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A B S T R A C T

The miniaturization of MEMS-based inertial measurement units (IMUs) facilitates their widespread use in a
growing number of application domains. The fundamental sensor fusion task of orientation estimation is a
prerequisite for most further data processing steps in inertial motion tracking, such as position and velocity
estimation, joint angle estimation, and 3D visualization. Errors in the estimated orientations severely affect
all further processing steps. Recent systematic comparisons of existing algorithms show that out-of-the-box
accuracy is often low and that application-specific tuning is required to obtain high accuracy. In the present
work, we propose and extensively evaluate a quaternion-based orientation estimation algorithm that is based
on a novel approach of filtering the acceleration measurements in an almost-inertial frame and that includes
extensions for gyroscope bias estimation and magnetic disturbance rejection, as well as a variant for offline
data processing. In contrast to all existing work, we perform an extensive evaluation, using a large collection
of publicly available datasets and eight literature methods for comparison. The proposed method consistently
outperforms all eight literature methods and achieves an average RMSE of 2.9°, while the errors obtained
with literature methods range from 5.3° to 16.7°. This improved accuracy with respect to the state of the art
is observed not only in average but also for each of several different motion characteristics, as well as for
gyroscope bias estimation. Since the evaluation was performed with one single fixed parametrization across
a very diverse dataset collection, we conclude that the proposed method provides unprecedented out-of-the-
box performance for a broad range of motions, sensor hardware, and environmental conditions. This gain in
orientation estimation accuracy is expected to advance the field of IMU-based motion analysis and provide
performance benefits in numerous applications. The provided open-source implementation makes it easy to
employ the proposed method.
. Introduction

In recent years, MEMS-based inertial measurement units (IMUs)
ave become small, lightweight, and affordable. New application do-
ains in which they are used include, for example, sports [1], gait anal-

sis [2,3], rehabilitation monitoring [4], rehabilitation robotics [5],
utonomous vehicles [6], aerial vehicles [7], and kites [8]. In all
hese applications, IMUs are used to estimate variables of motion, such
s orientations, velocities, and positions, either in real time or via
ostprocessing of recorded data.

IMUs measure angular rate, specific force (also called proper ac-
eleration), and magnetic field strength, each as a time-dependent 3D
ector in an intrinsic sensor coordinate system. Those measurements
re processed to determine the motion parameters of interest, e.g., the
rientation of an object to which the sensor is attached, the object’s
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velocity or position, or other application-specific motion parameters [9,
10]. As shown in Fig. 1, determining such motion parameters generally
requires the prior estimation of the orientation of the sensor with
respect to an inertial frame of reference, a procedure known as inertial
orientation estimation (IOE).

Since IOE is such a fundamental step in IMU-based motion analysis
and the accuracy of all further parameters of interest depends on the
accuracy of the orientation estimate, it is not surprising that abundant
prior research has aimed at solving this task. Comprehensive reviews
that classify and compare the existing solution approaches are found
in [11,12]. The existing methods widely vary with respect to the filter
type, the computational complexity, the number of tuning parameters,
and the additional features such as gyroscope bias estimation. For
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Fig. 1. Orientation estimation of IMUs is achieved by sensor fusion of the gyroscope measurements with the accelerometer and, in 9D sensor fusion, magnetometer measurements.
Obtaining an accurate orientation estimate is the prerequisite for fundamental further steps in inertial motion tracking, including velocity and position estimation, joint angle
calculation, and 3D visualization.
several algorithms, implementations in C++ or Matlab are available,
see e.g. [12–17].

In literature that proposes new IOE algorithms, accuracy is most
commonly validated using marker-based optical motion capture (OMC)
as a ground truth. However, the employed datasets are almost always
non-public and highly application-specific; they vary widely in terms
of movement speed, characteristics of the employed motion, magnetic
environment, and sensor error characteristics. Therefore, reported per-
formance figures cannot be compared directly. This lack of common
datasets and suitable benchmarks has recently been addressed by the
publication of the Sassari dataset [18] and the Berlin Robust Orien-
tation Estimation Assessment Dataset (BROAD) [19]. Newly proposed
algorithms should be validated using such publicly available datasets
in comparison with other state-of-the-art algorithms [11].

The few existing comparative studies show that the out-of-the-box
performance of most algorithms is poor and that application-specific al-
gorithm selection, as well as laborious parameter tuning, are necessary
to achieve good results [12,19], which represents a severe limitation
of the state of the art. Even with optimized parameters, the root-mean-
square errors achieved by the best IOE algorithms are in the range of 1°
to 3° for slow and smooth motions and as much as 5° to 15° for fast and
challenging motions [12,19]. Further improving this accuracy seems
highly desirable in view of numerous applications.

In summary, while there is ample work on various IOE algorithms,
evaluation of the proposed methods is often limited and cannot be com-
pared across publications. Recent comparative reviews and benchmarks
show that there is no one-size-fits-all solution that works out of the box
and yields high accuracy for a wide variety of application scenarios.
Furthermore, the widespread adoption of novel IOE algorithms is not
only driven by accuracy but also depends on the availability of an easy-
to-use implementation. In combination, this demonstrates that there is
a need for an algorithm that is validated on a very large and diverse
set of experimental data, provides accurate out-of-the-box orientation
estimates without tuning, and is easy to use and to integrate into
existing code projects.

We aim at filling this gap in two steps: We first propose a new
feature-rich quaternion-based orientation estimation algorithm and
then perform an extensive validation to demonstrate the exceptionally
high accuracy that is achieved by this algorithm. With respect to the
first step, the key differences of the proposed algorithm with respect
to the latest state of the art are best expressed by the following five
features:

1. As a novel approach to sensor fusion of gyroscopes and ac-
celerometers, the accelerometer information is low-pass filtered
188
in an almost-inertial frame, which yields robust rejection of
accelerations due to velocity changes.

2. Magnetometer-based heading correction is performed as a mod-
ular decoupled step, which eliminates the influence of magnetic
disturbances on the inclination and facilitates simultaneous 6D
and 9D estimation.

3. The algorithm includes extensions for online gyroscope bias
estimation during rest and motion and an optional magnetic
disturbance rejection strategy.

4. In contrast to the vast majority of previous approaches, an
acausal offline version is available, which further increases the
accuracy in situations in which real-time capability is not re-
quired.

5. Easy-to-use open-source implementations of the proposed algo-
rithms are provided in C++, Python, and Matlab.

With respect to the second step, the main contributions and results of
the extensive accuracy evaluation are:

1. In contrast to most previous work, the proposed method is ex-
tensively evaluated using a large collection of publicly available
data and in comparison with eight existing IOE algorithms.

2. The results show that the proposed method outperforms all eval-
uated existing methods, providing a 1.8-fold to 5-fold increase in
orientation estimation accuracy.

3. For a large variety of motions, speeds, and disturbed envi-
ronments, the proposed method works out of the box, and
application-specific parameter tuning is not necessary.

2. Proposed method for inertial orientation estimation

We briefly explain the employed terminology and notation and then,
building upon preliminary work in [20], propose a modular method for
simultaneous 6D and 9D orientation estimation.

2.1. Terminology and notation

As illustrated in Fig. 1, the following measurements are available in
IOE: gyroscope readings 𝝎(𝑡𝑘) ∈ R3, accelerometer readings 𝐚(𝑡𝑘) ∈ R3,
and magnetometer readings 𝐦(𝑡𝑘) ∈ R3, sampled at times 𝑡𝑘 = 𝑘𝑇s, 𝑘 ∈
{1, 2,… , 𝑁}, 𝑇s ∈ R>0.

If only gyroscopes and accelerometers are employed, we use the
term 6D IOE, while 9D IOE additionally uses magnetometers. Therefore,
9D IOE yields the sensor orientation with respect to a fixed inertial
reference frame, typically using the east-north-up (ENU) convention
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Fig. 2. Illustration of the different coordinate systems used by the proposed method.
The aim of IOE is to determine the orientation of the sensor 𝑖 relative to an ENU
reference frame  (in 9D sensor fusion) or relative to a reference frame 𝑖 with
vertical 𝑧-axis (in 6D sensor fusion). The angle 𝛿𝑖 describes the slowly drifting heading
offset between  and 𝑖. Internally, the auxiliary 𝑖 frame is used to represent the
orientation obtained by pure gyroscope strapdown integration and slowly drifts due to
the integration of gyroscope bias.

(i.e., 𝑧 is pointing up and 𝑦 is pointing north). In contrast, only vertical
reference information is available in 6D IOE, and the resulting orien-
tations are thus provided with respect to an almost-inertial reference
frame, which has one vertical axis and slowly drifts around this axis
(at a rate determined by the gyroscope bias, i.e., typically ≤ 1◦∕s).

We denote the moving sensor frame, i.e., the coordinate system in
which the sensor readings are provided, by 𝑖(𝑡𝑘). The ENU inertial
reference frame used in 9D IOE is denoted  , and the sensor-specific
almost-inertial reference frame used in 6D IOE is denoted 𝑖(𝑡𝑘). An-
ticipating the common application scenario with multiple IMUs on
different segments of a kinematic chain, a sensor index 𝑖 is used for
sensor-specific quantities.

We use square brackets to specify the coordinate system in which
a vector is expressed, for example,

[

𝐚
]

 is the accelerometer measure-
ment transformed into frame  . We denote rotations and orientations
by unit quaternions [21] in vector notation, i.e., we write the quater-
nion 𝑤 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧 as [𝑤 𝑥 𝑦 𝑧]⊺. In the context of quaternion
multiplication, which we denote by ⊗, we implicitly regard 3D vectors
as pure quaternions. For example,

[

𝐚
]

 = 
𝐪⊗ 𝐚 ⊗ 

𝐪
−1. Here, the left

pper and lower indices denote the frames between which the quater-
ion rotates. Quaternions that represent the rotation of an angle 𝛼 ∈ R
round the axis 𝐯 ∈ R3 are written as

(

𝛼@ 𝐯
)

∶=
[

cos 𝛼
2

𝐯⊺

‖𝐯‖
sin 𝛼

2

]⊺
.

.2. A modular estimation approach

The most fundamental state of any IOE algorithm is the current
rientation estimate, which is commonly represented by a single ori-
ntation quaternion. For the proposed method, we use a more modular
189
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approach and represent the 6D estimate 𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪 as the concatenation of
an inclination correction quaternion 𝑖(𝑡𝑘)

𝑖(𝑡𝑘)
𝐪 with a gyroscope strapdown

integration quaternion 𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪, and the 9D estimate 𝑖(𝑡𝑘)
𝐪 as the con-

catenation of a heading correction rotation 𝑖(𝑡𝑘)
𝐪, represented by the

calar heading offset 𝛿𝑖(𝑡𝑘), with the aforementioned 6D estimate, i.e.,

𝑖(𝑡𝑘)
𝐪

⏟⏟⏟
D estimate

=

magnetometer
correction

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝛿𝑖(𝑡𝑘)@ [0 0 1]⊺
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖 (𝑡𝑘 )

𝐪

⊗

accelerometer
correction
⏞⏞⏞
𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪 ⊗

strapdown
integration
⏞⏞⏞
𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

6D estimate

. (1)

The introduced auxiliary coordinate system 𝑖(𝑡𝑘), with 𝑖(𝑡0) = 𝑖(𝑡0),
s an almost-inertial frame that slowly drifts around arbitrary axes
ue to errors in gyroscope strapdown integration. See Fig. 2 for an
llustration of the four distinct coordinate systems that are used in (1).

