-dimensional motion captures
and force plates. Using several infrared cameras in a limited
space, 3D motion analyzers record body motion in real-time
by reading the location coordinate values of sensors attached
to the body.

Jung et al. rely on marker-based optical motion capture
(MoCap) systems to achieve high accuracy in bio-mechanical
gait research. During MoCap-based gait analysis, markers
were attached to the lower limbs of subjects, and their tra-
jectories are used to analyze their gait on a treadmill. It was
possible to walk continuously on a treadmill, but the MoCap
data repeated in a limited space during treadmill walking
overlap. As a result, most treadmill-based gait data were
analyzed using gait cycle percentages [29].

Han et al. introduced a technique known as the 2-point
error estimation algorithm to estimate the pitch, roll, and yaw
angles using the accelerometer and gyroscope alone [30].
As sensor technology has advanced, wearable and soft sen-
sors can now be used to perform cost-effective and easy
analysis [25]. Spatio-temporal and kinematic variables can
be further calculated in gait analysis [31], [32]. The iner-
tial sensors comprise a gyroscope, an accelerometer, and a
magnetometer, which enable economical measurements of
gravitational force and acceleration. Changes in the Euler
angle, yaw, pitch, and angle of the rolling axis can also
be measured using the gyroscope. Inertial sensors (IMUs)
are being used extensively for gait analysis to detect the
gait phases and measure joint angles as well as the stride
lengths [33], [34]. Cicirelli et al. presented a review on the gait
analysis using IMU sensors due to their low cost and small
size. Gyroscopes are used tomeasure the position of that body
in the x, y, and z axes. Three-axis magnetometers measure
the earth’s magnetic field strength and its direction [35].
Amitrano et al. validated the reliability of the wearable sys-
tem called SWEET (Smart WEarable E-Textile) for gait anal-
ysis. The wearable sensing unit was equipped with a pressure
sensing sock, a gyroscope, a microcontroller, and a LiPo
battery [36].

Ngamsuriyaroj et al. presented the work to analyze the
walking activities of a disabled person. Wearable FSRs,
an IMU, and an angular encoder were used to control
the assembly of the prosthesis [37]. Gregorio et al. pre-
sented their work for the identification of the gait phases
for different walking conditions with a load sensor for an
active/semi-active prosthesis. Despite advances in prosthetic
design, replacing lower-limb segments with a prosthesis
affects the efficiency of locomotion. Lower-limb prosthe-
ses are designed to minimize the impact of amputation and
make the patient more autonomous [3]. Gait phase recog-
nition was presented in [38] using support vector machines
with different covariate factors. There are also various gait
covariates that can be used to estimate the age of a human,
which is valuable for health-related purposes, security, and
law enforcement [39]. It is also useful to translate multi-age
groups while walking in order to identify and categorize age
groups [40].

XEI et al. reviewed the methods of gait tracker using
inertial sensors in 3D space [41], while Mobbs et al. pre-
ferred a single-point inertial sensor for gait metrics analysis
in space [42]. Liu et al. examined the use of wearable devices
in motion tracking and gait analysis, as well as its poten-
tial to enhance healthcare practices through intelligent data
analysis. Smartphones, wearable sensors (IMUs), and sensing
fabrics were discussed as wearable devices and their research
progress in motion tracking. Wearable devices monitor basic
health data, allowing physicians to detect health problems
early and provide appropriate treatment and rehabilitation to
patients [43].

Hong et al. in [44] estimated and evaluated the human gait
phases for normal and amputated persons. It contributed to
reducing gait detection errors during the heel-strike phase.
Step 1 shows that the thigh angle profile was a phase-shifted
cosine-like function. In step 2 it was like a phase-shifted sine-
like function and phase-shifting increased the linearity of the
phase variable in step 3. And finally, step 4 showed the phase-
shifting implementation, the heel-strike detection error was
also reduced.

A pedestrian dead reckoning (PDR) navigation system
that uses an inertial measurement unit (IMU) attached to its
waist belt instead of GNSS signals or beacons was demon-
strated by Hajati et al. In order to calculate the appropri-
ate gains, the system first recognizes the walking pattern
of the user. An unscented Kalman filter was then used
to estimate the userś attitude. A step detection method
was then used to determine the userś three-dimensional
position [45].

