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Abstract: Extended Kalman filter (EKF) is one of the most widely used Bayesian estimation methods
in the optimal control area. Recent works on mobile robot control and transportation systems have
applied various EKF methods, especially for localization. However, it is difficult to obtain adequate
and reliable process-noise and measurement-noise models due to the complex and dynamic sur-
rounding environments and sensor uncertainty. Generally, the default noise values of the sensors are
provided by the manufacturer, but the values may frequently change depending on the environment.
Thus, this paper mainly focuses on designing a highly accurate trainable EKF-based localization
framework using inertial measurement units (IMUs) for the autonomous ground vehicle (AGV) with
dead reckoning, with the goal of fusing it with a laser imaging, detection, and ranging (LiDAR) sensor-
based simultaneous localization and mapping (SLAM) estimation for enhancing the performance.
Convolution neural networks (CNNs), backward propagation algorithms, and gradient descent
methods are implemented in the system to optimize the parameters in our framework. Furthermore,
we develop a unique cost function for training the models to improve EKF accuracy. The proposed
work is general and applicable to diverse IMU-aided robot localization models.

Keywords: localization; inertial navigation system; extended Kalman filter; mobile robot; autonomous
ground vehicle

1. Introduction

Over the past years, localization has become one of the challenging issues for au-
tonomous ground vehicles (AGVs). In particular, the most difficult issue in navigation
is estimating the accurate and stable position and orientation of the robot through data
obtained from sensors and other navigation systems [1]. Recently, various technologies
have been designed to solve robot localization problems, such as visual-odometry-aided
camera localization [2] and Global Positioning System (GPS)-based localization using
reinforcement learning [3].

However, the simultaneous localization and mapping (SLAM) methods may fail to
function correctly in certain complicated situations due to the physical characteristics of
sensors. The laser imaging, detection, and ranging (LiDAR) sensor, for example, is a sensor
system that measures distance by transmitting light into spaces and receiving reflected
signals from a target [4]. However, LiDAR can lose its signal in situations such as foggy
and rainy conditions. In addition to that, the strength of the signal can be affected by the
reflectivity of the objects. This could lead a mobile robot or an AGV into a target-blind zone,
endangering safety and maneuverability. Therefore, a reliable contingency plan needs
to be considered that can compensate for the performance degradation caused by these
limitations of the sensors.
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The inertial measurement unit (IMU), a combination of a gyroscope, accelerometers,
and sometimes magnetometers, could provide an efficient approach to solve this problem.
Specifically, the IMU is one of the solutions that can independently measure the state of
the body without any external feedback. The accelerometer and gyroscope components
measure linear acceleration and angular velocity, which represent the movement of the
body to which the sensor is attached. Additionally, the magnetometer component measures
orientation based on the Earth’s magnetic field, which is available almost everywhere [5].

Nevertheless, there is one drawback that could degrade the performance of an IMU-
based localization, which is the accumulated drift. To reliably utilize the IMU, it is imper-
ative to eliminate the accumulated drift [1]. In the field of probabilistic robotics, various
methods for correcting errors, such as Bayes filters, Gaussian filters (e.g., information fil-
ters), and nonparametric filters (e.g., particle filters) [6], have been proposed. Among them,
the extended Kalman filter (EKF) [7] is one of the most widely used methods to reduce the
accumulated drift. The EKF is a nonlinear Kalman filter (KF) that linearizes a current mean
and covariance estimate. Since EKF can solve nonlinear problems, it has been applied to
IMU-aided localization systems [8–10]. The process-noise covariance matrix, Q, and the
measurement-noise covariance matrix, R, are constructed with a priori constant values
determined by the characteristics of sensors and environments in traditional KF systems,
which assume that they remain constant throughout the whole navigation operation. EKF
can achieve optimal results if the process noise is well defined. However, depending on
external factors, such as complex environments or sensor limitations (e.g., occlusions),
sensor noise values can change, and it is difficult to recognize the exact error and in situ
information of when and how the change occurs [11].

The following is a list of the major contributions of this study:

1. In this work, we propose a novel approach to improve the accuracy of EKF-based IMU
localization with a convolutional neural network (CNN) architecture. Specifically, we
design a stable training method that can find the optimal parameters of the system and
the observation-noise covariance in real time by reducing the error in each iteration.
Furthermore, the system is designed and tested for online training, unlike many
other approaches, such as [12], where the algorithm is trained offline using batch
and multiple epochs. The intention behind this is that the algorithm is to be trained
continuously while SLAM is functioning online, in which case a sequence of IMU
data points is observed and acquired.