As demonstrated in [14], a drawback of many existing methods
s that magnetic disturbances can severely impact the inclination es-
imates. While previous methods [13,14] have already ensured that
he magnetometer correction can only influence the heading but not
he inclination, the proposed modular state representation makes this
roperty very explicit by representing the heading offset with a scalar
ariable 𝛿𝑖(𝑡𝑘) and facilitates simultaneous 6D and 9D orientation esti-
ation.

The chosen approach of separating strapdown integration, inclina-
ion correction, and heading correction in the state is also represented
n the filter structure as shown in Fig. 3. Unlike conventional methods,
he correction steps are decoupled from the previous steps, i.e., there
s no feedback loop from the heading correction to the strapdown
ntegration and, therefore, neither to the inclination correction.

This basic filter structure is extended by an optional gyroscope
ias estimation algorithm and an algorithm for magnetic disturbance
etection and rejection. The bias estimation algorithm includes a rest
etection and automatically adjusts to whether the IMU is at rest or
n motion. The extended filter structure is shown in Fig. 4. Note that
t is also possible, and supported by the reference implementation
Section 2.7), to independently enable or disable rest bias estimation,
otion bias estimation, and magnetic disturbance rejection.

In the following, we call the extended algorithm VQF (Versatile
uaternion-based Filter) and the basic version BasicVQF. Furthermore,
e introduce an acausal implementation called OfflineVQF in Sec-

ion 2.6.

.3. Fusion of gyroscope, accelerometer, and magnetometer measurements

The basic filter update consists of gyroscope-based prediction, fol-
owed by accelerometer correction and, in 9D IOE, by magnetometer
orrection. The algorithm is given in Algorithm 1, and details on each
tep are given in Appendix A. Gyroscope prediction is performed via
trapdown integration of the measured angular rate. Errors due to
yroscope bias, noise, and other measurement errors lead to slow drift
f the 𝑖 frame.

To obtain a vertical reference, we transform the measured accelera-
ions into the almost-inertial frame 𝑖 and then apply a second-order
utterworth low-pass filter to each component. This low-pass filter
ffectively averages the accelerometer measurements and allows for
hort-term acceleration and deceleration to cancel out, as illustrated
n Fig. 5. The inclination of the orientation estimate is then corrected
o that the filtered acceleration points in upward direction. In contrast
o conventional IOE algorithms, which typically regard each single ac-
elerometer sample as a 3D vector and perform a nonlinear correction
tep based on the comparison of this vector to a vertical reference
ector, the use of a linear low-pass filter in the 𝑖 frame more effectively
nd robustly separates the gravitational acceleration component from
he acceleration caused by velocity changes.
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Fig. 3. Illustration of conventional and proposed filter structures (𝑧−1 denotes the unit delay). The proposed filter structure avoids the feedback of the 9D estimate on the strapdown
integration. It thereby enables simultaneous 6D and 9D orientation estimation and ensures that the inclination cannot be influenced by magnetic disturbances.
Fig. 4. Variants of the proposed algorithm. BasicVQF consists of strapdown integration, inclination correction, and heading correction. The full version VQF additionally includes
rest detection, gyroscope bias estimation, and magnetic disturbance rejection (which can be enabled or disabled independently).
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Fig. 5. Example of unfiltered and low-pass filtered accelerations in the original sensor
frame 𝑖 and the almost-inertial frame 𝑖. Applying a low-pass filter with a low cutoff
frequency to each component in the sensor frame does not give a meaningful output. In
the 𝑖 frame, low-pass filtering each component of the acceleration effectively averages
the measurement, allowing for acceleration and deceleration to cancel out, and the
result shows the drift of the 𝑖 frame due to errors in gyroscope integration.

If magnetometer measurements are given, a heading offset is de-
rived from the projection of the magnetic field vector into the horizon-
tal plane and tracked via an exponential filter.

As it is common in IOE algorithms, the behavior can be influenced
by fusion weights that balance between rejecting gyroscope drift and
rejecting disturbances in the accelerometer and magnetometer mea-
surements. In Algorithm 1, those parameters are the cut-off frequency
𝑓c,acc and the magnetometer correction gain 𝑘mag. Like for many existing
methods, the meaning of the values assigned to those parameters is
190
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hard to interpret, depends on the sampling time (for 𝑘mag), and does not
allow for a comparison between the trust assigned to the accelerometer
and the trust assigned to the magnetometer. To provide a more intuitive
parametrization, we replace those parameters with time constants 𝜏acc
and 𝜏mag that can be changed by the user to influence the algorithm
behavior. A small time constant leads to fast correction and indicates
high trust in the accelerometer or magnetometer measurements, while
large time constants indicate trust in the gyroscope measurements.

Those time constants map to the internal values as follows (see
Appendix A and Fig. 17 for more information). For the magnetometer
correction first-order exponential filter, we use the time constant that is
commonly used to characterize first-order systems and corresponds to
the time needed for the step response to reach 1−𝑒−1 ≈ 63.2% of its final
value. To ensure similar behavior for the second-order Butterworth
filter of the accelerometer correction, we use a time constant that
corresponds to the undampened part of the step response. This leads
to the mapping

𝑓c,acc =

√

2
2𝜋𝜏acc

, 𝑘mag = 1 − exp
(

−
𝑇s
𝜏mag

)

, (2)

which allows us to derive the internal parameters 𝑓c,acc and 𝑘mag from
he user-specified time constants 𝜏acc and 𝜏mag. The same parametriza-
ion via time constants is also used for the other first-order and second-
rder filters introduced in the following subsections. Note that we will
ater determine default values for 𝜏acc and 𝜏mag that yield excellent
ut-of-the-box accuracy for a large range of application scenarios, and
anual tuning by adjusting these time constants is therefore only

equired in rare edge cases.

.4. Gyroscope bias estimation

To ensure high accuracy in the presence of gyroscope bias, we
xtend the BasicVQF algorithm from Section 2.3 by a method to es-
imate and compensate such bias. In existing IOE algorithms, this
s commonly realized by integral action [14,16,17]. However, this
pproach requires feedback of both accelerometer and magnetometer
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Fig. 6. Step response for the Kalman filter with the proposed parametrization. The bands show the standard deviation 𝜎 of the estimate. At 𝑡 < 0, the Kalman filter either starts
n the initial state (𝜎 = 0.5◦∕s) or in a converged state of either the motion or rest update with an estimate of 0◦/s. At 𝑡 = 0, the measurement changes to 1◦/s. Directly after
nitialization, the filter converges much faster than in cases where a (contradictory) previous estimate was already obtained. In general, the motion update converges much slower
han the rest update.
Algorithm 1 BasicVQF
1: procedure InitializeFilter
2: 𝑖

𝑖
𝐪 ← [1 0 0 0]⊺ ⊳ Gyroscope strapdown integration quaternion

3: 𝑖
𝑖
𝐪 ← [1 0 0 0]⊺ ⊳ Accelerometer correction quaternion

4: 𝛿𝑖 ← 0 ⊳ Magnetometer correction angle
5: initialize low-pass filter state
6: end procedure
7: procedure FilterUpdate(𝝎 = 𝝎(𝑡𝑘), 𝐚 = 𝐚(𝑡𝑘),𝐦 = 𝐦(𝑡𝑘), 𝑓c,acc, 𝑘mag,

𝑇s)
8: 𝑖

𝑖
𝐪 ←

𝑖
𝑖
𝐪⊗

(

𝑇s ‖‖𝝎‖‖ @𝝎
)

⊳ Perform gyroscope strapdown
integration

9:
[

𝐚
]

𝑖
←

𝑖
𝑖
𝐪⊗ 𝐚 ⊗ 𝑖

𝑖
𝐪−1 ⊳ Transform acceleration to 𝑖 frame

10:
[

𝐚LP
]

𝑖
← lpfStep(

[

𝐚
]

𝑖
, 𝑓c = 𝑓c,acc) ⊳ Apply low-pass filter

11:
[

𝐚LP
]

𝑖
←

𝑖
𝑖
𝐪⊗

[

𝐚LP
]

𝑖
⊗ 𝑖

𝑖
𝐪−1 ⊳ Transform to 𝑖 frame

12: [𝑎𝑥 𝑎𝑦 𝑎𝑧]⊺ ←
[𝐚LP]𝑖

‖

‖

‖

[𝐚LP]𝑖
‖

‖

‖

⊳ Normalize

13: 𝑞𝑤 ←
√

𝑎𝑧+1
2

14: 𝑖
𝑖
𝐪 ← [𝑞𝑤

𝑎𝑦
2𝑞𝑤

−𝑎𝑥
2𝑞𝑤

0]⊺ ⊗ 𝑖
𝑖
𝐪 ⊳ Update correction quaternion

15: 𝑖
𝑖
𝐪 ←

𝑖
𝑖
𝐪⊗ 𝑖

𝑖
𝐪 ⊳ Calculate 6D orientation estimate

16: if 𝐦 is given then
17: [𝑚𝑥 𝑚𝑦 𝑚𝑧]⊺ ←

𝑖
𝑖
𝐪⊗𝐦 ⊗ 𝑖

𝑖
𝐪−1 ⊳ Transform mag. sample to

𝑖 frame
8: 𝛿mag ← atan2(𝑚𝑥, 𝑚𝑦) ⊳ Calculate heading offset from mag.

sample
9: 𝛿𝑖 ← 𝛿𝑖 + 𝑘mag wrapToPi(𝛿mag − 𝛿𝑖) ⊳ Update correction angle
0: end if
1: 𝑖

𝐪 ← [cos 𝛿𝑖
2 0 0 sin 𝛿𝑖

2 ]
⊺ ⊗ 𝑖

𝑖
𝐪 ⊳ Calculate 9D orientation

estimate
22: return 𝑖

𝑖
𝐪, 𝑖

𝐪 ⊳ Provide 6D and 9D orientation estimate
3: end procedure
pfStep: update step of second-order Butterworth low-pass filter with cutoff
requency 𝑓c

wrapToPi: bring angle into the interval [−𝜋, 𝜋] by adding integer multiples of
2𝜋
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correction [17], making the gyroscope bias estimate susceptible to mag-
netic disturbances. To prevent this, the proposed method for gyroscope
bias estimation avoids using any information from the magnetometer
correction. Instead, the bias is estimated solely from the disagree-
ment between strapdown integration and accelerometer measurements
during motion.

