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ThumbUp: Secure Smartwatch Controller for
Smart Homes using Simple Hand Gestures

Xiaojing Yu∗, Zhijun Zhou∗, Lan Zhang†, Xiang-Yang Li†

Abstract—The development of creative applications and intelligent gadgets requires a secure and straightforward interface with human
users. We propose, design, and implement ThumbUp, a smartwatch-based two-factor real-time identification and authentication system
in which smartwatch users can identify and authenticate themselves using some simple hand and finger movements, such as thumb-up.
ThumbUp leverages the signal from the Inertial Measurement Unit (IMU) in in Commercial-Off-The-Shelf (COTS) smart devices to
discover the unique pattern generated by each user’s simple gestures using a carefully constructed deep learning model. Smart homes
provide a comfortable, safe, and efficient living environment, epecially help the sick and aged. We propose strategies for convenient and
reliable control in smart homes with gesture command recognition. We build an Auto-Encoder-based filter that reconstructs the raw data
to improve the representation of gesture features. Moreover, we adopt the random forest method to analyse the contextual command
correlation. And we employ the authentication system based on smartwatch for personalized command feedback and ensure that illegals
cannot use the device. We implement our system and undertake rigorous studies to determine its usefulness and efficiency over a
three-month period with 65 users. It achieves a 97% accuracy for user classification and an EER of 0.014 for authentication task with a
single simple gesture. And our method achieves 91% accuracy for command recognition and 96% command accuracy with contextual
informations. Additionally, we conduct a study of user acceptability of our system and explain how gesture proficiency influences
authentication accuracy.

Index Terms—Smart Home, Smartwatch, Hand Gestures, Security, IMU Signals
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1 Introduction

Smart homes integrate automation control, computer net-
work and communication in one of the intelligent home control
systems. The goal of smart homes is to provide a comfortable,
safe, convenient, and efficient living environment. With solid
product offerings such as SmartThings and Google’s Nest, the
smart home market develops by increasing suffer approbate,
which is expected to reach 1.4 billion U.S. dollars in spend-
ing by 2023 [1]. In-home control can be divided into active
and passive control. Active control means that users control
functions voluntarily, such as playing music. Passive control
is based on the analysis of the user’s behaviors, initiated by
the control system, such as automatic temperature control. This
work focuses on the active control of smart homes. We believe
that an excellent control system for smart homes ought to be
accurate (accurately recognize commands), fast (have a low
latency), user-friendly (be convenient to be used frequently), se-
cure (unavailable to illegal users), and lightweight (not consume
an excessive amount of resources). However, existing systems
are incapable of balancing these characters. At present, most
smart home components are controlled by the keyboard on
mobile phones, remote controls, etc. Among these traditional
methods, speech recognition technology has been widely used
in the smart home, but it has low efficiency in difficult acoustic
environments [2]. Biometric control method has attracted sub-
stantial attention [3]. However, sensing humans automatically
with wireless signals such as WiFi [4] is greatly affected
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by the environmental change. Besides, existing studies lack
the protection of personalized information and cannot provide
personalized responses.

The popularity of smart wearable devices has facilitated
rapid and convenient interaction with the physical world. Smart-
watches are used for various applications, including instant
messaging, online shopping, and rapid mobile payment, which
are an excellent way to control the smart home. Numerous
previous studies utilizing IMU have concentrated on big motion
patterns produced by arm movements [5], [6], which maybe
be inconvenient in daily applications. Luna et al. [3] propose
an interaction method with smart TVs via gestures performed
by a persons wrist using a smartwatch and provide recognition
along three axes of IMU. Taprint [7] extends a virtual number
pad on the back of hands with smart wristbands. Tapping
vibrometry as biometrics is used to authenticate users with an
accuracy of 96% for 128 users. It requires both hands to operate,
which is not convenient enough for daily fast control. Kundu et
al. [8] design a common hand gesture recognition system for
wheelchair control with a classification accuracy of 94% based
on electromyography (EMG) sensor , which is not commonly
adopted in commercial devices.