2. Our proposed CNN module consists of multi-head attention (MHA) layers to model
the cross-modal fusion of different sources of modalities (e.g., multiple IMUs, li-
dars, etc.). The MHA was initially proposed to address the problems of natural
language processing (NLP) [13], and it was later discovered to be effective in mod-
eling cross-modal interactions between different modalities [14]. These previous
works inspired us to model cross-modal interactions that combine different sensor
information sources via the attention mechanism.

3. We conducted extensive experiments using an actual robotic platform to assess the
effectiveness of our proposed method in the real world (a factory environment in
our case). We designed real-world scenarios for the online training, where the SLAM
might fail in some cases and only the IMU(s) can provide sensory information for the
EKF-based localization module. The algorithm is also trained continuously while the
robot is online and navigating.

2. Related Work

Studies have been conducted recently on Kalman filter (KF)-based localization tech-
nology with adaptive noise-covariance estimation. One previous study proposed by
Akhlaghi et al. [15] introduced innovation-based and residual-based methods to adaptively
adjust the covariance matrices Q and R at each step of the EKF process to improve the state
estimation accuracy. In addition, Hu et al. [16] proposed an adaptive unscented Kalman
filter (UKF), another variant of KF for the nonlinear system, with process-noise covariance
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estimation to improve the UKF performance. However, these approaches might not be able
to fully characterize the nonlinear stochastic noises that arise in real-world situations.

It is known that the artificial neural network has the capability to approximate non-
linear functions [17]. Haarnoja et al. [18] demonstrated that a backpropagation-based
Kalman filter, consisting of a KF and a CNN, was capable of predicting the measurement-
noise covariance matrix, where the CNN was trained via minimizing position errors.
Brossard et al. [12] proposed an approach for dead-reckoning for wheeled vehicles with
the IMU only. Deep neural networks were used to update the parameters of an invariant
EKF dynamically. A recent study also explored the use of long short-term memory (LSTM),
a type of recurrent neural network (RNN), to model the nonlinear noises for KF [19] to
address target tracking problems. Another approach that uses reinforcement learning to
adaptively estimate the process-noise covariance matrix was proposed by Gao et al. [20],
in which their algorithm used the deep deterministic policy gradient (DDPG) to extract
the optimal process-noise covariance matrix estimation from the continuous action space,
using an integrated navigation system as the environment and the reverse of the current
positioning error as the reward. Wu et al. [21] also proposed a deep learning framework
combining a denoising autoencoder and a multitask temporal CNN. Multitask learning
was used to optimize the loss for both the process-noise covariance and measurement-noise
covariance matrices from KF simultaneously.

3. Quaternion-Based Extended Kalman Filter
3.1. IMU Inclination Calculation

The rotation matrix Rb
n, mapping the navigation frame n to the body frame b, can be

represented by φ (rotation angle along the x-axis), θ (rotation angle along the y-axis), and ψ
(rotation angle along the z-axis), as follows (trigonometric functions sin and cos are denoted
as s and c, respectively):

Rb
n =

 cθcψ cθsψ −sθ
cψsθsφ− cφsψ cφcψ + sθsφsψ cθsφ
cφcψsθ + sφsψ cφsθsψ− cψsψ cθcφ

. (1)

When the IMU is stationary or moving at a constant speed, the acceleration in the
navigation frame should be equal to the gravity constant g, so the inclination angles θ and
φ can be calculated by Equation (2) as in [22]:

ab
x

ab
y

ab
z

 = Rb
n

0
0
g

 ⇒


θ = arcsin(− ab
x

g
)

φ = arctan(
ab

y

ab
z
)

. (2)

The IMU coordinate frame is assumed as shown in Figure 1, where the z-axis is
upward, so gravity has a positive value.