Moreover, note that, in many application scenarios, the IMU will
occasionally be at rest for several seconds, and those phases can be
detected reliably. This is leveraged by the proposed bias estimation
algorithm, which determines the bias directly from low-pass-filtered
gyroscope measurements whenever it detects a period of rest.

As further detailed in Appendix C and Algorithm 2, the bias estima-
tion is realized via a single Kalman filter that performs different updates
based on whether the IMU is currently at rest or in motion. This Kalman
filter is parametrized in a way that is independent of the sampling
rate and that gives much larger trust to the rest-based updates than to
the motion-based updates. In each sampling step, the current Kalman
filter estimate of the bias is subtracted from the gyroscope measurement
before strapdown integration.

Fig. 6 shows how the Kalman filter behaves with the proposed
parametrization. The relation between the uncertainty of the measure-
ment (large during motion, small during rest) and the uncertainty of
the current estimate determines how fast the bias estimation converges.
After initialization without prior knowledge, the estimation uncertainty
is large, which leads to fast convergence. From a converged estimate
during motion (i.e., with medium uncertainty), a contradicting but
much more reliable observation during rest is adopted within several
seconds. From a converged rest estimate, a contradicting observation
during motion is adopted much slower due to the larger uncertainty of
the measurement.

2.5. Magnetic disturbance rejection

We extend the proposed IOE algorithm with a set of methods that
enable adaptive filtering of the magnetometer measurements with the
aim of reducing the influence of temporary magnetic disturbances. The
employed strategy is composed of three parts: magnetic disturbance
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Table 1
Inertial orientation estimation algorithms used in the evaluation.

Algorithm 6D 9D Bias Source

VQF Proposed method ✓ ✓ ✓ https://github.com/dlaidig/vqf
MAH Mahony et al. [16] ✓ ✓ ✓ https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
MAD Madgwick [17] ✓ ✓ ✗ https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
VAC Valenti et al. [13] ✓ ✓ ✓ https://wiki.ros.org/imu_complementary_filter
FKF Guo et al. [22] ✗ ✓ ✗ https://github.com/zarathustr/FKF
SEL Seel and Ruppin [14] ✓ ✓ ✓ https://github.com/dlaidig/qmt, qmt.oriEstIMU
MKF Matlab ✓ ✓ ✓ Matlab R2021b (The MathWorks Inc., Natick, MA, USA), imufilter/ahrsfilter
KOK Kok and Schön [15] ✗ ✓ ✓ https://github.com/manonkok/fastRobustOriEst
RIANN Weber et al. [23] ✓ ✗ ✗ https://github.com/daniel-om-weber/riann
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detection, magnetic disturbance rejection, and new magnetic field ac-
ceptance. All three parts are briefly explained below, and the complete
algorithm is described in detail in Algorithm 3 in Appendix F.

The magnetic disturbance detection uses a user-defined or automat-
cally determined reference for the norm and dip angle of the local
agnetic field. The magnetometer measurements are considered to

e undisturbed only if they have been close to the reference for at
east 0.5 s – and disturbed otherwise. Whenever the magnetic field is
onsidered undisturbed, the reference values are slowly updated to
rack slow changes in the norm and dip angle.

The magnetic disturbance rejection adjusts the speed of the first-
rder filter used for heading correction if magnetic disturbances are
etected. For disturbances of up to 60 s, the magnetometer update is
ully disabled. For longer periods that are considered to be disturbed,
pdates are performed but at a lower speed.

Finally, the new magnetic field acceptance is used to deal with sud-
en changes in the environment, e.g., after changing the terrain from
utdoor to indoor or moving to a different indoor room with a different
ocal magnetic field. Whenever the magnetic field is considered to be
isturbed but seems homogeneous (for a sufficiently long time during
hich the IMU was not stationary), the norm and dip angle of the

urrent magnetic field is used as the new reference.

.6. Acausal filtering for offline data processing

In application scenarios in which the complete time series of
ecorded data is available (offline data processing), we can employ
causal signal processing methods to further improve accuracy. As
ommonly done in signal processing for zero-phase filtering [24], we
irst run the filtering steps forward and then again backward in time.
his allows us to leverage the existing real-time implementation to
reate the offline variant detailed in Algorithm 4 in Appendix G.

.7. Open-source implementation

Implementations of the proposed orientation estimation algorithm
re available at https://github.com/dlaidig/vqf under the MIT license.
ative implementations are provided in C++, Python, and Matlab. Fur-

hermore, the fast C++ implementation can easily be used from Python
ode. The Python package is available at https://pypi.org/project/vqf/
nd can be installed via pip, and documentation is available at https:
/vqf.readthedocs.io/.

. Evaluation

In this section, we evaluate the performance of the proposed IOE
lgorithm on six publicly available datasets and compare the results
btained with the proposed method to results obtained with eight
192

tate-of-the-art IOE algorithms. d
3.1. Algorithms and datasets

Table 1 lists the algorithms used for the evaluation. This table also
shows whether the algorithm can be used for 6D and/or 9D orientation
estimation, whether it supports gyroscope bias estimation, and where
the implementation is available.

To evaluate the accuracy of IOE, we consider publicly available
datasets consisting of IMU measurements and a ground truth ori-
entation obtained from marker-based optical motion capture (OMC).
In [19], we presented the Berlin Robust Orientation Estimation Assess-
ment Dataset (BROAD) and briefly reviewed other existing datasets that
contain trial data that is suitable for IOE accuracy evaluation. In the
present evaluation, we use all of these datasets, i.e.,

• BROAD [19]: 39 trials (23 undisturbed trials with different mo-
tion types and speeds and 16 trials with various deliberate distur-
bances)

• Sassari [18]: 18 trials (3 speeds, 3 IMU models, and 2 IMUs of
each model)

• RepoIMU [25]: 21 trials (T-Stick only; test 5, test 6 trial 1, test 10
excluded due to artifacts, as explained in [19])

• OxIOD [26]: 71 trials (only handbag, handheld, pocket, running,
slow walking, trolley trials)

• TUM VI [27]: 6 trials (room only; no magnetometer data)
• EuRoC MAV [28]: 6 trials (Vicon room only; no magnetometer

data).

ombined, the collection of evaluation data consists of 161 trials with
total duration of 12.9 h. The data includes motions of handheld IMUs

various combinations of fast and slow rotations and translations),
alking and running, as well as flight data from a micro aerial vehi-

le, and contains data from eight different IMU models, recorded at
ampling rates ranging from 100Hz to 286Hz. For more information
bout the datasets, refer to the respective publications and the summary
rovided in [19]. This large collection of experimental data allows us
o evaluate the robustness of the proposed method for different motion
haracteristics, different sensor hardware, and different sampling rates.

.2. Algorithm parametrization

Before assessing the IOE accuracy, we need to determine suitable
uning parameters for each algorithm. In [19], we introduced a met-
ic to assess the performance of an IOE algorithm, the trial-agnostic
eneralized performance (TAGP). This metric is defined as the smallest
ossible root mean square error (RMSE), averaged over all 39 trials of
he BROAD dataset, that can be obtained with a common algorithm
arametrization for all trials. The associated parametrization can then
e expected to provide good results for a wide variety of motions and
isturbance scenarios.

However, one limitation of the BROAD dataset is that all trials
re performed with the same IMU model. To find parameters that are
ot only robust against movement speed, type of motion, and various
isturbances, but also work well for different sensor characteristics, we

efine an extended TAGP metric, the TAGPx.

https://github.com/dlaidig/vqf
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://wiki.ros.org/imu_complementary_filter
https://github.com/zarathustr/FKF
https://github.com/dlaidig/qmt
https://github.com/manonkok/fastRobustOriEst
https://github.com/daniel-om-weber/riann
https://github.com/dlaidig/vqf
https://pypi.org/project/vqf/
https://vqf.readthedocs.io/
https://vqf.readthedocs.io/
https://vqf.readthedocs.io/
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Fig. 7. RMSE (weighted average over all datasets) achieved with the proposed VQF algorithm and with the reduced BasicVQF variant, for different values of the tuning parameters.
The default algorithm parameters are chosen such that the mean of both errors is minimized, i.e., 𝜏acc = 3 s and 𝜏mag = 9 s.
Fig. 8. RMSE (weighted average over all datasets) for the proposed VQF and all state-of-the-art algorithms. VQF outperforms all eight literature methods, and only RIANN provides
similar 6D performance. Even the errors obtained with the simple BasicVQF variant are clearly lower than for the other seven algorithms. When real-time capability is not required,
using the offline variant is advised to further increase the accuracy of the orientation estimates.
Similar to the TAGP, the TAGPx is the smallest possible RMSE,
averaged over the aforementioned trials for each of the six datasets. The
errors are first averaged by dataset, where the dedicated benchmark
dataset BROAD is given a five times larger weight than all other
datasets, which are weighted equally. For trials without magnetometer
data (and for RIANN, which does not support magnetometers), the
inclination error, as defined in [19], is used instead of the orientation
error.

Fig. 7 shows how the weighted error defined above depends on
the tuning parameters for the default and the basic variant of the
proposed VQF algorithm. The TAGPx is the minimum value of this
error, i.e., 2.59° for VQF and 3.41° for BasicVQF, which shows that
gyroscope bias estimation and magnetic disturbance rejection lead to
improved accuracy. However, the optimal values for the time constants
𝜏acc and 𝜏mag are similar for both variants. To avoid specifying different
default parameters for VQF and BasicVQF, we simply use the average of
the errors obtained with both variants to determine the default values
𝜏acc = 3 s and 𝜏acc = 9 s.

To provide a fair comparison between the proposed and the state-
of-the-art methods, we also optimize the parameters for all other al-
gorithms according to the TAGPx, i.e., we find the parameters that
allow each algorithm to provide the best possible performance across
all datasets. Details on the employed search strategy as well as the
resulting parameters are given in Appendix H. In the following, we al-
ways use those optimal parameters to evaluate and compare algorithm
performance.
193
3.3. Orientation estimation accuracy

To assess the performance of all algorithms, we apply each to the
data of all trials of all datasets. In the case of 6D (magnetometer-free)
sensor fusion, we determine the inclination error [19], and for 9D
sensor fusion the orientation error, in each case between the IMU-based
estimate and the OMC ground truth. We then calculate the RMSE while
only considering the motion phases. Since the TUM VI and EuRoC MAV
datasets do not include magnetometer data, they are only considered
for the 6D results. We average the errors by dataset analogously to
the definition of the TAGPx in Section 3.2. The resulting values are
presented for all algorithms in Fig. 8.

