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Abstract—sEMG-based gesture recognition is widely 
applied in human-machine interaction system by its unique 
advantages. However, the accuracy of recognition drops 
significantly as electrodes shift. Besides, in applications 
such as VR, virtual hands should be shown in reasonable 
posture by self-calibration. We propose an armband fusing 
sEMG and IMU with autonomously adjustable gain, and an 
extended spatial transformer convolutional neural network 
(EST-CNN) with feature enhanced pretreatment (FEP) to 
accomplish both gesture recognition and self-calibration 
via a one-shot processing. Different from anthropogenic 
calibration methods, spatial transformer layers (STL) in 
EST-CNN automatically learn the transformation relation, 
and explicitly express the rotational angle for coarse 
correction. Due to the shape change of feature pattern as 
rotational shift, we design the fine tuning layer (FTL) which 
is able to regulate rotational angle within 45°. By combining 
STL, FTL and IMU-based posture, EST-CNN is able to 
calculate non-discretized angle, and achieves high 
resolution of posture estimation based on sparse sEMG 
electrodes. Experiments collect frequently-used 3 gestures 
of 4 subjects in equidistant angles to evaluate EST-CNN. 
The results under electrodes shift show that the accuracy 
of gesture recognition is 97.06%, which is 5.81% higher 
than CNN, the fitness between estimated and true rotational 
angle is 99.44%. 

 
Index Terms—Self-calibration, spatial transformer, surface 

electromyography, gesture recognition, robustness. 
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I. Introduction 

esture recognition, as a human-machine interface (HMI) 

technique, has been adopted and utilized in numerous 

fields of biomedical science, such as upper limb and hand 

rehabilitation, minimally invasive robotic surgery, prosthetic 

technology, telesurgery navigation, virtual reality (VR) assisted 

therapy, psychotherapy, and neural interface. Currently, the 

major technical routes for gesture recognition include computer 

vision based, inertial sensor based and strain sensor based 

methods. Every approach of these acquisition and recognition 

with its own strengths plays a role in different scenarios. 

However, these approaches can only trace movements of hands 

and fingers through outward manifestations, and are not 

suitable for amputees. Gesture recognition based on surface 

electromyography (sEMG) is capable to perceive part of human 

ideation by electrodes against the skin around muscles that 

significantly distinct from aforementioned methods [1]. 

Consequently, by processing of multi-channel biological 

signals, sEMG-based method is able to not only recognize 

gestures, but also provide a theoretical basis for psychological 

diagnosis [2]. Besides, based on its characteristic of low power 

consumption, sEMG detection is deployed on wearable devices 

such as smart watches and armbands, which enable biological 

monitoring whenever and wherever [3], [4]. 

Nevertheless, due to the rotational shift of sEMG armband in 

practice, matching algorithms of feature patterns show 

descending accuracy and robustness of gesture recognition. 

Besides the deviation of rotational angle from wearing factors, 

the sliding between skin and muscle when rotating forearm 

brings rotational angle as well. In some interaction scenes such 

as remote manipulator controlling and VR application [5] [6], 

the deviation of rotational angles would lead to opposite results. 

Meanwhile, frequently manual calibrations may bring 

inconvenience and misoperation which is not beneficial to long-

term wearing. Therefore, gesture recognition algorithm 

endowed with self-calibration is more friendly and reliable to 

users. 

 In response to gesture recognition robustness concern and 

self-calibration issue, investigators employed various machine 

learning (ML) approaches in recent years. Among them, 

convolutional neuronal network (CNN) have been employed 

most extensively [7], [1]. Wei et al. proposed a multi-view 
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CNN framework based on sparse sEMG electrode array. The 

framework aggregates sEMG feature maps at early and late 

phases of neural networks, then select the most reliable feature 

for improving classification accuracy [8]. Further, Wei et al. 

replaced the sparse sEMG electrodes with high density (HD) 

sEMG electrode array, and presented a divide-and-conquer 

strategy to increase recognition accuracy by tandem fusing 

features extracted from multi-stream CNN [9]. Zhang et al. 

considered the dimension of the temporal information and 

proposed STF-GR that decomposing primitive signals into a 

series of stationary signals and utilizing RCNN to establish the 

gesture recognition model [10]. To improve the training 

efficiency of neural networks, Chen et al. applied transfer 

learning and demonstrated the superiority of combining CNN 

and LSTM for recognition [11]. Tsinganos et al. exploited 

Hilber curve to characterize the 2-D bioelectrical signals image 

[12], [13]. Advantages of this approach include making time 

domain data serialized and increasing the processing efficiency. 

These approaches optimizing gesture recognition by derived 

CNN are based on simple sEMG data. Mao et al. fused data 

from accelerometers and sEMG electrodes by 12 detection unit. 

Though GRNN trained by the fusion dataset, Mao's approach 

allows continuously motion tracking of fingers [14]. Besides 

CNN and its variations, many ML-based methods had been 

adopted to fulfill classification tasks. Cheng et al. took rapid 

spiking neural network (SNN) learning approach, in which the 

machine is able to save power consumption and support high 

computing capability for classification [15]. Cote-Allard et al. 

proposed an adversarial neural network and a new dataset to 

improve the online accuracy of EMG-based gesture recognition 

[16]. Jaber et al. proposed three types of spatial feature sets, and 

combined histogram oriented gradient (HOG) algorithm and 

support vector machines (SVM) to achieve advantageous 

performance [17]. 