Figure 1. The IMU coordinate frame.
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3.2. IMU Integration Model

The continuous-time relationships among position pn, velocity vn, and acceleration an

are defined as follows:
∂pn

t
∂t

= vn
t ,

∂vn
t

∂t
= an

t , (3)

where an
t represents the acceleration in the navigation frame at time t, which can be

calculated using ab
t , which is the acceleration obtained from the IMU sensor as follows:

an
t = R(qn

b )a
b
t − gn, (4)

where R(qn
b ) is the rotation matrix represented by quaternion qn

b . The orientation qn
b and

the angular velocity ωb are related as

∂qn
b

∂t
= qn

b �
1
2

ωb. (5)

From the continuous-time model, the dynamics of position, velocity, and orientation
in discrete time are given by Equations (6)–(8), as explained in [23], as follows:

pn
t = pn

t−1 + vn
t−1 · δt +

1
2
(an

t−1 + ea,t) · δt2 (6)

vn
t = vn

t−1 + (an
t−1 + ea,t) · δt (7)

qn
b,t = qn

b,t−1 � expq(
1
2
(ωb

t−1 − eω,t) · δt), (8)

where ea,t, eω,t are the noise terms of the dynamics model which are assumed to follow the
normal distribution, and the distribution axes are independent of each other, as follows:

ea,t ∼ N (0, σaI3) (9)

eω,t ∼ N (0, σωI3). (10)

The state variable xt is a 10× 1 vector consisting of the current position pn
t , velocity vn

t ,
and orientation qn

b,t which represents the mapping of the body frame onto the navigation
frame, as follows:

xt =
[
pn

t , vn
t , qn

b,t,
]T

10×1
(11)

so the state transition function can be written as

x̂t|t−1 = f (x̂t−1|t−1, ut, et), (12)

where ut = [ab
t , ωb

t ]
T is the control input modeled by the accelerometer and gyroscope

measurements, and the noise term et = [ea,t, eω,t]T .
We linearize Equation (12) at the current estimate and propagate the covariance

forward to predict the system covariance

Pt|t−1 = FtPt−1|t−1FT
t + GtQGT

t , (13)

where Ft, Gt are Jacobian matrices of the transition function (12) with respect to xt and ut,
as shown below:

Ft =
∂ f (xt, ut, et)

∂xt

∣∣∣∣et=0
xt=x̂t−1|t−1

(14)

Gt =
∂ f (xt, ut, et)

∂ut

∣∣∣∣et=0
xt=x̂t−1|t−1

, (15)
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and the process covariance Q = diag(Σa, Σa, Σω), where Σa and Σω represent the covari-
ances of acceleration and angular velocity, respectively.

3.3. EKF Correction with Measurements

Since the accelerometer measures the local gravity vector when an AGV is moving
at a constant speed or is stationary, it can provide information about the inclination of the
sensor [23]. Then, the robot control center can provide the velocity information vb along
the x-axis and y-axis at current times. In addition, we consider the vertical velocity, which
is roughly null in the robot frame, as a pseudo-velocity measurement vb

pseudo, so the total
measurement vector can be written as

zt =
[
ab

t , vb
cmd,t, vb

pseudo,t = 0
]T

6×1
. (16)

Thus, we can obtain the measurement function mapping the state space to the mea-
surement space as follows:

h(x̂t|t−1) =

[
R(q̂n

b,t|t−1)
Tgn

R(q̂n
b,t|t−1)

Tv̂n
t|t−1

]
, (17)

Then, we obtain the measurement matrix Ht by linearizing the measurement function:

Ht =
∂h(xt)

∂xt

∣∣∣∣
xt=x̂t|t−1

. (18)

Therefore, the measurement residual yt and the Kalman gain Kt are calculated by
Equations (19) and (20), as detailed in [24]:

yt = zt − h(x̂t|t−1) (19)

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + R)−1, (20)

where the measurement covariance matrix R can be defined as diag(Σa, Σv, Σvpseudo ). Finally,
the predicted state and covariance are updated as follows:

x̂t|t = x̂t|t−1 + Ktyt, (21)

Pt|t = (I−KtHt)Pt|t−1. (22)

4. Covariance Optimization
4.1. Adjustable Covariance

It is well known that the EKF is a model-based optimal filter, which requires exact
knowledge of process and measurement models as well as process- and measurement-noise
statistics. However, it is difficult to model the dynamic noise changes over time [25]. Thus,
we redesign the covariance Σ of the covariance matrices Q and R as follows:

Σa = σ2
a · 10µ tanh(sa) (23)

Σω = σ2
ω · 10µ tanh(sω) (24)

Σvcmd = σ2
vcmd
· 10µ tanh(svcmd ) (25)

Σvpseudo = σ2
vpseudo

· 10
µ tanh(svpseudo ), (26)

where σa, σω, σvcmd , and σvpseudo correspond to our initial estimate of the noise parameters
and µ > 0. Thus, the covariance can be limited between a factor 10−µ and a factor 10µ with
respect to its original value because of the function tanh(·), which makes the covariance
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optimized within a reasonable interval set heuristically. By adjusting the value of the
parameter s, the covariance matrices could be changed indirectly.