In this work, we propose a convenient and reliable smart
home control system based on smartwatches with accurate
command recognition and secure user authentication, which
provides personalized command feedback and ensure that il-
legals cannot use the device. The most noteworthy feature of
our design is that we utilize simple gestures, mainly performed
with the fingers, such as twisting the fingers or thumbing up (as
illustrated in Fig. 1). Specifically, we need to address several
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Fig. 1. Illustration of nine gestures studied in ThumbUp (from top, left
to right): G1 (Snapping), G2 (Twisting finger), G3 (Beckon), G4 (Hand-
waving), G5 (Fist-making), G6 (Victory-gesture), G7 (Gun-gesture), G8
(Thumb-up), and G9 (Finger-bending).

significant technical challenges:

• Limited Training data: The motion signals collected by
the IMU for small gestures are much weaker than those
collected for arm motions. Thus, the features derived
from minuscule hand/finger movement may be masked
by the inherent noise generated by the IMU sensors.
Likewise, requiring a user to act during the user-training
phase repeatedly is not user-friendly. It is complicated
to extract helpful activity and identify features that
uniquely characterize each user from weak signals with
small sample sizes.

• Reliability and Robustness: In order to ensure the
safety, it is essential that our system can accurately
authenticate valid users and defend against attackers
who may attempt to mimic authorized users maliciously.
The authentication features chosen by our system should
account for both the diversity of different users and the
consistency of a single user. As biometrics of behavior,
users’ gestures will alter slightly over time. The system
should be flexible to minor changes in users’ hand
gestures and avoid frequent model resets.

• Energy-efficiency and Real-time Ability: We need to
implement a lightweight system that uses the limited
storage and computational power available on smart-
watches while maintaining high stability and real-time
capability.

To address these issues, we design, implement, and eval-
uate ThumbUp, a system capable of authenticating users and
controlling smart home services based on a small gesture. We
analyze the anatomy of hand movement in human kinematics.
Meanwhile, we investigate the stability and diversity of motion
sensor signals using an extra verification signal, EMG. After
pre-processing and detecting motion signals, we design a novel
light-weight deep neural network model with multilayer Bidi-
rectional Long Short-Term Memory (BiLSTM) and an attention
mechanism for automatic feature extraction and classification

for users and gestures. ThumbUp involves an updating strategy
that allows the model to evolve continuously in response to
behavioral changes and system initialization for domain adapta-
tion. In addition, we build an Auto-Encoder (AE) based privacy-
preserving filter that outputs reconstructed STFT spectrogram
instead of original data to improve the feature representation
ability. Combined with the smart home scenario, we employ
the random forest method to analyze user behavior and further
improve the accuracy of command recognition. We demonstrate
that ThumbUp can precisely identify users with a mean accuracy
exceeding 95.7% and successfully verify a legitimate user with
a mean error rate of 0.025 using a prototype implementation
on COTS wearable devices and 65 participants. And ThumbUp
can accurately recognize gesture command with an accuracy of
96% with contextual behaviour analysis.

Our work provides a novel and reliable approach to control
the smart home used in a highly convenient way. Besides,
to the best of our knowledge, ThumbUp is the first solution
to leverage basic finger-movement gestures for user identifi-
cation/authentication with IMU on COTS smartwatches. We
expect that ThumbUp has potential applications in (a) enabling
access to smart wearable devices; (b) quick payment by easy in-
teraction; and (c) operating mobile devices secretly and reliably.

To summarize, we make the following contributions:

• We develop and implement a reliable authentication
mechanism for wearable devices based on small ges-
tures. We investigate the feasibility of using gestures as
certification elements and establish that hand gestures
include unique signatures of users. We design a model
that extracts features and classifies user gesture patterns.
Moreover, we suggest a self-calibration and transfer
learning method to increase practicability and validity.

• We propose a user identity filter that reduce the user
information and improve the feature expression of the
gestures. Also, we propose a contextual command anal-
ysis method in smart home scenarios to improve the
accuracy of gesture command recognition.

• We evaluate ThumbUp through extensive studies cover-
ing three months and involving 65 people. Experiments
demonstrate that even simple finger gestures such as the
victory gesture can yield reliable identification results.
Furthermore, we test our system’s security against im-
itated attacks, which demonstrates that the system can
withstand such attacks with an average EER of 0.025.

• In terms of friendliness, the gestures utilized in our
system are well-designed based on the research on
biological kinematics systems. We interview participants
regarding the comfort with which the gestures are per-
formed. Then, we recommend gestures relying on both
authentication performance and participant perceptions.