 However, only gesture recognition is not enough in practical 

application. For example, in interactive virtual scenarios of VR 

therapy, patients need to know the correct posture of gesture 

and avoid holding props in inconsistent direction. Thus, 

researchers paid more attentions to the calibration of electrode 

shift. Li et al. proposed shift estimation and adaptive correction 

(SEAR) method based on activation polar angle (APA). By 

calculating the mean absolute value (MAV) of bioelectricity 

electrical data from 8 electrodes, the approach is able to get the 

APA in polar coordinate system and calibrate the bias of 

armband rotation, then classify 8 types of gestures by a pre-

trained SVM [18]. Hu et al. presented an approach which is able 

to self-calibrate based on the novel conception of muscle core 

activation regions. Simultaneously the approach establishes 

hybrid model consisting of CNN and LSTM to classify, and has 

risen the gesture recognition accuracy by 5.72% [19]. Wu et al. 

proposed a strategy of electromyography enhancement against 

electrode shift by median filters and interpolation. After data 

augmentation, the method enables gesture recognition by 

utilizing dilated convolutional neural network.  This method has 

achieved promising results with accuracy over 95.34% as 

electrodes shift [20]. Depending on arm's internal conductivity 

profile and the anatomic principle, Kim et al. presented an 

approach addressing muscle activation source in forearm for 

recognizing sEMG interface rotation [21], [22]. He et al. 

proposed a novel framework called position identification (PI). 

As the anchor gesture performed by user, selected optimal 

classifier achieved position and gesture recognition [23], [24], 

[25]. 

 In this paper, we proposed a self-developed armband 

composed of 8 sEMG electrodes and a 9-axis IMU. The 

armband is able to process sEMG signals on board, and adjusts 

the signal gain of hardware autonomously for different users. 

Furthermore, by combining IMU and sEMG data in a loosely 

coupled way, the armband achieves gesture posture calibration. 

Besides, an extended spatial transformer convolutional neural 

network (EST-CNN) is proposed to improve robustness of 

sEMG-based gesture recognition, and self-calibrate rotational 

bias simultaneously when armband is worn freely. Due to the 

rotational, scaling, shearing, and inversional invariance of 

spatial transformer network (STN) [26], adaptability and 

reliability of gesture recognition can be optimized. Another 

characteristic of STN is able to denote affine parameters 

 

 
(a)                                                                                                               (b) 

Fig. 1.  (a) The diagram of armband and gestures. (b) The structure diagram of self-developed circuit and system.  
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explicitly, which can be used for calibrating. However, as 

shown in Fig. 2, due to the muscle distribution of forearm is 

separate, the sEMG feature patterns would be different as 

rotating armband. Therefore, STN cannot be adopted in this 

case directly. Instead, the EST-CNN combines STN and fine-

tuning layer (FTL) together for estimating continuous 

correcting angle. Additionally, a dataset, including 4 subjects’ 

3 gestures at 32 rotational positions, is produced for supervised 

learning.  

 In conclusion, results under electrodes shift show that the 

accuracy of gesture recognition is 97.06%, which is 5.81% 

higher than CNN, the fitness between estimated rotational angle 

and true value is 99.44%. 

 The remainder of this paper is structured as follows. First, the 

process of EST-CNN is elucidated considerable detail in 

Section II. Section III presents and analyzes experimental 

results and comparisons. The associated discussion has been 

taken in Section IV. Finally, the paper is summed up in Section 

V.   

 

II. METHOD 

To self-calibrate the posture of the armband in the world 

coordinate system while recognizing gestures, data from the 

IMU and bioelectric array are required to be fused for 

processing. The posture of the armband relative to the world 

coordinate system is obtained through the posture calculation 

of the 9-axis IMU, and the sEMG electrode array can explicitly 

obtain the offset angle of the armband through EST-CNN 

network processing. By combining the two posture conversion 

relations, the final calibration result can be obtained. For 

different gestures, muscle groups of forearm generate different 

intensity of sEMG signals. After signals are acquired by sensing 

modules, system will pre-process the data firstly, and extract 

features as the type of radar image in polar coordinates. In the 

present study, we choose three gestures (as shown in Fig. 1), 

which are often used in interactive scene (i.e. leftward sliding, 

right sliding and click).  To estimate the continuously rotational 

angle in this algorithm, we recorded these gestures at specific 

wearing rotational angles (i.e. 0°, 15° and 30° respect to initial 

position) as the dataset for EST-CNN training and validation. 

Among the network, spatial transformer layers (STL) are set to 

learn the affine relation between rotating feature patterns. The 

results from ST explicitly express the transformations such as 

translation, shearing, scaling and rotation by affine matrix with 

6 parameters. But the affine matrix of ST layer only shows the 

rotational relation in one type, the angles between "15°-Click"  

and "30°-Click" (as shown in Fig. 8) should be estimated by FT 

layer. By integrating the outputs from ST and FT layers, the 

algorithm enables gesture recognition and rotational correction 

simultaneously. 

 

A. Circuit and System 

As shown in Fig. 1, the circuit system of the armband mainly 

consists of 8 sEMG processing units, MCU (Microcontroller 

Unit) main board, IMU and signal acquisition board. 

sEMG processing unit: The sEMG processing unit acquires 

differential signals through a pair of electrodes based on copper 

coated with AgCl. According to the characteristics of sEMG 

signals, such as frequency from 20Hz to 500Hz and voltage 

ranging from 0.35mV to 1mV, we designed the circuit with 

adjustable capability. As shown in Fig. 1, sEMG signals 

conducted through the electrodes are firstly processed by low-

pass filters to eliminate part of noise, and then their differential 

signals are amplified by the instrumentation amplifier at a gain 

of 10, as well as by a high-pass filter to further extract the 

effective components. We set the digital potentiometer 

MAX5439 into the operational amplifier circuit for automatic 

adjustment of the amplification gain, which helps the 

consistency and adaptability of the product. 