Ranusa et al. described a better understanding of the
dynamic friction evolution in total knee replacement. Their
study examined the relationship between the coefficient of
friction (CoF) during a gait cycle and its association with
kinematics (slide-roll ratio), applied load, and relative veloc-
ity. As a result of this study, the coefficient of friction fluctu-
ates with the change in load [13].

123180 VOLUME 10, 2022



M. Asif et al.: Analysis of Human Gait Cycle With Body Equilibrium Based on Leg Orientation

Joint coordination was found to be the best method to
analyze the movement of the body in space. In gait analy-
sis, many researchers preferred goniometers, potentiometers,
and encoders over sensors like (IMUs, soft sensors, etc.) for
the coordination of joints. Tao et al. presented the use of a
flexible electro-goniometer to detect the gait cycle capable to
measure knee movement in multiple planes. It was also capa-
ble to measure movements and postures of the body being
advantageous at noise-free signals when direct interfaced on
clothes and fabrics [46]. Papi et al. demonstrated a correlation
between sensor signal and benchmark knee flexion angles.
The ability of a novel wearable sensor system to determine
peak knee sagittal angles during locomotion was validated
using this relationship. This makes it possible to convert
sensor voltage outputs to angular measurements [47]. Buttner
et al. presented work on both goniometer and potentiometer
being the low-cost method to determine the joint angles of the
lower limb. They attached the potentiometer assembly to the
lateral side of the leg. It performed continuous joint tracking
of activities (stair walking, ground walking, and jogging)
based on the relative motion of joints. For a bio-mechanical
analysis of the knee joint, the potentiometer was implemented
on the lateral side of the leg with a sensing assembly and
records continuous readings of the angle between the knee
joint [48].

There are some disadvantages of the potentiometer assem-
bly during gait analysis. Occasionally, rust in the strips
of potentiometers prevents them from detecting small knee
angles during locomotion. Besides using IMUs, the encoders
are capable to measure small angle variations of knee joints
during flexion and extension precisely. According to the lit-
erature review, the stuff is less available for spatio-temporal
parameters. It is required to address the risk of slipping or
falling in gait analysis systems by computing spatio-temporal
parameters during static and dynamic conditions of equilib-
rium. It may facilitate both healthy, and amputees (while
wearing the prosthesis in the training phase) protecting them
from slipping or falling.

III. MATERIALS AND METHODS
In this section, a comprehensive description of the proposed
materials and methods is presented, along with a description
of the custom-algorithm that will be used for this work.
Detailed information about the sensors and their installation
is provided in this section. Listed below are the different
subsections of this section.

A. EXPERIMENTAL SETUP
The experimental setup consists of sensors, sensor mounting
assemblies, and a controller board. As part of this research,
these sensors were interfaced with an Arduino microcon-
troller, which was used to record and present the results. Here
we categorized the experimental setup into three main units
enlisted:
• Sensing unit
• Processing unit/Microcontroller unit
• Classified output gait phases

FIGURE 4. This Figure 4 shows the IMU sensor and the rotary encoder
installed on the sensing unit in the experimental setup. Arduino UNO
processes the input signals to classify the gait phases.

As seen in Figure 4, the primary components of the experi-
mental setup are explained as well as how the input and output
are related. This experimental assembly is designed in such a
way that the sensing unit can serve as an input transducer to
acquire the data.

As a result, the ‘‘controlling unit’’ calculates output based
on sensor output value by controlling the output electrical sig-
nals. In Arduino UNO, signal processing is performed based
on the sensor’s output. An output signal can be displayed as
a graph on a serial plotter, evaluated as numeric data, and a
spreadsheet can be generated as a CSV or excel spreadsheet.

B. DESCRIPTION OF SENSORS
Sensors based on inertial measurement units are known for
their efficiency and accuracy in capturing complex move-
ments. The lightweight and small size of this sensor make
it an excellent choice for motion tracking. The sensing unit
consists of two main sensors, an IMU (L3G4200D) and a
rotary encoder (KY-040). The IMU is generally equipped
with an accelerometer, magnetometer, and gyroscope to mea-
sure angular velocity, acceleration, and position of any object
based on the specified parameters. This IMUmodel computes
the parameters x, y, & z axes to determine the position of the
body in the space.