One main observation from this figure is that the proposed method
VQF consistently provides considerably lower errors than the existing
orientation estimation algorithms. For 9D IOE, there is a 1.8-fold to
5-fold increase in accuracy, while for 6D IOE, the increase is 17% for
RIANN and between 2.1-fold and 5-fold for the other methods. It should
be noted that the only algorithm that achieves similar inclination
errors, the neural network RIANN, cannot perform 9D sensor fusion
and was trained on some of the datasets that are used in this evaluation
(see [23] for details).

Fig. 8 also allows us to compare the variants of the proposed
method, cf. Fig. 4. Unsurprisingly, the errors obtained with the Ba-
sicVQF variant (no bias estimation and no magnetic disturbance rejec-
tion) are slightly larger. However, with the aforementioned exception
of RIANN, even the 6D and 9D errors of BasicVQF are still clearly
lower than the corresponding errors obtained with any of the existing
algorithms. The low 6D errors of BasicVQF can directly be attributed to
the novel approach for inclination correction, while the comparatively
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Fig. 9. Orientation estimation errors for all evaluated algorithms and for all trials of the (a,b) BROAD dataset and (c,d) the five other datasets and for (a,c) 6D and (b,d) 9D
ensor fusion. The numbers below the algorithm names indicate the RMSE averaged over all trials. For (b,d), the boxplots and average values are weighted to give each dataset
he same weight regardless of the number of trials. The proposed VQF algorithm consistently provides the best performance.
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mall difference between 6D and 9D errors can be attributed to the
ecoupled filter structure and modular state representation. Compared
o the real-time-capable implementation, the offline variant OfflineVQF
s able to further increase the estimation accuracy by another 20
ercent. Therefore, employing this variant is advisable when analyzing
ecorded data.

While Fig. 8 shows a clear improvement in accuracy with respect to
he state of the art when looking at errors averaged over a large number
f trials, a comprehensive comparison should also include a closer look
t individual trials. Fig. 9 differentiates the errors by dataset and shows
marker for each single trial. Comparing medians, the interquartile

anges, the lengths of the whiskers, or the distributions of outliers yields
he same conclusion: The proposed method not only performs better on
194

e

verage but consistently and robustly provides lower errors than the
xisting methods.

It is noticeable that unusually large errors of ∼ 23° are observed for
ome trials of the OxIOD dataset. As those large errors are observed
cross all methods, the most likely cause of those errors are irregulari-
ies in the measurement or ground truth data that have previously been
oted in [19].

Beyond the level of comparing performance on different datasets,
he BROAD dataset facilitates the investigation of algorithm perfor-
ance for seven different motion characteristics and six different dis-

urbance characteristics. Fig. 10 compares the average RMSE across
ifferent groups of trials and compares the proposed VQF method in
ach case with the best of the other 9D-capable algorithms, i.e., the
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Fig. 10. Averaged RMSE errors for various groups of trials of the BROAD dataset. The proposed algorithm VQF is compared with the best of the seven other evaluated algorithms,
.e., the algorithm that provides the lowest orientation error for the respective group of trials. The lines originating from the center highlight the difference between the errors.
or all groups except for the tapping and vibration trials, the proposed algorithm outperforms even the best-performing literature method.
Fig. 11. Execution time for one update step on an AMD Ryzen 5 3600 CPU vs. orientation estimation RMSE (weighted average over all datasets) for the proposed VQF and all
state-of-the-art algorithms. Accuracies vary largely, and execution times mainly depend on the programming language used for implementing the algorithm. The execution time of
VQF is in the same order of magnitude as for the other algorithms implemented in C++, while the errors are clearly smaller.
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algorithm that achieves the lowest errors for the respective group of
trials. Except for the tapping and vibration groups, VQF always achieves
ower errors than even the best of the other algorithms. For the vibration
roup, it is worth noticing that, while the orientation error is slightly
arger than the error obtained with FKF, the inclination errors obtained
ith VQF are clearly lower.

In summary, compared with eight other IOE algorithms and using
collection of six publicly available datasets that cover a wide range

f motions, speeds, disturbances, and different sensor hardware, the
roposed method VQF consistently provides the best IOE accuracy,
oth for 6D and 9D orientation estimation.
195

e

.4. Algorithm execution time

In addition to accuracy, the execution time of an IOE algorithm
s often relevant, especially in real-time applications or when the
lgorithm is running on low-powered microcontrollers directly on the
MU. To compare the execution times, we repeatedly process the entire
ROAD dataset with all algorithms on an AMD Ryzen 5 3600 CPU
hile measuring the execution time. Fig. 11 shows the average exe-

ution time for one update step in combination with the orientation
stimation error for the respective algorithm. The results show that
xecution time mostly depends on the programming language used
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Fig. 12. Bias estimation results for different IOE algorithms. The bars and percentages indicate the reduction of the bias norm with respect to the true bias contained in the
measurement data. For all datasets, VQF with default parameters surpasses the best possible performance of the existing algorithms. Using the OfflineVQF variant further improves
accuracy.
Fig. 13. Behavior of the bias estimation method for the first 60 s of trial 4 of the BROAD dataset (undisturbed slow rotation with breaks, initial rest cut). During motion, the
estimated bias slowly converges toward the true value. Once rest is automatically detected by Algorithm 2, the convergence speed increases, and the error and the estimation
uncertainty suddenly drop.
t

for the implementation and that the algorithms written in C++ are
considerably faster than the algorithms written in Matlab or using the
ONNX machine learning runtime. While the VQF algorithms achieve
clearly higher accuracy, the execution times are in the same order
of magnitude as for the existing state-of-the-art methods with a C++
implementation. VQF is fast enough for use on microcontrollers, which
we verified by integrating it into an IMU firmware running on a Cortex
M4 at a comparatively high sampling rate of 1600Hz.

.5. Gyroscope bias estimation

We now investigate the performance of the gyroscope bias esti-
ation method. Besides the proposed algorithm, we also evaluate the
erformance of the five other algorithms that are able to estimate
yroscope bias.

For the BROAD and Sassari datasets, we derive a ground truth for
he gyroscope bias by averaging the gyroscope measurements during
he rest phases at the beginning and at the end of each trial and
inearly interpolating in between to account for slow bias instability.
or each IOE algorithm, we calculate the root-mean-square over time
f the residual bias norm, i.e., of the norm of the difference between
he estimated bias and the true bias. Fig. 12 shows the achieved
196

elative reduction of the gyroscope bias, the true bias norm, and the
residual bias norm, averaged over all trials for each dataset. Since the
proposed VQF and the literature method VAC use rest detection for
bias estimation, while the other algorithms do not, we also test the
performance of all algorithms on a cut version of the BROAD dataset,
in which the initial and final rest phases were removed.

For the proposed algorithms VQF and OfflineVQF, we present the
bias estimates obtained with the default parameters. For the existing
methods, we found that parameters that yield the best orientation esti-
mation results often do not yield the best bias estimates. We therefore
optimized, separately for each dataset, all parameters of all literature
methods (except MKF) across the search grid presented in Table 2, such
that the bias estimation error is minimized. Despite this disparity, the
proposed method clearly outperforms the bias estimation methods of
all other IOE algorithms. Even though the results obtained with the cut
BROAD dataset are worse than for the datasets with long rest phases,
the proposed method is still able to reduce the bias by 39%, while
he best literature method only achieves a reduction of 18%. As with

orientation estimation, using the OfflineVQF variant further improves
the accuracy in comparison to the real-time capable VQF algorithm.
MKF only achieves a slight reduction of gyroscope bias for the Sassari
dataset, while for BROAD the bias norm increases compared to the
original bias found in the measurement data.

To illustrate how the bias estimation method works, Fig. 13 shows

the estimated bias, the estimation error, and the estimation uncertainty
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Fig. 14. Performance of the magnetic disturbance rejection method for trial 37 of the BROAD dataset (disturbed office environment). Whenever magnetic disturbances are detected
by Algorithm 3 (light red background), the magnetometer-based correction is automatically disabled. In comparison to the same algorithm with disabled magnetic disturbance
rejection, the RMSE is considerably reduced, and the large error peak of 20° is avoided.
for an exemplary trial of the BROAD dataset. It can be seen that the
bias estimation works as intended: During the initial motion phase,
the estimated bias slowly converges to the true bias. Once rest is
automatically detected, the alternative update is used, causing the
estimate to rapidly converge.

In summary, both in a systematic comparison, as well as in an
exemplary case study, the proposed gyroscope bias estimation method
was found to work reliably and clearly outperformed existing bias
estimation approaches.

3.6. Magnetic disturbance rejection

To further illustrate the difference in performance between the
proposed BasicVQF and VQF algorithms, we now take a brief look at
the performance of the magnetic disturbance detection and rejection
method. Fig. 14 shows the behavior of this extension on an example
of the BROAD dataset. For the sake of evaluation, OMC data was
used to determine the true disturbance of the local magnetic field
caused by ferromagnetic material and electric devices in the office
environment. This ground truth information shows that the detection is
triggered whenever disturbances are present. Without magnetic distur-
bance rejection, the orientation estimation error reaches a maximum of
20.0°, and the RMSE is 6.1°. In contrast, enabling magnetic disturbance
rejection reduces the maximum error to just 3.7° and the RMSE to
1.8°, which translates to an at least three times better accuracy. This
example demonstrates how the optional magnetic disturbance rejection
can improve the reliability of 9D IOE in real-world scenarios inside
buildings, near ferromagnetic material and electric devices.

3.7. Summary of the results

The proposed VQF algorithm achieved an average RMSE of 2.9° for
9D IOE, while the average errors obtained with state-of-the-art methods
range from 5.3° to 16.7°. For 6D IOE, VQF attained an average RMSE
of 1.1°, compared to 2.4°–6.3° obtained with existing methods, and it
achieved even 17% lower errors than a neural network that was trained
on large portions of the benchmark data. For the 13 characteristic trial
groups of the BROAD dataset, the proposed method outperforms even
the best-performing literature method for all seven motion character-
istics and for four out of six disturbance characteristics. Furthermore,
197
the gyroscope bias estimation of VQF clearly outperformed all existing
state-of-the-art literature methods and compensated ∼ 90% of the bias.
Even for the challenging case without rest phases, the bias could still
be reduced by ∼40–60%, while the existing algorithms barely achieved
any bias reduction. For an exemplary case in a simulated office envi-
ronment, the magnetic disturbance rejection algorithm was shown to
achieve a five-fold reduction of the maximum orientation error.

Even the variant BasicVQF, without bias estimation and magnetic
disturbance rejection, was shown to provide clearly more accurate 9D
orientation estimates than all state-of-the-art methods. For applications
in which real-time capability is not required, the variant OfflineVQF
can be used to further increase accuracy.