Parameters sa and sω are adjusted during training by backpropagation based on the
loss function described by Equation (30). Once the training stops, the parameters are
considered fixed for the algorithm.

Although the noise components of the velocity v and pseudo-velocity vpseudo are
unknown, the deviation can be assumed to be dynamic rather than stationary in the real
world. In other words, the measurement covariance from velocity can be treated as loose
strict null instead of strict null, which means that the uncertainty can be encoded in the
covariance [12]. A CNN layer is applied to dynamically compute the parameters sv and
svpseudo , taking as input a window size of N IMU data points.

[
sv

svpseudo

]
=


[

svx

svy

]
svpseudo

 = CNN([ut−N , ...ut]). (27)

Figure 2 shows the CNN architecture used to predict parameters sv and svpseudo . A win-
dow size of 20 IMU data points was used for the input. Each IMU data point consists of
acceleration and angular velocity data for the three axes (x,y,z). Using a single channel,
where the overall input dimension becomes 1× 6× 20, the input is initially split into its
individual acceleration and angular velocity matrices, which are processed separately by
their respective 3× 3 convolution layers followed by a leaky ReLU activation (ConvLR
block). Then, a multi-head attention (MHA) layer is introduced to model the feature-fusion
data. The output of the individual paths is then concatenated and processed by two more
ConvLR blocks and a global average pooling layer. The final result is the three parameters
svx , svy , and svpseudo .

Figure 2. The proposed CNN architecture for predicting the parameters svx , svy , and svpseudo , which are
used to calculate the covariances as per Equations (25) and (26). The input consists of a window size
of 20 IMU data points, each containing the acceleration and angular velocity data for all three axes.

The MHA mechanism was initially proposed in the field of natural language process-
ing (NLP) [13]. Later, Tsai et al. [14] explored leveraging MHA mechanism to reinforce
a target modality with features from another data modality via learning the cross-modal
attention. The following is the formulation of the attention output:

Attention(QA, KB, VB) = softmax(
QAK

>
B√

dk
)VB. (28)
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Following the definition of [14], QA ∈ Rd×dA denotes the queries from the modality
A, KB ∈ Rd×dB denotes the set of keys, and VB ∈ Rd×dB denotes the set of values from the
modality B. Then, the information from modality B is passed to modality A by calculating
the attention function in Equation (28). In this study, we leverage the MHA to model feature
fusion via introducing one from another modality. As shown in Figure 2, taking acceleration
data as an example, we reinforce its features via modeling the cross attention with angular
velocity data by calculating attention output Attention(Qacc, Kang, Vang). A skip connection
is also implemented, to sum up the output from the first 3× 3 convolution layers and
attention output.

4.2. Online Training Method

SLAM works well unless a sensor fails [26], which is a well-known problem statement.
Therefore, our training system initially considers the SLAM outputs under ideal (reliable)
conditions as ground truths to calculate the loss function between the output states of
SLAM and EKF.

Furthermore, the iterative EKF estimation process in consecutive time steps is a kind
of Markov decision process, which means that the current state is only related to the
previous one, so our method focuses on optimizing each EKF estimation process. When the
estimation performance of each EKF iteration is high, it will show high estimation accuracy
in the entire iterative process. In order to evaluate the performance of each EKF estimation,
the loss function is designed as follows:

loss = MSE ( x̂t+1|t+1 , xslam
t+1 ), (29)

where MSE is the mean squared error (MSE) function that expresses the bias of the estimated
state by EKF compared to the state of SLAM at timestamp t + 1. However, the performance
of AGV localization depends on the two-dimensional (2D) position errors (px, py) and the
heading angle (ψ) errors, so the loss function only needs to compute the mean squared
error of px, py, and ψ calculated from the orientation state q. Thus, the loss function can be
rewritten as

loss = MSE ( [ p̂x, p̂y, ψ̂ ]Tt+1 , [ pslam
x , pslam

y , ψslam ]Tt+1 ). (30)

The initial state of each EKF iteration should be the same as the state of SLAM at the
previous timestamp, so that the loss function can effectively express the error generated
by each EKF iteration. Therefore, the input of trainable EKF that estimates the state at the
next timestamp should be the state from SLAM at the current timestamp during training
as follows:

x̂t+1|t+1 = EKF(xslam
t , ut , vcmd

t+1 , Pslam
t ), (31)

which also considers the initial covariance Pt of EKF as the current estimation covariance
from SLAM.