The remainder of the paper is organized as follows: In
Sec. 2. We present the foundation for hand movement and
feasibility analysis. In Sec. 3, we provide a high-level summary
of ThumbUp’s primary design. The details of our design are
described in Sec. 4, 5, and 6. In Sec. 7, we present experimental
evaluation results and user study. We introduce the related works
in Sec. 8. In the end, we discuss the limitations of our work in
in Sec. 9 and conclude in Sec. 10.
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Fig. 2. The motion signals of (a) different gestures and (c) users in time and frequency domains, the DTW distance among (b) gestures and (d) users.

2 Basis of Hand Movement and Feasibility Study
In this section, we discuss the fundamental biological kinemat-
ics in order to theoretically establish the feasibility of hand
movements as distinct features theoretically, investigates the
stability and diversity of the motion sensor data, and concludes
with the use of the EMG as an auxiliary verification.

2.1 Hand Movement’s Anatomy

Intuitively, subtle movements are easier to be imitated. Muscle
motions are controlled by the subconscious and are difficult
to modify consciously. Even if two users perform identical
movements, the biological kinematics of muscles are sufficiently
distinct, allowing identification based on minor gestures. Ad-
ditionally, because muscles are an interior component of the
hand surface, they are quite resistant to changes in humidity
and temperature [9].

The forearm muscles inside the position where we wear the
smartwatches, act upon hands. The bulk of these muscles form
the fleshy roundness of the forearm, with tendons extending
into the wrist and hand. The hand’s movements are regulated by
intrinsic muscles in the hand as well as muscles within muscles
in the forearm (extrinsic muscles), providing for exceptional
control of both precise and strong movements [10]. The motion
signals would be perceived by a motion sensor on the forearm. It
was shown in [11] that the forearm muscles are good represen-
tations of the hand movements and finger gestures. Moreover,
the small gesture without arm movements involves tiny jitters
of people’s peculiar habits. Thus, motion signals would capture
both the biological and behavioral characteristics of muscles as
a kind of authentication information.

2.2 Feasibility Study

Previous work [12] discusses the possibility of motion signals
as unique certification conditions using EMG as an auxiliary
verification. Here, we investigate gesture motion signals’ diver-
sity, consistency, and originality of gesture motion signals to
understand ThumbUp’s viability.

Diversity and Consistency of Motion Signals: To begin,
we asked one participant to do ten times each of two different
hand movements with a smartwatch. As illustrated in Fig. 2(a),
the profiles for distinct movements vary significantly. We define
the motion sensor signal as S =

√
GT G + LT L, where G and

T signify the integration of angular and linear accelerations, re-
spectively. To visualize the difference digitally, we compute the
normalized Dynamic Time Warping (DTW) distance between
signals from the same and different movements (as illustrated
in Fig. 2(b)). The figure demonstrates unequivocally that it is

possible to distinguish between various gestures. Meanwhile,
the result (shown in Fig. 2(a)) supports the consistency of
gesture motion signals by revealing that motion signals from
repetitions of the same gesture are fairly similar.

Uniqueness of Motion Signals: The purpose of this study
is to determine whether motion signals generated by various
users for the same gesture are distinct. Three participants are
asked to snap fingers 20 times each. As illustrated in Fig. 2(c),
the profile is notably different in both the time and frequency
domains. Similarly, we calculate the nomalized DTW distance
(see Fig. 2(d)), which demonstrates that motion signals are
unique for each user.

3 Design Scope and Overview
This section describes the design scope and system overview of
ThumbUp.

3.1 Objective and Design Scope

We divide the security control into two parts: user identification
and command recognition.

User Identification represents challenges involving both
multi-user categorization and one-to-one identification against
malicious attacks. Multi-user categorization aims to classify
distinct users and provide personalized command responses
when the family shares the wristbands. The objective of one-
to-one identification is to correctly distinguish attackers and
legitimate users, of which unauthorized users cannot use the
control device.

Command Recognition represents challenges involving
command signal detection and gesture recognition. To provide
instant feedback, our system should detect the command signal
quickly, and the classify model in real-time. The core task for a
control system is to recognize command gestures accurately.