However, the specific value of the gain 𝐺′  depends on 

current gain 𝐺 and the scaling a, d of Eq. (11) fed by the STL 

in the EST-CNN, as can be seen in section D. (3) of Section II. 

𝐺′ =
𝑎 + 𝑑

2
𝐺                                      (1) 

 

Main processing unit: After the signal processing in 

hardware, the sEMG signals are firstly received by the signal 

acquisition board and processed by the 16-bit high-precision 

ADC conversion unit. Then, the high speed communication 

with MCU (STM32 selected in this case) through SPI protocol 

ensures the processing in real time. At the same time, the 

STM32 can also adjust the digital potentiometer in reverse to 

suit different users. In addition, STM32 configures the IMU via 

I2C bus to set the sampling rate, accuracy and other parameters 

of each sensor (accelerometer, gyroscope and compass) to solve 

the IMU postures. Since the refresh rate of the IMU posture 

       

 
(a) 

 

 
(b) 

 
Fig. 2.  (a) Electrode and arm cross section. (b) Radar mapping of 
different gesture in different angles. 
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depends on the sampling rate of the magnetometer and the 

calculation of the processor, and is lower than the sampling rate 

of the sEMG. In the data synchronization module, we set the 

sampling rate as 100Hz, and package sEMG and IMU data 

together for sending to the host.  

Posture calibration: Since the posture calculated by IMU, 

𝑃𝐼 , is based on its own initial coordinate system, it needs to be 

transferred by linear coordinate transformation (LCT), as 𝑇𝑊
𝐼 , 

to the reference coordinate system as 𝑃𝑊
𝐼 . Besides, the sEMG 

signal needs further data enhancement to form a radar map, 

which is processed by EST-CNN in host (as shown in Fig. 1) to 

obtain a rotation matrix 𝑇𝐼
𝐴(𝜃) relative to the IMU coordinate 

system. The final calibrated posture 𝑃𝑤
𝐴  is obtained by the 

product of 𝑃𝑊
𝐼  and 𝑇𝐼

𝐴, as in Eq. (3). 

 

𝑃𝑤
𝐼 = 𝑇𝑊

𝐼 𝑃𝐼                                        (2) 

𝑃𝑤
𝐴 = 𝑇𝐼

𝐴(𝜃)𝑃𝑊
𝐼                                    (3) 

 

The 𝜃 in Eq. (3) is the calibration angle between forearm and 

IMU that acquired from Eq. (15). 

 

B. Biological Basis and Signal Acquisition 

As the terminal execution unit of neuromuscular system 

(NMS), skeletal muscles are precisely regulated by cerebral 

cortex through descending pathways. Hence machine is capable 

to understand a part of human intention according to 

myoelectric signals collection and processing. In NMS, motor 

neuron, axons, skeletal muscle fibers and neuromuscular 

junctions make up the motor unit (MU) which is the most 

fundamental unit of NMS. Among them, the neuromuscular 

junction (NMJ), as the chemical synapse between muscle fibers 

and motor neurons, plays a role to convert bioelectrical energy 

from chemical energy by acetylcholine. Then bioelectrical 

signals are transferred between volume conductor such as body 

fluid and fat, finally sensed by electrode on skin. Based on the 

above theoretical underpinnings of biology, we carried out this 

study of sEMG-based gesture recognition and self-calibration. 

To easily collect the data of sEMG, a scalable armband 

including 8 sEMG signal processing modules is designed. As 

shown in Fig. 2, these modules are uniformly appressed to 

different regions of forearm at initial moment. Every signal 

processing module sets 3 filters and 2 amplifiers which are 

regulated to match the amplitude frequency characteristic of 

sEMG signals (i.e. spectral range is 20-500Hz, voltage 

amplitude is 0.35-1mV). The customized processing module 

(shown in Fig. 1) is helpful to save computational power of 

processor and enhance the readability of sEMG signals. 

 

C. Feature Enhanced Pretreatment 

Different from most commonly employed feature extraction 

approaches which are based on analysis of signal characteristics 

in the time domain, the frequency domain and the time–

frequency domain [27], we acquire 8 channels of sEMG signal 

to organize radar image on polar coordinates as the feature 

pattern (Fig. 2). Besides, to obtain a reliable radar pattern, it is 

essential to process raw sEMG signals by some approaches, 

such as finite impulse response (FIR) filters, normalization, and 

envelop calculation. Fig. 3 shows the signal process 

performance in this case. 

Not only processing signals for each sEMG channel 

independently, but to diminish experimental artefacts, this 

paper presents the FEP (feature enhancement pretreatment) 

method by considering 8 channels together. As shown in Fig. 4, 

the prick at C-7 in the radar map of (a) is diminished, 

meanwhile the triangle becomes sharper.  

Every sample c  is represented as an array with 8 sEMG 

signal measurements as: 

 

c = [𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8]                   (4) 
 

 The root mean square (RMS) of c is calculated to evaluate 

the average level as:   

  

𝑐𝑅𝑀𝑆 = √∑|𝑐𝑛|2

𝑁

𝑛=1

𝑁⁄                               (5) 

  

 
(a)                                                  (b) 

 
Fig. 4.  (a) The raw feature pattern. (b) The augmented feature pattern. 