We are tracking the lower limb in 3D space and evaluating
its different phases. We found more suitable for our work
the GY-50 IMU model (L3G4200D) more to achieve reliable
results. The specifications of our IMU sensors are as follows:
operating voltage source is (2.4 → 3.6)V with sensitivity
band variations FS ↪→ (250 dps, 500 dps, 2000 dps) and
temperature range is (−40 ∼ +85)◦C.
As the knee joint angle varies during gait, the rotary

encoder can be used to determine the knee angle. The rel-
ative movement of both thigh and shank gives an angle θ
that defines the flexion and extension of the moving leg.
Figure 5 shows how the knee angle changes due to the relative
movement between the thigh and the shank. In one rotation
of the encoder, there are ‘‘40’’ pulses displayed as a sam-
pling frequency. Following are the specifications of the rotary
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FIGURE 5. Metal-designed leg mounting assembly with a sensing unit
placed on the lateral side of the leg is used in an experimental setup. The
anatomy of the femur, tibia, and fibula bones of the leg has been shown
in Figure 5. In the hip, knee, and ankle joints, the knee joint requires
special consideration to compute extension and flexion.

encoder; (30× 18× 30) mm encoder module being operated
on a 5V.Whenwe interfaced the encoder to anArduino board,
a 2-bit gray code output was observed.

C. INSTALLATION OF SENSORS
In the data acquisition phase, sensor placement is one of the
most important and challenging tasks. It is a fact that the fea-
sible placement of the sensors provides precise results to be
evaluated during experiments. In this work, we have installed
the IMU sensor and rotary encoder as a sensing unit as shown
in Figure 6. After installation, these sensors were interfaced
with the Arduino on the designed metallic assembly mounted
on the leg. Considering IMU’s small size and lightweight
characteristics, it is easy to place and mount. The placement
of IMU on a shank is the best option for the tracking of
the lower limb in 3D space. Therefore, we attached an IMU
sensor on the lateral side of the shank that gives good results
for flexion and extension of the knee. While the placement of
the rotary encoder is a tedious job because the encoder may
not be directly attached to any object without a supporting
assembly. During rotation, the assembly holds the encoder
body, while the knob (shaft) is attached to the knee angle.
The encoder assembly can be placed on the lower limb at two
optimum locations.

The encoder assembly can be attached to the lateral side of
the knee joint, which is most suitable for users when evaluat-
ing the results. Therefore, we attached the encoder with this
assembly on the lateral side of the body. This assembly also
facilitates the user to be useful when in the squatting position.

D. WORKING OF THE CUSTOM-ALGORITHM
The proposed algorithm of this work is described in this
section. First, we defined the starting and ending nodes as
x1 and x2 for our work to relate the main objectives followed

FIGURE 6. Labeling of the entire experimental setup from the front and
lateral sides of a human leg can be seen in Figure 6. In addition to the
IMU attached to the shank, a rotary encoder is mounted on the lateral
side of the knee, supported by a bush assembly.

by the outcomes. At the starting point, a person is performing
activities like walking, sitting, standing, lying down, and
running in their environment. Then it evaluates the body’s
speed, its state, and the equilibrium conditions. In Figure 7,
the algorithm based on the given parameters is presented to
evaluate the gait and its phases. The IMU sensor evaluates the
first parameter for the complete tracking of the lower limb
in 3D space. The second parameter describes the knee joint
angle to define the relative motion of the thigh and shank
which also serves as feedback in 3D tracking. In a real-time
environment, speed describes the actual state/activity that a
person performs.

The following possible outcomes are evaluated on the basis
of above described parameters, and the body will be in;

• Static condition: When there is no change in relative
position and angle of the knee joint.

• Dynamic condition: When the change of knee joint
angle and 3D movement is observed followed by some
distance travelled by the individual.

• Leg movement while sitting on chair:When a change
of knee joint angle and position are observed while
sitting on a chair.