However, the frequency of SLAM is different from the frequency of IMU in real-time, so
we cannot guarantee that the estimated state of each EKF iteration corresponds to the output
state of each SLAM at the same time, which means that it is unable to regard the ground
truth of EKF as SLAM at that time. Additionally, the frequency of IMU is usually higher
than the frequency of SLAM, so to synchronize the output of EKF and SLAM, multiple EKF
iterations can be trained by performing backpropagation [27] at once when the output state
of SLAM is provided. The training structure is shown in Figure 3. The structure allows
the system to optimize the covariance in real-time continuously. The training process
begins with the MSE loss function (30), and then calculates the gradient of the loss function
corresponding to each Q and R based on the derivative chain rule.
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Figure 3. Structure and training flow of our network. The initial state of the EKF iterations is based on
the previous SLAM state update at timestamp t − 1. N number of EKF iterations will be performed
until the next update of the SLAM state at t + n. The loss is calculated between the SLAM state update
and the final predicted output state of the N EKF updates. Then, backpropagation is performed on
the basis of the calculated loss.

4.3. Implementation Details

This section introduces the settings and the implementation details of our algorithm.
The whole self-adjusting method is implemented in Python with the PyTorch library [28]
for training and inference, and the Robot Operating System (ROS) [29] was utilized for
collecting sensor data.

The initial parameters of the EKF were set as follows prior to training. The initial
system error covariance P0 = I10, which is the identity matrix 10× 10. We set σa = 0.01 m/s2

in (23), σω = 0.01 rad/s2 in (24), σv = 0.25 m/s in (25), and σvpseudo = 0.0225 m/s in (26).
The adjustable parameters s are defined as sa = sω = svcmd = svpseudo = 0.01 in order to make
initial covariance Σa ≈ σ2

a , Σω ≈ σ2
ω , Σvcmd ≈ σ2

vcmd
, and Σvpseudo ≈ σ2

vpseudo
. We defined µ = 3

from (23) to (26), which allows for each covariance element to be 103 times higher or smaller
than its original values [12].

The Adam optimizer [30] was applied to update parameters with learning rate 10−3

and iterated once for each tandem EKF.

5. Experiments and Results

In this section, we present the robotic platform that was used for collecting data
and testing a real-time SLAM failure scenario. Three evaluation metrics were used for
evaluating the performance. The performance of our proposed localization architecture,
the trainable quaternion-based EKF, was evaluated by comparing it with the EKF model
without training. Additionally, various deep learning model architectures were compared
to determine the most effective model.

5.1. Dataset

The data collected to evaluate the proposed algorithm are based on the usage of a
proprietary omniwheel robot platform of dimensions of 2.481× 1.595 meters. The robotic
system provides the current velocity of the robot, which is used as an input to the EK.
The robot contains four 2D LiDARs (two in the front and two in the rear), two stereo
cameras (one in the front and one in the rear), and an IMU. Figure 4 shows the robot setup.



Sensors 2022, 22, 7701 9 of 15

Figure 4. Robot setup used for data collection of the experiment.

Experiments were conducted across four different trajectories with total lengths of
66.46, 145.39, 103.42, and 78.62 meters, respectively. The trajectory path collected as a
result of SLAM was used as the ground truth. For this work, the visual–LiDAR–inertial
SLAM algorithm in [31] was used, as it provides a very accurate position and orientation.
The dataset collected contained the SLAM output (ground truth position and orienta-
tion), the acceleration and angular velocity information, and IMU data for the EKF state
estimation calculations.

Since the EKF state estimation was calculated at the origin of the IMU, all data points
(SLAM and velocity) were transformed to the IMU’s origin. Furthermore, all data had to be
transformed to the body frame coordinates of the omniwheel robot, where the x-axis runs
along the length of the robot in the forward direction, the y-axis is 90 degrees anticlockwise,
and the z-axis runs upward.