        

 
(a) 

 
                                                               (b) 
 
Fig. 3.  (a) The raw signal from one of electrodes of sEMG-based 
armband. (b) The processed signal after pretreatment. 
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w𝑛 is the weight for regulating the value of channel 𝑛. 

 

w𝑛 = 𝑐𝑛 𝑐𝑅𝑀𝑆⁄                                      (6) 

  

 To keep distinct values and diminish the noise, we present a 

specified sigmoid function to process 𝑤𝑛 as: 

𝑤𝑛
′ = 2 (

1

1 + 𝑒−2𝑤𝑛
− 1)                           (7) 

 

By the array of 𝑤′  (whose element is 𝑤𝑛
′ ), we get the 

enhanced sample c𝑒 as: 

𝑐𝑒 = 𝑐 ∙ 𝑤′𝑇
                                       (8) 

 

D. EST-CNN Construction 

CNN only has rotational invariance of feature maps in a 

small range of pattern shift. But in the application of sEMG-

based gesture recognition by armband, feature maps always 

rotate in a large scale and weaken the reliability of recognition. 

To overcome these challenges, we set ST layers in neural 

networks to learn the affine relation and correct input feature 

patterns. After processed by ST layers, Feature maps are much 

easier classified by CNN, and improve the robustness of gesture 

recognition. In turn, due to the affine relation is able to be 

expressed explicitly by STL, we can obtain the rotational 

relation between input feature patterns and correct feature 

patterns on polar coordinates. In this approach, the armband 

coordinate is able to be reset automatically to reference 

coordinate when gesture is recognized. 

Skeletal muscles of forearm act independently. To each of 

them, the strongest sEMG signal intensity is from the region 

with the most abundant skeletal muscle fibers, and weakens 

nonlinearly with fibers lessening. According to this principle, 

as rotating armband on forearm, the feature pattern cannot 

remain unchanged, just like patterns at different rotation angles 

in range from 0 to 45 degrees shown in Fig. 8. Therefore, to 

solve the limitation of STL which is only able to estimate the 

rotation between same type feature patterns but the patterns in 

45°, we proposed the FTL which is able to analyze the 

probability of every category for estimating the rotational angle 

within 45 degrees. To estimate the small rotation, we need a 

protractor with 3 ticks (at 0°, 15° and 30°). By comparing the 

similarity between input pattern and the general patterns at 3 

ticks, FTL is able to estimate the rotational angle in the 

protractor. 

 
1) Standard Neural Networks Building 

Fig. 5 shows the system flow of the EST-CNN typical 

structure. However, considering about the performance in 

different cases, many other possible network structures exist, 

such as inserting more STLs and CNNs, or adapting the order 

of layers in a sequence. Before processed in EST-CNN, the 

signals sampled by sEMG-based armband should be 

preprocessed to generate feature patterns as described in 

Section II. C. Next, the EST-CNN would operate in training and 

estimating modes.  

In training mode, STL forward propagates incoming feature 

maps and outputs parameters of affine matrix for correcting. 

Additionally, STLs can be putted in different links of networks 

to transform the posture of feature maps. Then, the corrected 

feature map would be transmit to CNN to classification. Based 

on the dataset described in Section II. E, we defined nine labels 

for NLL (Negative Log-Likelihood) loss-function calculation 

which is used to regulate the weights of network by back 

propagation. 

 In estimation mode, feature maps are imported to EST-CNN 

and propagated forward directly. Different from the training 

mode, FTL plays the role of accomplishing gesture 

classification, and combines STL together to support rotational 

angle calibration. 

 
2) sEMG-based Gesture Recognition 

To recognize the gesture more precisely, FTL sums up the 

probability value of same gesture from nine classifications. By 

comparing each sum value of gesture, FTL selects the category 

with the maximum value as the final gesture. Denote the 

probability array 𝑝𝑐𝑎𝑡 with nine categories from softmax as: 

 

𝑝𝑐𝑎𝑡 = (𝑝𝑐
0, 𝑝𝑐

15, 𝑝𝑐
30, 𝑝𝑙

0, 𝑝𝑙
15, 𝑝𝑙

30, 𝑝𝑟
0, 𝑝𝑟

15, 𝑝𝑟
30  )     (9)     

     

 where 𝑝𝑐
0 , 𝑝𝑙

15, and 𝑝𝑟
30 represents the category probability 

of gesture “Click”, “Left” and “Right” at rotational angle of 0°, 

 
 

Fig. 5.  The standard processing flow of EST-CNN which includes STL, FTL and CNN modules. 1) Training path. 2) Estimation path. 
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15° and 30°, respectively. The similar expression for others. 

Then, the probability of each gesture is summed up by Eq. (10), 

and select the maximum one as gesture by Eq. (11). 

 

{

𝑝𝑐 = 𝑝𝑐
0 + 𝑝𝑐

15 + 𝑝𝑐
30 

𝑝𝑙 = 𝑝𝑙
0 + 𝑝𝑙

15 + 𝑝𝑙
30

𝑝𝑟 = 𝑝𝑟
0 + 𝑝𝑟

15 + 𝑝𝑟
30  

                            (10) 

 

𝐺𝑒𝑠𝑡𝑢𝑟𝑒 = 𝑚𝑎𝑥{𝑝𝑐 , 𝑝𝑙 , 𝑝𝑟}                          (11) 

 
3) Rotational Angle Correction 

Spatial Transform Layer: STL is a kind of neural networks 

that specifically utilized to process the affine transformation. As 

shown in Fig. 6, the typical structure of STL is consisted of 

localization net, grid generator and sampler. It also supports the 

end-to-end method to train the transformer networks without 

indicating detail rotational angles. In this case, feature patterns 

are set up in planar polar coordinates with the center of origin, 

thus it could barely be translated or scaled in large amplitude. 