• Relationship: Developed among speed, angle and body
states (for static & dynamic behaviors).

The dynamic condition describes the complete movement
of a body. It is further evaluated by including the speed
parameters to define the state of the body. When the dynamic
conditions are in action, the flexion and extension of the body
are observed to define the range of motion (ROM). With the
help of knee flexion and extension, the gait phases are easy
to distinguish.

Analyzing gait requires careful consideration of the factors
involved. The factors that may influence the accuracy of the
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FIGURE 7. Proposed algorithm shown in Figure 7 includes two variables: position and knee angle. The parameters of static and
dynamic equilibrium and leg movement while sitting on a chair were satisfied after computation in a real-world scenario.

gait analysis have been discussed in Table 1. If the step length,
step width, and stride length deviate from the threshold value,
the accuracy decreases. Furthermore, prompt transitions may
disrupt sensor responses, thereby affecting recognition accu-
racy. In addition to low power consumption so that batteries
can last longer, environmental conditions such as weather,
terrain, and carrying conditions may also limit the accuracy
of gait analysis.

E. COMPUTATION OF THE KEY PARAMETERS
Computing the necessary parameters is a key step in the
method proposed to build a relationship. The following math-
ematical relations help to support this work when consider-
ing the variables discussed in the working of the algorithm.
According to the statistical analysis of the body performing
linear path motion, the displacement ‘‘d’’ change in position
is the difference of final position and the initial position of that
body as shown in equation 1 & speed is shown in equation 2.

d = 1x = x2 − x1 (1)

And;

Speed =
1x
t

(2)

On the other hand, angle of knee joint varies with the
change in the leg movement as shown in equation 3.

Similarly;

1θ = θ2 − θ1 (3)

And; θ can be calculated by given equation.

θ =
P
PPR
× (360◦) (4)

OR;

θ = (resolution)× (P) (5)

Resolution =
360◦

PPR
=

360◦

40
= 9◦ (6)

In the above equations 4, 5, and 6 the parameters are
defined as:

P = Pulses per angular movement of rotary encoder
PPR = Pulses per revolution of rotary encoder

Speed =
(DPP)× (P)

time
(7)

And;

DPP =
Total distance covered under PPR

PPR
(8)

where;
DPP = Distance per pulse
Total distance covered under PPR = (195.6 cm)
Distance under PPR = 195.6 cm
DPP = 97.8

20 = 4.89 cm
Computing the position, and angular movement, we can

easily predict whether the leg is in flexion or extension. It is
a challenge to define a person’s speed while performing any
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TABLE 1. Factors and their influence on accuracy of gait analysis.

activity and state of the body by relating both positions and
the knee joint angle of the leg. By using these spatio-temporal
parameters and the relationships, it is now possible to predict
the speed and body state of people walking or running at
different speeds.

Table 2 describes the detail of the key-value pair of all the
major terms used. It summarizes the outcomes computed after
experimentation and discussion in the different cases.

IV. RESULTS AND DISCUSSION
As a result of the experiments being conducted in the real
world, all possible outcomes were successfully observed.
The gait analysis system we developed is equipped with a
sensing unit that recognizes gait while calculating the state
of equilibrium. Kinematic systems record body orientation,
joint angles, linear and angular velocities, and accelerations
during gait analysis. Our work involved tracking the lower
limb in space using an IMU sensor and a rotary encoder to
measure the orientation of the leg. Moreover, the encoder
provides feedback for the relative motion of the thigh and
shank based on the changing position. Static and dynamic
conditions of the body are evaluated using both position and
knee angle variables. We also evaluated the speed and state
of the body based on its dynamic nature.

A. CASE#1: BODY IN STATIC CONDITION
When the resultant of all forces acting on the body is zero then
the body is said to be in static equilibrium. In gait analysis
static condition is achieved when all forces acting on the body
including weight become equal to the ground reaction force
the first condition of equilibrium is satisfied [49]. And it is
depicted:

if

{
d = 1x = 0, No movement
1θ = 0, No knee deflection

As a result of our proposed methodology in our previous
work, a body is in static equilibrium when the orientation
variables remain constant. There is no change in the orien-
tation of the leg in space in relation to its surroundings.