5.2. Experimental Setup

To evaluate the improvement of the proposed algorithm, the localization output of a
traditional EKF was used as the experimental control data.

Our proposed system architecture was designed with the intention that the algorithm
would be trained continuously while the robot is online; therefore, the data are collected
in real time, and each data point is unique and independent. Taking this into account,
we trained the algorithm on three sequence runs and performed the inference test on the
fourth unseen sequence, with the data of each sequence only seen once during training
and inference. This process was performed four times to run the inference test on all
available sequences.

The EKF state estimation was then fused with the SLAM state during the inference
mode while the system considered the SLAM positional data reliable, which is determined
by the covariance values provided by the SLAM module. The time range when the SLAM
positional data were unreliable was considered the SLAM failure period, at which point
the SLAM state was no longer fused with the EKF estimation, and the output was purely
relying on EKF.

To simulate a real-time SLAM failure scenario, 100 s time intervals within each individ-
ual trajectory were selected as the SLAM failure period. Both approaches, the traditional
EKF and the proposed trainable EKF, had the same start and end times for the SLAM failure.

In Figures 5 and 6, the period from when SLAM failed (“Start Point”) to when SLAM
recovered (“End Point”) were regarded as the SLAM failure period. The green and orange
paths represent the estimated position from the untrained EKF and EKF CNN with MHA,
respectively, while the blue path (ground truth) is from the SLAM outputs.

To evaluate the performance of our proposed algorithms, we considered the following
three evaluation metrics for our experiments:
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1. Position Error (Pe) :
The ratio of the position error to the total path length when SLAM fails.

Pe = (Last Position Error/Total Distance) ∗ 100 (32)

2. Rotation Error (Ae) :
Azimuth angle error relative to the total path length when SLAM fails.

Ae = Last Azimuth Angle Error/Total Distance (33)

3. Average Mean Squared Error (MSEavg):
The overall average of the squares of the errors between ground truths (SLAM) and
object to be assessed (estimated position and orientation) when SLAM fails.

MSEavg = Mean( MSE ( [ p̂x, p̂y, ψ̂ ]Tt+1 , [ pslam
x , pslam

y , ψslam ]Tt+1 ) ) (34)

5.3. Result and Analysis

We present the comparison results of our proposed algorithm with those of the tra-
ditional method (i.e., EKF). From the trajectory comparisons in Figures 5 and 6, we can
see that the proposed EKF CNN with MHA (orange path) was more in line overall with
less noise than the traditional EKF (green path). Furthermore, from Figures 7 and 8, which
provide the mean squared errors (MSE) during the failure period, we can see that the
proposed method (green line) could achieve a lower MSE than the traditional EKF (blue
line). From Figures 7 and 8, the maximum MSE for the proposed method was 0.0297 and
0.0323, respectively, while the traditional EKF method reached 0.0690 and 0.1108 for the
same trajectories.

Figure 5. Estimated path comparison results for trajectory 1. Green, orange, and blue lines represent
EKF, EKF+CNN with MHA, and ground truths, respectively.

Table 1 shows the full test results we collected and analyzed. As mentioned for each
trajectory, an arbitrary interval of 100 s was chosen as the failure period, which could result
in different failure lengths. Based on the provided results, it is clear that our proposed
method overall outperformed the traditional EKF. In all cases, the position error Pe and
the rotation error Ae were lower with the proposed method. In fact, the proposed method



Sensors 2022, 22, 7701 11 of 15

achieved 1.24765% for overall Pe and 0.02785 deg/m for Ae. Similarly, the proposed method
performed much better on the MSE metric.

Figure 6. Estimated path comparison results for trajectory 4. Green, orange, and blue lines represent
EKF, EKF+CNN with MHA, and ground truths, respectively.

Table 1. Results for the four trajectory paths followed by evaluation metrics. Failure length: moving
track length of robot during SLAM failure period; Pe: position error; Ae: rotation error; MSEavg:
average mean squared error.

Trajectory
Failure
Length
(m)

EKF Proposed

Pe
(%)

Ae
(deg/m) MSEavg

Pe
(%)

Ae
(deg/m) MSEavg

1 18.19 1.64180 0.01320 0.02055 0.97901 0.00639 0.01580

2 23.92 3.56478 0.10087 0.11934 2.79777 0.04045 0.07454

3 22.94 1.00380 0.22513 0.04406 0.84346 0.01948 0.01294

4 24.81 0.38022 0.02335 0.00504 0.37035 0.04509 0.00523

Overall 1.64765 0.09064 0.04725 1.24765 0.02785 0.02713

Our trainable EKF CNN with MHA showed improved results over the traditional EKF
estimation due to optimization of process and measurement errors through a combination
of CNN inference, backpropagation, and gradient descent.