According to this particular situation, we specified the ST layer, 

and made its output parameters associated with rotation, 

shearing and scaling. Then, as described in Eq. (12) and (13), 

the affine matrix would be established by these parameters. 

What’s more, the sampler in STL applies bilinear interpolation 

for making coordinates differentiable. 

 

[
𝑥𝑙

𝑦𝑙
] = [

𝑐𝑜𝑠 𝜃𝑙−1
𝑙 𝑠𝑖𝑛 𝜃𝑙−1

𝑙 0

− 𝑠𝑖𝑛 𝜃𝑙−1
𝑙 𝑐𝑜𝑠 𝜃𝑙−1

𝑙 0
] [

𝑥𝑙−1

𝑦𝑙−1

1
]          (12) 

 

In Eq. (12) (13), (𝑥𝑙 , 𝑦𝑙)  is the index number of pixel in 

feature maps of 𝑙 layer, (𝑥𝑙−1, 𝑦𝑙−1) represents the index in 𝑙 −

1 layer. Eq. (12) presents rotational matrix, and  𝜃𝑙−1
𝑙  is the 

rotational angle from layer L-1 to layer L. In Eq. (13), 𝑎, 𝑑 are 

magnifications of scale, and 𝑐, 𝑏 stand for shearing. 

 

[
𝑥𝑙

𝑦𝑙
] = [

𝑎 𝑏 0
𝑐 𝑑 0

] [
𝑥𝑙−1

𝑦𝑙−1

1
]                        (13) 

 

 In EST-CNN, different transformations are adopted for 

improving performance. Rotational STL is mainly used to 

estimate rotational angle, and scaling and shearing STLs are 

applied for correcting the shape of feature pattern. 

On the other hand, the scaling size of the pattern also 

represents the signal amplitude of the sEMG. The system 

proposed in this paper has the ability of gain adaption of 

hardware, and the gain value to be adjusted can be obtained 

according to Eq. (1) in Section II.  

 

 Fine Tuning Layer: FTL is utilized to estimate the rotational 

degree of input feature maps in 45 degrees. As the 8 electrodes 

of armband divide 360 degrees into 8 equal parts, feature 

patterns are repetitive at every 45 degrees. However, during 

rotating in 45 degrees, patterns cannot keep invariant as shown 

in Fig. 8. In FTL, 45 degrees are divided into 3 parts equally as 

protractor ticks (i.e. 0°, 15° and 30°). After getting the output 

of Softmax, we would obtain the probability of each category 

which is helpful to judge the similarity between input patterns 

and the patterns on ticks. The higher similarity stands for the 

closer to degree ticks. Besides, due to the patterns at 0° and 45° 

are similar, the 𝑝0 represents 0° or 45° in options as shown in 

Fig. 7. If the estimated angle is in the S1 or S2 area, the 

probability 𝑝30 or 𝑝0 would be the minimum, at this moment, 

𝑝0 stands for the similarity with the pattern at 0°. However, in 

the S3 area which is away from the 15° tick, 𝑝0 would represent 

the similarity with the pattern at 45°. The process of FTL is 

illustrated by equations below. 

 

𝜃𝑓𝑡 = 𝑇(𝑝0, 𝑝15, 𝑝30) 

= {

𝜋

12
𝑝15 +

𝜋

6
𝑝30   , 𝑚𝑖𝑛(𝑝0, 𝑝15, 𝑝30) = 𝑝0 𝑜𝑟 𝑝30

𝜋

12
𝑝15 +

𝜋

6
𝑝30 +

𝜋

4
𝑝0   , 𝑚𝑖𝑛(𝑝0, 𝑝15, 𝑝30) = 𝑝15

  (14) 

 

 The coarse tuning angle by STL is 𝜃𝑠𝑡, and the fine tuning 

angle by FTL is 𝜃𝑓𝑡, the calibration angle 𝜃  is: 

 

𝜃 = 𝜃𝑠𝑡 + 𝜃𝑓𝑡                                  (15) 

 

E. Experimental Design 

In the experiments designed, we adopt the armband as 

described previously in Fig.1, to provide biological data to 

upper host for data processing and ML. The experiments 

enlisted 4 subjects (2 males and 2 females, maximum girth of 

forearm is 23.7~27.5cm), who finished a sequence of gestures. 

By wearing the armband at the region with the most abundant 

muscle fibers (i.e. maximum girth) of forearm, subjects made a 

gesture separated by 5 seconds of silence, and hold every 

gesture for 1 second. We collected about 5 to 10 times of action 

 
 

Fig. 6.  The flow-process diagram of STL. 

 
 
Fig. 7.  The flow-process diagram of FTL. 
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as a group for every classification.  

To valid the performance of gesture classification as 

electrodes shift, we set the armband at rotational angle of 0 

degree, 15 degree and 30 degree related to initial position to 

record 3 gestures as shown in Fig. 8. In other words, there are 9 

classifications (i.e. 3 gestures at 3 postures) in the dataset. 