4. Conclusions

We proposed a novel IOE algorithm that simultaneously performs
6D and 9D sensor fusion, estimates gyroscope bias, and performs
magnetic disturbance detection and rejection. An open-source imple-
mentation is provided in C++, Python, and Matlab, making it easy
to use the algorithm. We compared the proposed algorithm VQF with
eight other IOE algorithms and using a collection of six publicly avail-
able datasets that cover a wide range of motions, speeds, disturbances,
and different sensor hardware. As summarized in Section 3.7, VQF
consistently provided the best performance, both for 6D and 9D orienta-
tion estimation, as well as for gyroscope bias estimation, and it proved
capable of magnetic disturbance rejection.

The proposed method provides a highly accurate out-of-the-box
performance, which means that – unlike existing literature methods
– VQF requires no parameter tuning for a vast range of motions
and application scenarios. For rare edge cases, the proposed method
facilitates easy and intuitive tuning via the time constants 𝜏acc and 𝜏mag.

The achieved improvements in ease of use and in orientation esti-
mation accuracy are expected to change the way we use IOE algorithms
in practice and, thereby, to advance the broad field of inertial motion
tracking since it enables more accurate IMU-based position and velocity
estimation, joint angle estimation, and 3D visualization. This, in turn,
leads to improved performance in many existing application areas of
miniature inertial sensor technology, and it likewise facilitates the
applicability in novel application domains with increased accuracy
demands.
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Future work will focus on integrating continuous and automatic
magnetometer calibration as well as on employing the VQF algorithm
in various applications.
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ppendix A. Details on the basic update step

The basic filter update given in Algorithm 1 consists of a prediction
f the next orientation based on the gyroscope measurement, followed
y a correction of the inclination based on the accelerometer mea-
urement, and an (optional) correction of the heading based on the
agnetometer measurement.

.1. Gyroscope prediction

Gyroscope prediction via strapdown integration is performed by
ultiplying the previous estimate with a quaternion based on the norm

nd direction of the measured angular rate:
𝑖(𝑡𝑘)

𝑖(𝑡𝑘)
𝐪 = 𝑖(𝑡𝑘−1)

𝑖(𝑡𝑘−1)
𝐪⊗

(

𝑇𝑠‖𝝎‖@𝝎
)

. (3)

The rotation due to the gyroscope measurement is composed of the
rue change of sensor orientation and an error, due to gyroscope bias,
oise, and other measurement errors (e.g., scaling errors, nonlinearity,
isalignment, and clipping). This error can be regarded as a small drift

n the 𝑖 frame, i.e., as 𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘)

𝐪, which can be shown via quaternion
lgebra (cf. Appendix B).

.2. Accelerometer correction

The accelerometer measurements consist of the gravitational accel-
ration, change of velocity, as well as noise, bias, and other measure-
ent errors. Most existing methods [14,16,17] interpret each single

ccelerometer sample as a 3D vector and use the angle between this
ector and the expected vertical direction to derive the correction step.
n contrast, to better separate the gravitational acceleration from the
ther components of the measurement, we transform the measured
ccelerations into the almost-inertial frame 𝑖 and then apply a linear

low-pass filter to each component. The resulting signal provides a
vertical reference in the 𝑖 frame, which slowly drifts due to errors in
gyroscope integration, as shown in Fig. 5. As a low-pass filter, we use a
second-order Butterworth filter. The cutoff frequency 𝑓c,acc of this filter
defines the weight between gyroscope prediction and accelerometer
correction. To ensure a fast and robust convergence when the algorithm
is initialized, we calculate the arithmetic mean for the first few samples
instead of using the Butterworth filter. Then, the filter state is initialized
based on this mean value.

As illustrated in Fig. 15, we can use this vertical reference to
correct the inclination estimate. If [𝑎𝑥 𝑎𝑦 𝑎𝑧]⊺ denotes the filtered and
normalized acceleration measurement in the  frame, the shortest
198

𝑖

Fig. 15. Illustration of the inclination correction step based on the filtered accelerom-
eter measurement. In global 𝑖 coordinates, the filtered and normalized acceleration
𝐚 = [𝑎𝑥 𝑎𝑦 𝑎𝑧]⊺ is expected to point in positive 𝑧-direction. This can be achieved by a
orrection rotation with angle arccos 𝑎𝑧 and axis [𝑎𝑦 − 𝑎𝑥 0]⊺.

Fig. 16. Illustration of the heading correction step based on the magnetometer
measurement. In many parts of the world, Earth’s magnetic field is dominated by a
vertical component, e.g., in Berlin, the magnetic field is pointing down with a dip angle
of 68°. An estimate of the magnetic north direction can be obtained by projecting the
measured magnetic field into the horizontal plane.

rotation for inclination correction has an angle of arccos 𝑎𝑧 around the
axis [𝑎𝑥 𝑎𝑦 𝑎𝑧]⊺ × [0 0 1]⊺ = [𝑎𝑦 − 𝑎𝑥 0]⊺. The quaternion 𝐪𝑐𝑜𝑟𝑟 that
corresponds to this rotation can be expressed without trigonometric
functions as

𝑞𝑤 = cos
( arccos 𝑎𝑧

2

)

=

√

𝑎𝑧 + 1
2

(4)

𝐪𝑐𝑜𝑟𝑟 =
[

𝑞𝑤
𝑎𝑦
2𝑞𝑤

−𝑎𝑥
2𝑞𝑤

0
]⊺

. (5)

This quaternion is used to correct the estimate of the 𝑖
𝑖
𝐪 quaternion,

i.e.,
𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪 = 𝐪𝑐𝑜𝑟𝑟(𝑡𝑘)⊗
𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘−1)

𝐪. (6)

After the correction step, the low-pass filtered acceleration will per-
fectly point in upward direction, i.e., in 𝑧-direction of the 𝑖 and 
frames.

A.3. Magnetometer correction

If magnetometer measurements are given, we use them to correct
the heading estimate. As shown in Eq. (1), the heading is tracked
via a scalar state 𝛿 (𝑡 ) that represents the vertical rotation from the
𝑖 𝑘
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Fig. 17. Step response for first- and second-order low-pass filters. The time axis is
ormalized by dividing by the time constant 𝜏 of the proposed parametrization. Both

filter outputs are roughly close to 0.5 at 𝑡 = 𝜏 and converge up to a deviation of ≤ 5%
at 𝑡 = 3𝜏.

global  frame (with the 𝑦-axis pointing north) to the 𝑖 frame. As
illustrated in Fig. 16, we can use the current magnetometer sample to
derive a measurement 𝛿mag(𝑡𝑘) for this state by projecting the magnetic
field vector into the horizontal plane. The state is then corrected by a
fixed fraction 𝑘mag of the deviation between state and measurement,
which corresponds to a first-order low-pass filter with exponential
convergence.

The parameter 𝑘mag defines the fusion weight between gyroscope
prediction and magnetometer correction. To ensure robust and fast
convergence when the filter is initialized with the default value 𝛿𝑖(𝑡0) =
0, we average the first measurements by choosing the filter weight 𝑘mag
as 1, 12 ,

1
3 ,… during the first 1

𝑘mag
steps.

.4. Definition of intuitive fusion weights

The behavior of the algorithm can be influenced by two fusion
eights 𝑓c,acc and 𝑘mag, which we will now replace with a more intuitive
arametrization by defining intuitive time constants 𝜏acc and 𝜏mag that
llow the user to influence the fusion weights between gyroscope pre-
iction and accelerometer correction and between gyroscope prediction
nd magnetometer correction, respectively. The parameters 𝑓c,acc and
mag that are internally used in the filter update step (Algorithm 1) are
utomatically derived from those time constants.

In order to specify the gain 𝑘mag of the magnetometer correction
irst-order exponential filter, we use the time constant 𝜏 = 1

2𝜋𝑓c
that is

commonly used to characterize first-order systems and corresponds to
the time needed for the step response to reach 1 − 𝑒−1 ≈ 63.2% of its
final value. The filter weight for the proportional update can be derived
from this time constant as

𝑘mag = 1 − exp
(

−
𝑇s
𝜏mag

)

. (7)

The second-order Butterworth filter used for accelerometer cor-
rection is characterized by the cutoff frequency 𝑓c,acc. In order to
obtain a parametrization that is similar to the parametrization of the
magnetometer correction, we use a time constant that corresponds to
the undampened part of the step response, i.e., 𝜏acc =

√

2
2𝜋𝑓c,acc

. The cutoff
requency used to determine the Butterworth filter coefficients is then
iven as

c,acc =

√

2
2𝜋𝜏acc

. (8)

See Fig. 17 for a comparison of the step responses of both filter types
in relation to the time constant 𝜏.

This mapping is used to derive the internal parameters 𝑓c,acc and
from the user-specified time constants 𝜏 and 𝜏 .
199

mag acc mag
ppendix B. Gyroscope integration errors cause drift of almost-
nertial frame

Every gyroscope prediction step causes a small error, due to gyro-
cope bias, noise, and other measurement errors. Without correction by
ccelerometers and magnetometers, those errors will add up and lead
o drift in the orientation estimates. We can show that this error can be
egarded as a small drift in the 𝑖 frame, i.e., all rotation that happens
n the gyroscope prediction and that is not the true change of sensor
rientation can mathematically be expressed as a rotation 𝑖(𝑡𝑘−1)

𝑖(𝑡𝑘)
𝐪.

The gyroscope prediction step consists of multiplication of the previ-
us estimate with an update quaternion based on the measured angular
ate:

𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪 = 𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘−1)

𝐪⊗
(

𝑇𝑠‖𝝎‖@𝝎
)

. (9)

This update quaternion can be expressed as the true change in sensor
orientation multiplied with a small error quaternion 𝐪𝑒, i.e.,
(

𝑇𝑠‖𝝎‖@𝝎
)

=  𝑖(𝑡𝑘)
 𝑖(𝑡𝑘−1)

𝐪⊗ 𝐪e. (10)

We can transform the error rotation 𝐪𝑒 to any frame, here 𝑖(𝑡𝑘−1):

𝐪e =
𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘)

𝐪⊗
[

𝐪e
]

𝑖(𝑡𝑘−1)
⊗ 𝑖(𝑡𝑘−1)

𝑖(𝑡𝑘)
𝐪−1. (11)

When putting this into the prediction step, we obtain
𝑖(𝑡𝑘)
𝑖(𝑡𝑘)

𝐪 = 𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘−1)

𝐪⊗
(

𝑇𝑠‖𝝎‖@𝝎
)

(12)

= 𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘−1)

𝐪⊗  𝑖(𝑡𝑘)
 𝑖(𝑡𝑘−1)

𝐪⊗ 𝐪e (13)

= 𝑖(𝑡𝑘)
𝑖(𝑡𝑘−1)

𝐪⊗ 𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘)

𝐪⊗
[

𝐪e
]

𝑖(𝑡𝑘−1)
⊗ 𝑖(𝑡𝑘−1)

𝑖(𝑡𝑘)
𝐪−1 (14)

=
[

𝐪e
]

𝑖(𝑡𝑘−1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑖 (𝑡𝑘−1)
𝑖 (𝑡𝑘 )

𝐪

⊗ 𝑖(𝑡𝑘)
𝑖(𝑡𝑘−1)

𝐪 (15)

Therefore, expressed in the almost-inertial frame 𝑖(𝑡𝑘−1), the gyro-
scope prediction error quaternion 𝐪e corresponds to the drift rotation
𝑖(𝑡𝑘−1)
𝑖(𝑡𝑘)

𝐪 of the almost-inertial frame 𝑖.