Due to zero displacement of the body with respect to level
ground, there is no change in the orientation of the body.

It satisfies the static condition for the body to be lying down
or standing.

B. CASE#2: BODY IN DYNAMIC CONDITION
A body is said to be in dynamic condition when the sum of all
forces, torques, and moments is zero. When the body changes
orientationwith respect to level groundwith uniform velocity,
it is considered to be dynamic. This condition of equilibrium
is satisfied, in our current work.

if

{
d = 1x 6= 0 , Body moves
1θ 6= 0 , Knee deflects

A graph is plotted between the changing position of the leg
and the time taken by the body as shown in Figure 8. Now,
Figure 9 presents the complete analysis of the gait cycle of the
body with all the phases as labeled. The change in the angle
of the knee joint is measured by using a rotary encoder as
shown in Figure 10. In general, the leg orientation is divided
into the position of the leg measured by the IMU sensor and
flexion/extension measured by the encoder. The stride length,
step length, step width, and ROM for the current work are
defined:

Stride length = (97.8 ± 1) cm
Step length = (48.9 ± 0.5) cm
Step width = (21 ± 2) cm
Range of motion (ROM) = (47◦ ∼ 153◦)

C. CASE#3: LEG MOVEMENT WHILE SITTING ON CHAIR
Leg movement with no velocity occurs when knee angle and
position variables change while sitting on a chair. It, there-
fore, defines the dynamic movement of the moving legs.
While sitting on a chair and moving the leg, it is observed
that the leg is moving in space but without any acceleration
because of the ‘‘0’’ distance. The IMU still tracks 3 dimen-
sional movement with x, y, and z axes.

The custom benchmark for comparative analysis for the
state-of-the-art is presented. The current work was com-
pared with those who analyzed gait using wearable sensors
on able-bodies on single or both legs. We discussed gait
parameters, stance phase, swing phase, knee angle, posi-
tion, speed, equilibrium, and body states. We proposed an
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TABLE 2. Technical specifications of the proposed gait analysis method.

FIGURE 8. Plot of the IMU data acquired for the normal gait cycle can be
seen in Figure 8. The IMU-based 3D tracking of the leg shows the leg
movement in the x, y, and z planes.

FIGURE 9. This Figure 9 illustrates the normal gait cycle along with
phases and sub-phases for each z-axis plane.

encoder-based feedback system as a special addition. There is
no such circuitry/mechanism found in the research presented
in Table 3.

FIGURE 10. According to Figure 10, the rotary encoder measures the
degree of flexion and extension of the knee joint as measured by the
rotary encoder.

D. CASE#4: RELATIONSHIP BETWEEN SPEED AND
STATE OF BODY
When a body is in a dynamic state, its position and knee angle
variables change over time. And these variables are directly
related to the speed and state of the body. It defines the slow,
normal, and high speed of the moving body based on the
known variables.

• If the frequency of changing position and knee angle is
high then the speed is also high reflecting the movement
of the body at high speed (running).

• If the frequency of changing position and knee angle is
moderate then the speed is also normal and the body is
moving with normal speed (normal walk).

• If the frequency of changing position and knee angle is
low then the speed is also low and the body is moving
with low speed (slow walk).

if


Speed < TV , Slow speed (slow walk)
Speed = TV , Normal speed (normal walk)
Speed > TV , High speed (running)
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TABLE 3. Comparative analysis for the able-bodied persons considered for gait analysis using wearable sensors.

Note: TV ↪→ Threshold value

if


1θ < TF, Slow speed (slow walk)
1θ = TF, Normal speed (normal walk)
1θ > TF, High speed (running)

Note: TF ↪→ Threshold frequency
Keeping in view the work in [41], a gait tracker or 3D

tracking and positioning of the lower limb was carried out
by installing different IMUs on the thigh, shank, and hip
of the body. The sensor installation scheme described above
provides a better understanding of gait metrics. Due to the
different data sources of sensors; managing and data execu-
tion can be challenging. The use of multiple sensors is time
taking and requires more time in troubleshooting. As a result
of the work in [42], we can replace different inertial sensors
on different parts of our bodies with a single inertial sensor
mounted on the shank.