Subsequently, we selected good data and ignored dirty data 

from the raw dataset. Based on the selected dataset from 8 

sEMG channels, the feature pattern is established on an 8-

dimensional polar coordinate system as image file type. After 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 8. Feature patterns of 3 gestures (from top to bottom: click, left, right) at 5 rotational angles(from left to right: 0°, 15°, 22.5°, 30°, 45°). 
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that, the upper computer specifically enhanced the selected 

dataset by rotating patterns in 45 degree for 7 times, and saved 

the augmented patterns in each time. For machine learning, the 

augmented dataset was divided into 90% and 10% for training 

and validation respectively (i.e. 42904 training data and 5303 

validation data). 

To compare the classification accuracy of different structures 

of deep neural network, especially including or not STL, we 

designed an experiment based on our dataset. What's more, we 

designed experiments to valid the calibration performance by 

using STL and FTL in estimating rotational angles. 

The network of experiments consists of two STL modules as 

shown in Fig. 9, one FTL module and CNN module with input 

data size of 1×84×84. The STL and FTL are described in D. (3) 

of this section, and their standard structures are used in the 

experiment. In the CNN module, the first convolutional layer 

uses 10 kernels with kernel size of 1×5×5 and downsampling 

with maxpool; the second convolutional layer uses 20 kernels 

with kernel size of 10×5×5 and downsampling with maxpool. 

Then the flattened data (1×6840) is imported into the fully 

connected layer (6840, 50) with ReLU activation function. 

After dropping out some neurons, the data are finally imported 

into the fully connected layer (50, 9) and classified by softmax.  

 

III. RESULTS 

The primary purpose of proposing EST-CNN is to enhance 

the robustness of gesture recognition and enable rotational self-

calibration of sEMG-based armband. We comprehensively 

evaluate the robustness by testing accuracies under different 

scenarios, such as armband worn at different postures by 

different subjects. The accuracy of estimated rotational angle is 

an essential indicator to evaluate the performance of self-

calibration, which is demonstrated in the following experiments. 

 

A. Robustness of Gesture Recognition 

To evaluate the robustness of EST-CNN in gesture 

recognition, we designed experiments to test the performance 

of armband over two aspects of rotation and worn by different 

people. In the first experiment, we compared the accuracy for 

gesture recognition with the datasets including or not rotation 

data. Besides, to verify the robustness difference between 

persons, we enrolled 4 subjects' gesture data and compared the 

accuracies of the three networks. In addition, to intuitively 

demonstrate the effects of transforming, feature maps before 

and after STL are shown in Fig. 10. From this figure, although 

4 subjects’ feature patterns are in different shapes and scales, 

STLs transform them to similar shape, scale and direction.  

As Table I shows, three different networks (CNN, EST-CNN 

with rotation ST, EST-CNN with rotation/scaling/shearing ST) 

are trained over the same condition. The table shows, in the 

dataset without rotation, accuracies for recognition are quite 

close, which means the performance improvement of gesture 

recognition by EST-CNN is not magnificent. Whereas, as 

evaluating the dataset with augmented data (data are rotated), 

EST-CNN exhibits positive effect than CNN, and increasing the 

success rate of gesture recognition by 5.81% in average. 

Therefore, we conclude that EST-CNN has better robustness of 

 
Fig. 9.  The network structure of EST-CNN in detail. 

    
(a)                                                (b) 

Fig. 10.  (a) The raw feature patterns of 4 subjects. (b) The transformed 
feature patterns. 

TABLE I 
ACCURACIES OF NETWORKS FOR THREE GESTURES 

Model 

Accuracy (%) 
( Original dataset) 

Accuracy (%) 
(Augmented dataset) 

Click Left Right Click Left Right 

CNN 97.96 98.40 97.72 93.38 89.90 94.85 

EST-

CNN 

Rot 

98.34 98.03 98.64 97.75 98.12 97.48 Scale 

Shear 

EST-

CNN 

Rot 

97.67 98.64 98.79 97.82 97.23 98.13 Scale 

Shear 

Three kinds of networks, i.e. CNN, EST-CNN (with rotational matrix), 
EST-CNN (with rotational matrix, scaling matrix, shearing matrix).  
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gesture recognition under the scenes of rotational shift between 

electrodes and muscles.  

Table II shows the gesture recognition results of 4 subjects 

(2 males and 2 females, whose maximum girth of forearm is 

23.7~27.5cm). Here, the EST-CNN with scaling and shearing 

STL performs better than other networks and improves the 

reliability of classification between persons. Fig. 10 intuitively 

shows gesture patterns of 4 subjects before and after processing. 

We observe that all patterns in the same row are transformed to 

the same direction.  

 

B. Accuracy of Angle Calibration 

After training EST-CNN, the feature maps of 9 categories at 

8 angles are processed. Fig. 12 shows the deviations of 

estimated angles by STL and true values, whose intuitive 

representation of transformation is shown in Fig. 11. Observing 

from Fig. 11, all the feature patterns are corrected to the same 

               
(a)                                                                                                (b) 

 
Fig. 11.  (a) The patterns of 9 types (9 rows: click-0°, click-15°, click-30°, left-0°, left-15°, left-30°, right-0°, right-15°, right-30°), at 9 rotational angles 
(9 columns: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°). (b) The transformed patterns by EST-CNN (axis unit: pixel). 