Appendix C. Details on gyroscope bias estimation

The full algorithm for gyroscope bias estimation is given in Algo-
rithm 2.

To detect whether the IMU is at rest (procedure RestDetection in
Algorithm 2), we first filter each component of the gyroscope and ac-
celerometer measurements with a second-order Butterworth filter and
a time constant of 𝜏 = 0.5 s. Note that, unlike the low-pass filter for the
acceleration used for inclination correction, we apply the filter directly
in the sensor frame. We then calculate the Euclidean norm of the devi-
ation between the current measurement and the filtered measurement.
Rest is detected if, in the last 1.5 s, the gyroscope and accelerometer
deviations are always less than 2◦∕s and 0.5 m∕s2, respectively. Note
that we deliberately do not use magnetometer measurements for rest
detection since we found the rest detection to be very reliable when
only using gyroscope and accelerometer measurements, whereas using
magnetometers did not add additional value.

To estimate the gyroscope bias during rest and motion, we em-
ploy a Kalman filter [29,30], with the gyroscope bias as state and a
time-dependent output matrix:

𝐛(𝑡𝑘) = 𝐛(𝑡𝑘−1) + 𝐯(𝑡𝑘), 𝐯(𝑡𝑘) ∼  (0,𝐕) (16)

𝐲(𝑡𝑘) = 𝐂(𝑡𝑘)𝐛(𝑡𝑘) + 𝐰(𝑡𝑘), 𝐰(𝑡𝑘) ∼  (0,𝐖(𝑡𝑘)). (17)

During rest, we use the low-pass filtered gyroscope readings 𝝎LP

(which we calculated in the rest detection procedure) as a direct
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Algorithm 2 Gyroscope Bias Estimation
1: procedure RestDetection(𝝎, 𝐚)
2: 𝑇rest ← 𝑇rest + 𝑇s
3: for each measurement 𝝎, 𝐚 do
4: low-pass filter the measurement with 𝜏 = 0.5 s
5: if absolute difference between current and filtered measure-

ment value is above threshold for any component then
6: 𝑇rest ← 0
7: end if
8: end for
9: if 𝑇rest ≥ 1.5 s then

10: rest detected
11: else
12: movement detected
13: end if
14: end procedure
15: procedure InitializeKalmanFilter
16: 𝐛̂ ← [0 0 0]⊺ ⊳ Gyroscope bias estimate
17: 𝐏 ← (0.5 °∕s)2𝐈3×3 ⊳ Covariance matrix
18: 𝑣 ← (0.1 °∕s)2𝑇s(100 s)−1 ⊳ System noise
19: 𝑤motion ← (0.1 °∕s)4𝑣−1 + (0.1 °∕s)2

⊳ Motion update variance
20: 𝑤rest ← (0.03 °∕s)4𝑣−1 + (0.03 °∕s)2

⊳ Rest update variance
21: end procedure
22: procedure BiasEstimationStep(𝑖𝑖𝐪, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧)

23: 𝐑 ← rotation matrix corresponding to 𝑖
𝑖
𝐪

24: 𝐑LP ← low-pass filter 𝐑 with 𝜏 = 𝜏acc
25: 𝐛̂𝑖 ,LP ← low-pass filter 𝐑𝐛̂ with 𝜏 = 𝜏acc
26: if rest detected then
27: 𝐲 ← 𝐛̂
28: 𝐂 ← 𝐈3×3
29: 𝐖 ← 𝑤rest [1 1 1]⊺

30: else
31: 𝐲 ← 𝑇 −1

s [𝑎𝑦 − 𝑎𝑥 0]⊺ + diag(1, 1, 0)𝐛̂𝑖 ,LP
32: 𝐂 ← 𝐑LP
33: 𝐖 ← 𝑤motion[1 1 1

0.0001 ]
⊺

34: end if
35: 𝐏 ← 𝐏 + 𝑣[1 1 1]⊺ ⊳ Kalman filter update
36: 𝐊 ← 𝐏𝐂⊺(𝐖 + 𝐂𝐏𝐂⊺)−1

37: 𝐛̂ ← 𝐛̂ +𝐊 clip(𝐲 − 𝐂𝐛̂,−2 °∕s, 2 °∕s)
⊳ Limit disagreement to 2 °∕s

38: 𝐏 ← 𝐏 −𝐊𝐂𝐏
39: 𝐛̂ ← clip(𝐛̂,−2 °∕s, 2 °∕s)

⊳ Limit bias estimate to 2 °∕s
40: end procedure

measurement of the bias, i.e., 𝐂(𝑡𝑘) = 𝐈3×3 and 𝐲(𝑡𝑘) = 𝝎LP(𝑡𝑘). Because
the IMU is at rest and gyroscope readings are already filtered, we can
assign a comparatively large weight (i.e., a small covariance) to this
measurement update and achieve fast convergence for the bias estimate
𝐛(𝑡𝑘).

During motion, we estimate the gyroscope bias from the inclination
correction steps. At every time step, the new error due to gyroscope
bias is a local rotation (i.e., in 𝑖) with the rotation vector 𝑇𝑠(𝐛 − 𝐛̂),
nd the inclination correction is a global rotation (i.e., in 𝑖) with a
orizontal rotation vector 𝐜 = [𝑐𝑥 𝑐𝑦 0]⊺. In ideal conditions (i.e., in a
teady state and without noise or other errors), the correction rotation
ill exactly compensate the inclination portion of the bias rotation. As

llustrated in Fig. 18, in this case, the correction is the inverse of the
200

orizontal projection of the bias rotation. r
Fig. 18. Illustration of the principle behind gyroscope bias estimation from the
inclination correction step. In the steady state, the correction angular rate 𝝎corr
hat corresponds to the accelerometer-based correction is the (negative) horizontal
rojection of the remaining gyroscope bias 𝐛 − 𝐛̂.

With 𝐑 being the rotation matrix corresponding to 𝑖
𝑖
𝐪, we can

express this as

𝐑(𝐛 − 𝐛̂) = − 1
𝑇s

⎡

⎢

⎢

⎣

𝑐𝑥
𝑐𝑦
∗

⎤

⎥

⎥

⎦

, (18)

where the star indicates that the gyroscope bias in the current vertical
direction is not observable by accelerometer measurements.

To achieve slow forgetting of the bias for the special case in which
the same axis is vertical for a long time, we set the corresponding
measurement to zero, with a significantly larger variance to slow down
convergence.

With an output matrix of 𝐂𝑘 = 𝐑 =∶ (𝑟𝑖𝑗 ) and the correction vector
[𝑎𝑦 − 𝑎𝑥 0]⊺, we obtain the following measurement equation:

𝐲𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

− 1
𝑇s
𝑎𝑦 + 𝑟11𝑏̂𝑥 + 𝑟12𝑏̂𝑦 + 𝑟13𝑏̂𝑧

1
𝑇s
𝑎𝑥 + 𝑟21𝑏̂𝑥 + 𝑟22𝑏̂𝑦 + 𝑟23𝑏̂𝑧

0

⎤

⎥

⎥

⎥

⎥

⎦

. (19)

his measurement equation does not take into account that the mea-
ured accelerations are low-pass filtered in the 𝑖 frame. The accuracy
nd robustness of the bias estimation can be significantly improved by
ow-pass filtering the components of 𝐑 and 𝐑𝐛̂ with the same low-pass
ilter used for the accelerometer measurements in the 𝑖 frame. See
ppendix D for a detailed derivation of this full measurement equation.

The tuning parameters of a Kalman filter are the initial covariance,
he covariance of the system noise, and the covariance of the mea-
urement noise. Since the real values of those covariances are hard to
btain and would furthermore depend on the sampling rate, we employ
parametrization that ensures the following properties:

1. The initial estimation uncertainty is 𝜎init = 0.5◦∕s.
2. During motion, the uncertainty converges to 𝜎motion = 0.1◦∕s (for

the non-vertical axes).
3. During rest, the uncertainty converges to 𝜎rest = 0.03◦∕s.
4. Without updates, the estimation uncertainty increases from 0 to

0.1◦∕s in the forgetting time 𝑡forget = 100 s.

ow those parameters translate to the covariances internally used by
he Kalman filter is specified in Algorithm 2 and further explained in
ppendix E. Note that the absolute values of the provided parameters
re arbitrary and chosen to facilitate an intuitive understanding of the
stimation uncertainty. For the behavior of the Kalman filter, only the

elation between the parameters is relevant.
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Appendix D. Measurement for motion bias estimation

The approach for gyroscope bias estimation during motion, as
shown in Fig. 18, is based on the assumption that the current in-
clination correction step corresponds to the gyroscope bias that is
transformed to the global frame using the current sensor orientation.
This works well if the sensor orientation does not change much.
In reality, due to the low-pass filter used for the acceleration, the
inclination correction corresponds to the bias-induced rotations from
the last few seconds, taking the respective sensor orientations into
account. In the following, we show that this effect is well-described
by applying the same low-pass filter to the elements of the rotation
matrices 𝐑 corresponding to 𝑖

𝑖
𝐪, and also to the rotated bias estimates

𝐑𝐛̂.
To simplify the notation, we introduce the rotation operator:

rot
(

𝐪, 𝐯
)

∶= 𝐪 ⊗ 𝐯 ⊗ 𝐪−1. (20)

Assume that the accelerometer measurements are always a perfect
vertical vector ([𝐚(𝑡𝑘)]true =

[

𝐯
]

true
= [0 0 1]⊺), i.e. there are no

disturbances or measurement errors (unit length is only used to sim-
plify the notation). In the orientation estimation update step, those
accelerometer measurements are transformed into the 𝑖(𝑡𝑘) frame and
then low-pass filtered with an infinite impulse response (IIR) filter with
impulse response 𝑏𝑛, i.e.,

[

𝐚LP(𝑡𝑘)
]

𝑖(𝑡𝑘)
=

∞
∑

𝑛=0
𝑏𝑛

[

rot
(

true
𝑖(𝑡𝑘−𝑛)

𝐪,
[

𝐯
]

true

)]

(21)

=
∞
∑

𝑛=0
𝑏𝑛

[

𝐯
]