In Table 2, we also compared the performance of using different model architectures.
For the implementation of EKF+CNN_1, we removed the MHA layer with skip connection
and kept all the other components, and the EKF+CNN_2 was implemented by removing the
last convolution layer of EKF+CNN_1. EKF+LSTM was also introduced to attempt to learn
the temporal features from the data. As can be seen, eliminating the final convolution layer
reduced Pe and Ae performance overall while somewhat lowering MSE, which EKF+LSTM
also achieved. Nevertheless, the proposed architecture combining CNN and MHA showed
considerable improvements in MSE and lowered Pe a bit. The Ae was still higher than that
of EKF+CNN_1, but in the acceptable range.
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Table 2. Results for the four trajectory paths followed by evaluation metrics. Failure length: moving
track length of robot during SLAM failure period; Pe: position error; Ae: rotation error; MSEo: overall
mean squared error. CNN_1 is the proposed model architecture without the multi-head attention
layer. CNN_2 is the same as CNN_1 but removes the last convolution layer. LSTM is implemented
with a number of 2 layers and a hidden size of 256.

Model Pe
(%)

Ae
(deg/m) MSEo

EKF 1.64765 0.09064 0.04725

EKF+CNN_1 1.25114 0.02111 0.04084

EKF+CNN_2 1.46609 0.03109 0.03696

EKF+LSTM 1.35288 0.03138 0.03573

Proposed 1.24765 0.02785 0.02713

Figure 7. The Mean Squared Error (MSE) comparison between EKF and EKF+CNN with MHA for
trajectory 1. Blue and green lines represent EKF and proposed method, respectively

Figure 8. The Mean Squared Error (MSE) comparison between EKF and EKF+CNN with MHA for
trajectory 3. Blue and green lines represent EKF and proposed method, respectively.
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5.4. Discussion

We demonstrated the advantages of our proposed trainable quaternion-based EKF
with CNN and MHA based on the conducted experiments and analysis. Our proposed
method could achieve 1.24765% in Pe, 0.02785 in Ae, and it significantly outperforms other
model architectures in terms of MSE with 0.02713. The results also suggest that a trainable
EKF, which can dynamically adjust process and measurement noise covariance matrices,
can improve localization performance. Moreover, our proposed model architecture pro-
vides scope for fusing the inputs via reinforcing one modality by introducing features from
another modality for the inputs of estimating covariance matrices’ parameters for EKF.

However, the online training cost of the proposed method can limit the overall per-
formance. Furthermore, the time lag introduced by the online model training can be
accumulated and cause deviations at the endpoints because of the limitations of the em-
bedded computing system. Nonetheless, this issue can be solved by transmitting data
to a more powerful server for online training. Furthermore, the future development of
the AI-embedded platform will provide more power to achieve better online training
performance. In conclusion, our results demonstrate that the deep learning model can be
trained and provide predictions in an online training manner in a local integrated system.

6. Conclusions

In this paper, we designed a trainable and adjustable quaternion-based EKF algorithm
with CNN and MHA for the sensor fusion of IMU-based localization and visual–LiDAR–
inertial SLAM. Specifically, we developed an approach where the EKF-based localization
system can provide a more accurate position estimation when SLAM failure occurs during a
short time period. This was performed by tuning the process- and measurement-covariance
matrices trained by CNN through backpropagation and further adjusting the velocity
measurement covariances according to real-time IMU data through network inference.
The approach leveraged the SLAM data as ground truths to compute the mean squared
error of position and orientation estimated by the EKF while training.

For training and estimation, we designed a tandem EKF structure to adapt to the
situation where real-time data from different sources were fused at different frequencies.
Our proposed trainable EKF will be effective in dead-reckoning as a complementary process
of SLAM when SLAM fails, which will enhance accuracy and stability in localization in
complex and dynamic environments. Our future steps will focus on enhancing the structure
of our proposed EKF CNN with MHA by performing multi-IMU fusion with multiple EKF
modules, where each EKF leverages a unique IMU source.
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