It was previously reported that potentiometer assemblies
are being used to maintain the static equilibrium of the body
during a gait cycle in [49] and [56]. In the current work, the
potentiometer assembly is replaced with the encoder assem-
bly. Our custom algorithm identifies the leg’s position and
knee angle to relate them to body states.

By using the above mention case 1, case 2, and case 3 it is
summarized that all variables are used for computing speed
and state of the body. Equation 9 shows that both position and
knee angle are directly related to the speed and state of the
body. According to equation 9, when the orientation of the
body occurs as it displaces with respect to the surrounding
then it indicates that the body is in dynamic conditions of
walking and running.

1x ∝ 1θ ∝ speed ∝ state of the body (9)

It is essential for individuals to maintain body equilibrium
when they are at risk of slipping or falling. Slipping may
happen when step length keeps on increasing while walking
and there is a danger of falling on the ground when the

step width is zero. Amputees being trained to adjust their
prosthetic devices are at high risk of falling when the gait
analysis model is being tested on them. Consequently, the
equilibrium ensures that gait analysis will be safe for both
healthy and amputees (while wearing prostheses).

V. CONCLUSION AND FUTURE WORK
During gait analysis, spatio-temporal parameters were cal-
culated by incorporating equilibrium conditions at different
speeds. According to the gait analysis, the stride length was
calculated to be 97.8 cm, the step length to 48.9 cm, and the
step width to be 21 cm. The sensing unit attached to a metal-
designed leg mounting assembly proved an excellent idea due
to the feedback system. An encoder-based feedback system
defined by ROM validated the gait phases predicted by the
IMU placed on the shank. The flexion observed was 47◦ and
extension was 153◦ and this ROM proved the capability to
recognize all ‘‘7’’ phases of the gait cycle. The custom algo-
rithm computes equilibrium conditions based on the speed
using position and knee angle variables received from the
sensing unit.

When performed on able bodies, gait analysis may prevent
them from falling or slipping, implementing the equilibrium
approach. When we test the gait analysis model on amputees,
they may be at high risk of falling. Therefore, both healthy
and amputated persons are safe in equilibrium conditions.

To relate the gait analysis with the equilibrium, the vari-
ables speed and state of the body were computed first. Execu-
tion of the algorithm validated the static conditions (case#1,
i.e., lying down and standing states) and dynamic condi-
tions (case#2, i.e., normal walking, running, and slow walk).
The normal walk was observed at (TV, TF), running with >
(TV, TF), and a slow walk with < (TV, TF). Case#3 presents
the observation of leg movement while sitting on a chair,
which is also a form of static condition as the leg swings with
zero velocity. Based on speed, a direct relationship was found
between static and dynamic behaviors of the body. It is stated
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that the frequency of position and knee angle represents the
speed and state of body changes concerning time, leading to
the prediction of sub-phases of the gait.

The limitations of the body’s static and dynamic equilib-
rium states subject to the current research work are described
here. The person didn’t carry any special load when consid-
ered for gait analysis for different body states. Furthermore,
the environment was level ground to analyze the gait of
walking persons. Static equilibrium states of the body are
achieved only when the subject is not moving concerning
level ground. All the dynamic states of the body are restricted
unless there is a change in leg orientation.

The individuals may not perform squatting in the current
gait analysis system with the defined ROM. It is suggested to
increase the range of flexion to perform the squatting. This
may be beneficial while in exercise to strengthen the muscles
and to offer prayer. Body equilibrium facilitates individuals
when they are at risk of falling or slipping.

Considering age, gender, weight, and height factors, the
presented experimental setup may be used on a more sig-
nificant number of individuals. A more natural gait may
be achieved by collecting datasets with various features.
Passive/active prosthetic knee may be tested after a well-
trained gait. A typical prosthetic knee can be judged based
on its performance compared to a human’s normalized mean
gait curve. It may also transform passive prostheses into semi-
active or active prosthesis devices. The wearers of lower limb
prostheses may benefit from this exercise.
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