𝑖(𝑡𝑘−𝑛)
. (22)

One time step earlier, the filter output is

[

𝐚LP(𝑡𝑘−1)
]

𝑖(𝑡𝑘−1)
=

∞
∑

𝑛=0
𝑏𝑛

[

𝐯
]

𝑖(𝑡𝑘−1−𝑛)
(23)

=
∞
∑

𝑛=0
𝑏𝑛 rot

(

𝑖(𝑡𝑘−𝑛)
𝑖(𝑡𝑘−1−𝑛)

𝐪,
[

𝐯
]

𝑖(𝑡𝑘−𝑛)

)

. (24)

From Rodrigues’ rotation formula follows that for a small rotation 𝜃
around axis 𝐤,

𝐩𝑟𝑜𝑡 ≈ 𝐩 + 𝜃𝐤 × 𝐩. (25)

We use this approximation for the rotation of the 𝑖 frame due to
gyroscope bias in one sample step 𝑖(𝑡𝑘−1−𝑛)

𝑖(𝑡𝑘−𝑛)
𝐪 (cf. Appendix B). Note that

this rotation is only caused by the uncorrected part of the gyroscope
bias, i.e., by 𝐛′(𝑡𝑘) ∶= 𝐛 − 𝐛̂(𝑡𝑘). Therefore, we obtain
[

𝐚LP(𝑡𝑘−1)
]

𝑖(𝑡𝑘−1)
(26)

≈
∞
∑

𝑛=0
𝑏𝑛

(

[

𝐯
]

𝑖(𝑡𝑘−𝑛)
− 𝑇s

[

𝐛′(𝑡𝑘−𝑛)
]

𝑖(𝑡𝑘−𝑛)
×
[

𝐯
]

𝑖(𝑡𝑘−𝑛)

)

. (27)

The difference between two consecutive filtered accelerations is
then
[

𝐚LP(𝑡𝑘)
]

𝑖(𝑡𝑘)
−
[

𝐚LP(𝑡𝑘−1)
]

𝑖(𝑡𝑘−1)
(28)

≈ 𝑇s
∞
∑

𝑛=0
𝑏𝑛

(

[

𝐛′(𝑡𝑘−𝑛)
]

𝑖(𝑡𝑘−𝑛)
×
[

𝐯
]

𝑖(𝑡𝑘−𝑛)

)

(29)

= 𝑇s
∞
∑

𝑛=0
𝑏𝑛

(

rot
(

𝑖(𝑡𝑘−𝑛)
𝑖(𝑡𝑘−𝑛)

𝐪,𝐛′(𝑡𝑘−𝑛)
)

×
[

𝐯
]

𝑖(𝑡𝑘−𝑛)

)

. (30)

Now, we express this difference in the frame 𝑖(𝑡𝑘−1) that is used to
perform the inclination correction step, assuming that 𝑖 and 𝑖 do not
change much over the duration that is relevant for the filter (since the
influence of bias and the inclination correction is limited during short
time spans), and assuming that the true vertical axis is approximately
[0 0 1]⊺ in the 𝑖(𝑡𝑘−1) frame.
[

𝐚 (𝑡 )
]

−
[

𝐚 (𝑡 )
]

(31)
201

LP 𝑘 𝑖(𝑡𝑘−1) LP 𝑘−1 𝑖(𝑡𝑘−1)
t

≈ 𝑇s
∞
∑

𝑛=0
𝑏𝑛

⎡

⎢

⎢

⎣

rot
(

𝑖(𝑡𝑘−𝑛)
𝑖(𝑡𝑘−1−𝑛)

𝐪,𝐛′(𝑡𝑘−𝑛)
)

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

(32)

= 𝑇s

[ ∞
∑

𝑛=0
𝑏𝑛 rot

(

𝑖(𝑡𝑘−𝑛)
𝑖(𝑡𝑘−1−𝑛)

𝐪,𝐛′(𝑡𝑘−𝑛)
)

]

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

(33)

Expressing the rotation by 𝑖(𝑡𝑘−𝑛)
𝑖(𝑡𝑘−𝑛−1)

𝐪 with a rotation matrix 𝐑(𝑡𝑘−𝑛)
and introducing an LPF operator to simplify the notation of the low-
pass filter yields
[

𝐚LP(𝑡𝑘)
]

𝑖(𝑡𝑘−1)
−
[

𝐚LP(𝑡𝑘−1)
]

𝑖(𝑡𝑘−1)
(34)

= 𝑇s

[ ∞
∑

𝑛=0
𝑏𝑛

(

𝐑(𝑡𝑘−𝑛)𝐛′(𝑡𝑘−𝑛)
)

]

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

(35)

= 𝑇s LPF
(

𝐑(𝑡𝑘)𝐛′(𝑡𝑘)
)

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

. (36)

Since
[

𝐚LP(𝑡𝑘−1)
]

𝑖(𝑡𝑘−1)
is always [0 0 1]⊺ as the result of the previous

inclination correction step, we get

[

𝐚LP(𝑡𝑘)
]

𝑖(𝑡𝑘−1)
=
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

+ 𝑇s LPF
(

𝐑(𝑡𝑘)𝐛′(𝑡𝑘)
)

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

. (37)

The inclination correction rotation vector 𝐜(𝑡𝑘), i.e., expressing the cor-
rection quaternion 𝐪𝑐𝑜𝑟𝑟 from Eq. (5) as a rotation vector, is (neglecting
the small change of the norm of

[

𝐚LP(𝑡𝑘)
]

𝑖(𝑡𝑘−1)
)

𝐜(𝑡𝑘) =
[

𝐚LP(𝑡𝑘−1)
]

𝑖(𝑡𝑘)
×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

(38)

=
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

+ 𝑇s LPF
(

𝐑(𝑡𝑘)𝐛′(𝑡𝑘)
)

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

×
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

(39)

= −diag(1, 1, 0)𝑇s LPF
(

𝐑(𝑡𝑘)𝐛′(𝑡𝑘)
)

(40)

= −diag(1, 1, 0)𝑇s
(

LPF(𝐑(𝑡𝑘))𝐛 − LPF(𝐑(𝑡𝑘)𝐛̂(𝑡𝑘))
)

. (41)

Therefore, when choosing the system output matrix as 𝐂(𝑡𝑘) =
LPF(𝐑(𝑡𝑘)), we obtain the following measurement in the horizontal
plane:

diag(1, 1, 0)𝐲(𝑡𝑘) = − 1
𝑇s

𝐜(𝑡𝑘) + diag(1, 1, 0) LPF(𝐑(𝑡𝑘)𝐛̂(𝑡𝑘)). (42)

Appendix E. Parametrization of the bias estimation method

Gyroscope bias is estimated using the system model

𝐛𝑘 = 𝐛𝑘−1 + 𝐯𝑘, 𝐯𝑘 ∼  (0,𝐕), (43)

𝐲𝑘 = 𝐂𝑘𝐛𝑘 + 𝐰𝑘, 𝐰𝑘 ∼  (0,𝐖𝑘), (44)

where the index 𝑘 denotes sampling at 𝑡𝑘, and the standard Kalman
filter update equations for the estimated state 𝐛̂𝑘

𝐏−
𝑘 = 𝐏+

𝑘−1 + 𝐕 (45)

𝐊𝑘 = 𝐏−
𝑘𝐂

⊺
𝑘(𝐖𝑘 + 𝐂𝑘𝐏−

𝑘𝐂
⊺
𝑘)

−1 (46)

𝐛̂𝑘 = 𝐛̂𝑘−1 +𝐊𝑘(𝐲𝑘 − 𝐂𝑘𝐛̂𝑘−1) (47)

𝐏+
𝑘 = 𝐏−

𝑘 −𝐊𝑘𝐂𝑘𝐏−
𝑘 . (48)

The tuning parameters are the initial covariance 𝐏+
0 , the variance of

he system noise 𝐕, and the variance of measurement noise 𝐖(𝑡𝑘). In
he following, we derive an intuitive parametrization for those values
hat is independent of the sampling frequency. Note that scaling all
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parameters of the Kalman filter with the same value will not change the
system behavior. For heuristically determined parameters, the actual
quantities are therefore arbitrary. However, a good parametrization
still helps to make the behavior of the algorithm understandable and
facilitates tuning.

A fixed amount of variance, the variance of the system noise 𝐕, is
added to the covariance matrix in every update step. To be indepen-
dent of the sampling frequency, scaling with the sampling time 𝑇s is
ecessary. To facilitate interpretation of the value as a forgetting time,
e parametrize the system noise by the time needed for the standard
eviation of the estimation uncertainty to increase from 0 to 0.1◦∕s in
he absence of measurements, i.e.,

= (0.1◦∕s)2
𝑇s

𝑡forget
𝐈3×3. (49)

We use the initial estimation uncertainty, i.e., the standard devia-
tion 𝜎init , to initialize the covariance matrix:

𝐏+
0 = 𝜎2init𝐈3×3. (50)

For the rest and motion updates, we provide the uncertainties 𝜎rest
and 𝜎motion to which the estimate will eventually converge when the
respective filter update is active instead of specifying the variance of the
motion and rest update measurements directly. This ensures indepen-
dence of the sampling rates and makes the parameters easy to compare
to the initial standard deviation. The relation to the measurement
variance 𝑤rest∕motion is given by

rest∕motion =
𝜎4rest∕motion

𝑣
+ 𝜎2rest∕motion. (51)

To derive this, consider a simplified case of a Kalman filter for a
system with one constant state (𝑥𝑘 = 𝑥𝑘−1) and direct measurement of
the state (𝐶 = 1):

𝑝−𝑘 = 𝑝+𝑘−1 + 𝑣 (52)

𝑘𝑘 =
𝑝−𝑘

𝑤 + 𝑝−𝑘
(53)

𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝑘𝑘(𝑦𝑘 − 𝑥̂𝑘−1) (54)

𝑝+𝑘 = 𝑝−𝑘 − 𝑘𝑘𝑝
−
𝑘 . (55)

In the converged state, 𝑘𝑘 = 𝑘𝑘−1 and 𝑝+𝑘 = 𝑝+𝑘−1. From Eq. (55) follows

𝑝+𝑘 = 𝑝+𝑘 + 𝑣 −
𝑝+𝑘 + 𝑣

𝑝+𝑘 + 𝑣 +𝑤
(𝑝+𝑘 + 𝑣) (56)

𝑣 =
(𝑝+𝑘 + 𝑣)2

𝑝+𝑘 + 𝑣 +𝑤
(57)

𝑤 =
(𝑝+𝑘 + 𝑣)2

𝑣
− 𝑝+𝑘 − 𝑣 =

(𝑝+𝑘 )
2

𝑣
+ 𝑝+𝑘 . (58)

The relation given in Eq. (51) is then obtained by replacing the variance
𝑝𝑘 with 𝜎2.