TABLE II 
ACCURACIES OF NETWORKS FOR FOUR SUBJECTS 

Model 

Accuracy (%) 
(Augmented dataset) 

Subject-A Subject-B Subject-C Subject-D 

CNN 91.99 91.07 93.83 93.95 

EST-

CNN 

Rot 

98.11 97.98 96.82 98.22 Scale 

Shear 

EST-

CNN 

Rot 

97.82 97.47 98.19 97.43 Scale 

Shear 

Three kinds of networks, i.e. CNN, EST-CNN (with rotational matrix), 
EST-CNN (with rotational matrix, scaling matrix, shearing matrix).  

 
Fig. 12.  The deviation angle between estimated and true values by  
coarse tuning of STL. 

 
Fig. 13.  The deviation angle between estimated and true values by fine 
tuning of STL+FTL. 

 
Fig. 14.  The estimated rotational angle curves of different gestures. 
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direction, which means the regulation by STL achieves the 

expected effect of coarse calibration.  

Further, FTL plays a role as protractor with angle ticks for 

the fine tuning of calibrated angle within 45 degrees. Fig. 13 

shows the deviations of estimated angles by STL+FTL and true 

values. In experiments, we sample 4 values (0°, 15°, 22.5° and 

30°) in every 45° of 180°, and compare the angle deviation of 

three gestures between estimated and true values. In Fig. 14, we 

find that, by FTL tuning, the fitted curves of estimated 

rotational angle are quite close to the curve of true value whose 

fitness is 99.44% in average.  

 

IV. DISCUSSION 

The proposed system solution includes a signal gain adaptive 

armband and a self-calibrating recognition algorithm, and 

achieve mutual adjustment between hardware and software to 

improve the accuracy of gesture recognition under non-ideal 

conditions. Spurred by the rise of metaverse, extensive and 

intensive studies have been carried out to improve the 

performance of myo-based gesture recognition in recent years. 

As far as we know, the accuracy of recognition algorithm 

proposed by these studies can be 96% under ideal conditions. 

Nevertheless, as rotational shift of armband, the robustness 

would greatly be worsened. What's more, in VR system, users 

would have an avatar, and their real hands would be mapped to 

the virtual world. Thus, when users wear armband upside down, 

the system should be calibrated to ensure the virtual hand is in 

right posture. The EST-CNN is able to complete two tasks 

(including gesture recognition and self-calibration) via one-shot 

processing by automatically learning the transformation of 

feature patterns.  

 Hardware automatic adjustment: Compared to other 

solutions that mostly use Thalmic Myo armband, digital 

potentiometers controlled by MCU are added to our hardware 

system for realizing the gain adjustment of the sEMG 

processing unit by scale transformation of EST-CNN. In 

addition, a 9-axis IMU and a high-precision ADC converter are 

set to enhance the calibration accuracy. To summarize, the 

software and hardware coupling to adjust each other is the 

signature of this system.  

Two tasks in one-shot: Several methods and models [28] [19] 

[18] [29] estimate rotational shift by anthropogenic calibration, 

then recognize gestures by neural networks. However, due to 

users are multifarious, the calibration parameters set by people 

are hardly self-adaptive for extensive compatibility. To 

improve the compatibility for individuals, we prefer to machine 

learning the transformation between feature patterns by itself, 

rather than by human intervention. Furthermore, different from 

state-of-art methods which process correction and classification 

in two phases, we combine the two phases in a network and 

process in one-shot to improve the coupling. 

 Li et al. presented SEAR (Shift Estimation and Adaptive) for 

electrode shift estimation and adaptive correction which is 

based on the APA (activation polar angle) [18]. By calculating 

MAV of every sEMG electrode, APA would be obtained to 

measure the shift between armband's current and initial angles. 

Then, process adaptive correction based on Sigmoid and 

classify by pre-trained SVM. The error of angle estimation is 

about -0.017±0.13 radians, and the accuracy of 8 gestures 

recognition is 79.32% in average. 

The proposed EST-CNN is an end-to-end model for gesture 

recognition and feature correction by deploying ST layers 

which include locational neural networks. The weights of STL, 

which are used to generate affine matrix, would be regulated 

while being trained. The trained ST layers not only feedback 

affine matrixes to virtual system for calibrating virtual hand 

posture, but also coupling with CNN to improve the feasibility 

and superiority of gesture recognition. By the presented 

experiments in Section III, the average accuracy of gesture 

recognition is about 97.06% as electrodes shift, and the 

goodness-of-fit between estimated and true values is about 

99.44% in average. 

 Overcoming resolution limit of sparse electrodes: to 

improve sampling resolutions for high accuracy of shift 

TABLE III 
PERFORMANCES OF DIFFERENT METHODS FOR ELECTRODES SHIFT 

Reference Algorithm Dataset Device Result 

Li, Z. Y. et al. 
2021 
[17] 

Calibration: APA 
Classification: SEAR 

Subject: 10 
Gesture: 8 
Shift Position: 9 
(Their self-built dataset) 

Sparse: 8 channels 
Accuracy: 79.32% 
Calibration: -0.017±0.13 rad 
(Non-discrete) 

Hu, R. C, et al. 
2021 
[18] 

Calibration: CAR 
Classification: 
CNN+LSTM 

Subject: 11 
Gesture: 9 
Shift Position: 3(H) × 5(V) 
(Their self-built dataset) 

HD-sEMG: 2×6×8 
Accuracy: 94.51±4.56% 
Calibration: Pixel-based stride 
(Discrete) 

Wu, L. et al. 
2020 
[19] 

Calibration: N/A 
Classification: 
AUG+DCNN 

Subject: 10 
Gesture: 6 
Shift Position: in 10×10 𝑚𝑚2 
(Their self-built dataset) 