Note that, for the 3-dimensional bias estimate, the 3 × 3 covariance
matrix might not be close to a diagonal matrix, especially if the same
sensor axis is vertical for a long time. The uncertainty 𝜎 of the bias
estimate (in the worst-case direction) can be derived from the largest
eigenvalue of the covariance matrix 𝐏. To avoid calculating eigenval-
es, the Gershgorin circle theorem can be leveraged to obtain an upper
ound estimate via the largest absolute row sum of 𝐏.

ppendix F. Magnetic disturbance rejection algorithm

The full algorithm for the magnetic disturbance detection and re-
ection extension as described in Section 2.5 is given in Algorithm
202

.

Algorithm 3 Magnetic Disturbance Rejection

1: procedure MagDistDetection(𝐦, 𝑖𝑖𝐪)
2: 𝑛 ← ‖𝐦‖ ⊳ Norm of magnetic field
3: 𝜃 ← −arcsin

(

[0 0 1]
(

𝑖
𝑖
𝐪⊗𝐦 ⊗ 𝑖

𝑖
𝐪−1

)

𝑛−1
)

⊳ Dip angle
4: low-pass filter 𝑛 and 𝜃 with 𝜏 = 0.05 s
5: if |𝑛 − 𝑛ref | < 0.1𝑛ref and |𝜃 − 𝜃ref | < 10° then
6: 𝑇undist ← 𝑇undist + 𝑇s
7: if 𝑇undist ≥ 0.5 s then
8: disturbed ← false
9: 𝑛ref ← 𝑘ref

(

𝑛 − 𝑛ref
)

10: 𝜃ref ← 𝑘ref
(

𝜃 − 𝜃ref
)

⊳ Track slow changes of norm and dip
11: else
12: disturbed ← true
13: 𝑇undist ← 0
14: end if
15: end if
16: end procedure
17: procedure NewMagFieldAcceptance(𝑛, 𝜃, |𝝎|)
8: if |𝑛 − 𝑛cand| < 0.1𝑛cand and |𝜃 − 𝜃cand| < 10° then
9: if ‖𝝎‖ ≥ 20 °∕s then

⊳ Only count the time if there is movement
0: 𝑇cand ← 𝑇cand + 𝑇s
1: end if
2: 𝑛cand ← 𝑘ref

(

𝑛 − 𝑛cand
)

3: 𝜃cand ← 𝑘ref
(

𝜃 − 𝜃cand
)

4: if disturbed and 𝑇cand ≥ 20 s then
⊳ Accept candidate as new reference

5: disturbed ← false
6: 𝑛ref ← 𝑛cand
7: 𝜃ref ← 𝜃cand
8: end if
9: else ⊳ Reset candidate to current value
0: 𝑇cand ← 0
1: 𝑛cand ← 𝑛
2: 𝜃cand ← 𝜃
3: end if
4: end procedure
5: procedure MagDistRejection
6: if disturbed then
7: if 𝑇reject < 60 s then
8: 𝑇reject ← 𝑇reject + 𝑇s
9: do not perform heading correction
0: else
1: perform heading correction with 1

2𝑘mag
42: end if
43: else
44: 𝑇reject ← max(𝑇reject − 2𝑇s, 0)
45: perform heading correction with 𝑘mag
46: end if
47: end procedure

Appendix G. Offline orientation estimation algorithm

The full algorithm for the acausal offline algorithm variant Of-
flineVQF as described in Section 2.6 is given in Algorithm 4.

Appendix H. Parameter tuning for the evaluated IOE algorithms

To provide a fair comparison for all evaluated algorithms, all algo-
rithm parameters were tuned to provide the smallest possible TAGPx
values. To determine the parameters, a grid search was performed,
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Algorithm 4 Offline Orientation Estimation Algorithm
1: procedure OfflineVQF(𝝎[𝑡1∶𝑁 ], 𝐚[𝑡1∶𝑁 ],𝐦[𝑡1∶𝑁 ])
2: … , dist1, 𝐛̂1,𝐏1 ← VQF(𝝎[𝑡1∶𝑁 ], 𝐚[𝑡1∶𝑁 ],𝐦[𝑡1∶𝑁 ]) ⊳ Run real-time filter in forward direction
3: … , dist2, 𝐛̂2,𝐏2 ← VQF(−𝝎[𝑡𝑁∶1], 𝐚[𝑡𝑁∶1],𝐦[𝑡𝑁∶1]) ⊳ Run real-time filter in backward direction
4: dist[𝑡1∶𝑁 ] ← dist1[𝑡1∶𝑁 ] ∧ dist2[𝑡1∶𝑁 ] ⊳ Regard magnetic field as disturbed if both runs detected disturbances
5: 𝐛̂[𝑡1∶𝑁 ] ← (𝐏−1

1 + 𝐏−1
2 )−1(𝐏−1

1 𝐛̂1 − 𝐏−1
2 𝐛̂2) ⊳ Average bias estimates of both filter runs via covariance

6: 𝑖
𝑖
𝐪[𝑡1∶𝑁 ] ← integrateGyr(𝝎[𝑡1∶𝑁 ] − 𝐛̂[𝑡1∶𝑁 ) ⊳ Perform gyroscope strapdown integration

7:
[

𝐚
]

𝑖
[𝑡1∶𝑁 ] ← 𝑖

𝑖
𝐪[𝑡1∶𝑁 ]⊗ 𝐚[𝑡1∶𝑁 ]⊗ 𝑖

𝑖
𝐪[𝑡1∶𝑁 ]−1 ⊳ Transform acceleration into 𝑖 frame

8:
[

𝐚LP
]

𝑖
[𝑡1∶𝑁 ] ← f iltf iltLPF(

[

𝐚
]

𝑖
[𝑡1∶𝑁 ], 𝜏 = 𝜏acc) ⊳ Forward–backward low-pass filtering

9: 𝑖
𝑖
𝐪[𝑡1∶𝑁 ] ← perform inclination correction based on

[

𝐚LP
]

𝑖
[𝑡1∶𝑁 ]

10: [𝑚𝑥 𝑚𝑦 𝑚𝑧]⊺[𝑡1∶𝑁 ] ←
(

𝑖
𝑖
𝐪[𝑡1∶𝑁 ]⊗ 𝑖

𝑖
𝐪[𝑡1∶𝑁 ]

)

⊗𝐦[𝑡1∶𝑁 ]⊗
(

𝑖
𝑖
𝐪[𝑡1∶𝑁 ]⊗ 𝑖

𝑖
𝐪[𝑡1∶𝑁 ]

)−1

11: 𝛿mag[𝑡1∶𝑁 ] ← atan2(𝑚𝑥[𝑡1∶𝑁 ], 𝑚𝑦[𝑡1∶𝑁 ])
12: 𝛿𝑖[𝑡1∶𝑁 ] ← run heading correction filter with magnetic disturbance rejection on 𝛿mag[𝑡1∶𝑁 ]
13: 𝛿𝑖[𝑡1∶𝑁 ] ← run heading correction filter with magnetic disturbance rejection on 𝛿𝑖[𝑡𝑁∶1]
14: return 𝑖

𝑖
𝐪[𝑡1∶𝑁 ]⊗ 𝑖

𝑖
𝐪[𝑡1∶𝑁 ], ⊳ 6D sensor orientation 𝑖

𝑖
𝐪

15: [cos 𝛿𝑖[𝑡1∶𝑁 ]
2 0 0 sin 𝛿𝑖[𝑡1∶𝑁 ]

2 ]⊺ ⊗ 𝑖
𝑖
𝐪[𝑡1∶𝑁 ]⊗ 𝑖

𝑖
𝐪[𝑡1∶𝑁 ] ⊳ 9D sensor orientation 𝑖

𝐪
16: end procedure
VQF: real-time implementation, returns magnetic disturbance state, bias estimate, and bias estimation covariance
integrateGyr: gyroscope strapdown integration by Equation (3)
f iltf iltLPF: forward–backward filtering with second-order Butterworth low-pass filter
Table 2
Results of TAGPx-based parameter tuning for all IOE algorithms used in the evaluation.

Algorithm TAGPx Parameter Value Search grid (start : step : end)

VQF 2.64◦ 𝜏acc 3 1 : 0.5 : 10
𝜏mag 9 1 : 1 : 30

MAH [16] 14.83◦ 𝐾𝑃 1.44 0.02 : 0.02 : 4
𝐾𝐼 0.0027 0 : 0.0001 : 0.004

MAD [17] 12.01◦ 𝛽 0.29 0.01 : 0.01 : 1
𝜁bias 0 0 : 0.00001 : 0.001

VAC [13] 5.63◦ 𝛼acc 0.00085 0.0001 : 0.00005 : 0.001
𝛽mag 0.0005 0.0001 : 0.00005 : 0.001
𝛼bias 0.00055 0.0001 : 0.00005 : 0.001
𝑏est True {False, True}
𝛼adapt False {False, True}

FKF [22] 9.19◦ 𝜎2
gyr 0.001 0.001 : 0.001 : 0.001

𝜎2
acc 0.002 0.001 : 0.0001 : 0.005

𝜎2
mag 0.0033 0.001 : 0.0001 : 0.005

SEL [14] 4.58◦ 𝜏acc 3.2 1 : 0.2 : 5
𝜏mag 10 1 : 1 : 20
𝜁bias 5 0 : 1 : 10
𝑟acc 2 0 : 1 : 10

MKF 7.58◦ 𝜎2
acc 0.00028171 MKF parameters were iteratively

determined with line searches
instead of a grid search.

𝜎2
mag 14.55188

𝜎2
gyr 0.15625

𝜎2
gyrdrif t 3 × 10−21

𝜎2
linacc 0.49128

𝑑linacc 0.81297
𝜎2
magdist 0.12329

𝑑magdist 0.51005

KOK [15] 11.70◦ 𝜎gyr 0.185 0.01 : 0.005 : 0.5
𝜁bias 0 0 : 0.00001 : 0.001
𝑚est True {False, True}

RIANN [23] 1.32◦ No parameters
TAGPx value not comparable to other algorithms because the inclination RMSE is used instead of the
orientation RMSE.
i.e., the algorithm performance was evaluated on a grid defined by the
Cartesian product of the linearly spaced parameter sets presented in
Table 2. This search grid was iteratively adjusted to ensure that the
distance between parameter values is sufficiently small and that the
203

TAGPx parameters do not lie at the border of the grid. The resulting
averaged error, the associated parameters, and the parameter search
range are presented in Table 2.

Due to the high dimensionality of the search space and the slow
implementation, the parameters for MKF were only evaluated using
a line search, i.e., only one parameter was changed while the other
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parameters are kept at the previously found minimum. The search
range was also iteratively adjusted until it converged to a stable mini-
mum.
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