HD-sEMG: 10×10 
Accuracy: 95.34% 
Calibration: N/A 

Kim, M. et al. 
2018 
[27] 

Calibration: ASM 
Classification: NN 

Subject: (Not mentioned) 
Gesture: 6 
Shift Position: 8 
(Their self-built dataset) 

Sparse: 8 channels 
Accuracy: 95.63% 
Calibration: 0.22±0.62 rad (Non-
discrete) 

Chen, W. et al. 
(This method) 

Calibration: EST-CNN 
Classification: EST-CNN 

Subject: 4 
Gesture: 3 
Shift Position: 32 
(Our self-built dataset & CSL-HDEMG) 

Sparse: 8 channels 

with Self-adjustment 

Accuracy: 97.06% 
Calibration:-0.0052±0.063 rad 

(Non-discrete) 
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calibration, researchers adopted HD-sEMG electrodes to get 

more detail sEMG signals. However, considering about 

hardware cost and computing consumption, if sparse electrodes 

enable to estimate small shifts, the sEMG-based armband 

would have better market competitiveness. 

 Based on HD-sEMG electrode array, Hu et al. extracted 

useful signals by FastICA and built signal matrix and parameter 

matrix. Through analyzing the source signal which has the 

largest energy to locate the core activation region of muscles. 

Further, these regions are aligned for correcting electrode array 

shift. Overall, this approach shows better performance that 

increasing classification accuracy about 5.72~7.69% after using 

calibration algorithm. 

To provide a non-discretized estimation of rotational shift, 

the FT layers, as post-treatment of EST-CNN, set 3 ticks to 

evenly divide 45°. By calculating the similarity between feature 

maps based on softmax layer, the fine tuning angle would be 

settled down in the 45° protractor. The experiment results show 

the error between estimated and true values is further decreased 

after applying FTL. 

Comparison of related methods: As shown in Table III, 

five gesture recognition methods of anti-electrode shift are 

compared by several aspects. First, EST-CNN is the only 

algorithm in the table that can perform both recognition and 

calibration tasks at one-shot. Second, the self-built dataset 

collects more data from different positions for better analysis. 

In addition, the self-developed hardware device has the function 

of gain self-adjustment, which is more convenient for 

calibration. Finally, it has better performance in both gesture 

recognition accuracy and rotational calibration. 

Verification of open access dataset: We tried to test EST-

CNN with open dataset, limited by the number of electrode 

columns, it is difficult to simulate 0°, 15°, 30°, and test 

intermediate states of FTL such as 22.5°, 36°, etc. at the same 

time. Most of the existing public datasets increase the resolution 

in the longitudinal direction (rows), such as Ninapro, CapeMyo, 

and Hyser, while in the transverse direction (columns) most of 

them increase to 16, which is unable to simulate our rotation. 

We selected the HD-sEMG dataset with the largest number of 

electrode columns, CSL-HDEMG. By rotating its 7x24 data 

array for simulation, we selected patterns of three types of 

angles at intervals (0°, 15° and 30°, without 22.5°) and rotated 

them at multiple angles to simulate the rotation.  

The CSL-HDEMG will differ from the patterns captured by 

our hardware due to hardware consistency issues. However, 

since the features of the three gestures are distinctly different, it 

does not affect the rotation calibration of EST-CNN for each 

type of data. Considering the coupling of software and 

hardware, it is recommended to use the dataset from our self-

researched hardware. 

Fig. 15 shows the radar plots of the data from CSL-HDEMG 

and the results of its processing by EST-CNN. The recognition 

of the three gestures (G14, G21 and G23, which are same 

gesture as ‘click’, ‘left’ and ‘right’) has an accuracy of 97.68%, 

higher than self-built dataset. The reason may be that the CSL-

HDEMG dataset cannot simulate the baseline drift and gain 

change from putting on and taking off armband. In addition, the 

trained EST-CNN has a calibration accuracy of 0.052+0.34 rad 

for the CSL-HDEMG. However, the public dataset is unable to 

simulate the intermediate state values, such as 22.5° and 36°, 

therefore only a limited discussion can be provided here as a 

reference.  

V. CONCLUSION AND FUTurE WORK 

For upper limb and hand rehabilitation, minimally invasive 

robotic surgery, prosthetic technology, VR-assisted therapy and 

neural interface, both good robustness of gesture recognition 

and self-calibration of gesture posture are required in human-

machine interaction system. Based on these abilities, users 

would not hold virtual props upside down or execute the 

contrary command. The purpose of this approach is to 

recognize gestures as wearing with bias, as well as 

automatically calibrating the gesture posture in virtual 

interaction system. 

First, this paper introduces some novel research in sEMG-

based gesture recognition and electrodes shift correction, such 

as algorithms of CNN based on sparse and HD electrodes, 

fusion algorithms of sEMG and IMU, and anti-electrodes-shift 

algorithm. By analyzing these approaches, we propose an 

armband fusing sEMG and IMU with autonomously adjustable 

gain and EST-CNN. Then, describe the system process 

including data flow of hardware, FEP, neuron network building, 

key transformers (STL and FTL). In the end, we designed 

experiments to evaluate the robustness of gesture recognition 

and the accuracy of self-calibration. 

However, in the future, we still need to improving algorithm 

by recognizing more gestures, even though enabling the input 

by virtual keyboard. Meanwhile, the work of expanding 

datasets including upper extremity amputations and the 

nondisabled people is necessary. 
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