Gesture Design: We prefer to use our method in cases
where daily identification of device owners is required, such
as unlocking a smartwatch. Our system’s gestures must be
sufficiently convenient. Gestures that incorporate simultane-
ous movements of the fingers, palm, and wrist require more
information to distinguish, but they are far less convenient.
Meanwhile, simplistic movements such as softly waving one
finger are useless in uniquely identifying a user. We define nine
typical gestures (shown in Fig. 1), factoring user-friendliness
and the trade-off between complexity and distinguishability. The
following experiments assess users’ perceptions of gestures and
make recommendations for improvement.

Availability: Our system needs to extract consistent and
distinct biometric signal features from small motion signals,
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Fig. 3. System Workflow and Key Components of ThumbUp

i.e., the features must be durable to fulfill the requirements
of long-term usage and diverse enough to withstand various
types of attacks. Moreover, our system should have classifier
mechanisms to give the corresponding results for two tasks.

Universal: We prefer to use standard commercial smart-
watches equipped with accelerometers and gyroscopes to sat-
isfy the universal requirement. As COTS smart-devices often
have limited computational and storage resources, our solution
requires a lightweight architecture.

We aim to develop a highly secure and reliable real-time
smart home control system based on 3D simple gestures with
commercially available smart devices.

3.2 Overview of System

As detailed in Fig. 3, ThumbUp is composed of three com-
ponents: The first part is pre-processing & detection (Sec. 4),
which aims to eliminate noises from continuous motion signals,
detect the command signal, and extract sequential features. The
second part is user identification (Sec. 5), which uses carefully
built deep learning methods to extract representations from
spectrograms and determine the user’s identity. Besides, we
introduce a continuous model evolution strategy to respond to
user behavioural changes and system initialization for domain
adaptation. The third part is command recognition (Sec. 6). We
describe how to improve the classification ability by filtering
user identity and contextual command analysis.

4 Pre-processing and Detection

Due of the noisy, partial, and even erroneous signals gathered
by motion sensors, the first phase of ThumbUp is to filter out
the noise and segment the signal to match the genuine motions.

4.1 Data Regulation & Denoising

To ensure that the accelerometer and gyroscope are sampled
uniformly, we interpolate the data to 100Hz of the sampling rate.
The amplitude of the signals is normalized using the Z-score
technique, this is, the processed signals follow a typical normal
distribution (mean= 0 and standard deviation= 1). Following
that, we use a Savitzky-Golay smoothing filter [13], commonly
known as a least-square smoothing filter, to eliminate random
noise. The core idea behind this filter is to perform a least-square
fit with a high-degree polynomial for each data point, spanning
an odd-sized window centered on that data point [14], which not
only minimizes noise but also preserves the shape and height of
waveform peaks.

4.2 Detection and Segmentation

The IMU continuously collects motion signals; we need to
detect possible samples and split signals into a given size. One
popular way is to empirically establish a constant threshold
and consider the portion of the signal as target sample whose
short-term energy surpasses this threshold. But the threshold is
difficult to select in practical varying noise scenarios.

We employ a method similar to the Constant False Alarm
Rate (CFAR) algorithm [15] to detect the gestures. The central
concept is to use dynamic thresholds to establish the start and
finish points of a single gesture. We use X to denote the long
time-series signal, while x(i) is the square root of the squared
sum for six axes collected from the accelerometer and gyroscope
at the ith sample index. Let W denote the sliding window size,
which is set to 128 in our setting. Besides, the average power
and standard deviation at the ith sample index, denoted as E(i)
and D(i) respectively, are defined as:

E(i) =
1
W

i∑
k=i−W+1

x(k)2,D(i) =

√√√
1
W

i∑
k=i−W+1

(x(k)2 − E(i))2.

(1)
Thus, a potential start point of a gesture is detected if x(i)2 >

E(i)+γ1×D(i) and a potential endpoint is detected if x(i)2 < γ2×

Ē, among them, γ1 and γ2 are both the constant, Ē is the average
noise power detected before the first gesture. The segmentation
result is depicted in Fig. 4, and it shows satisfactory efficiency.
The orange line represents the motion signals we concern.
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Fig. 4. Gesture Detection and Segmentation

4.3 Spectrogram Generating

For motion sensor signals, time-domain features indicate the
sequential relationship of gestures, while frequency features
reflect different hand muscles motions. The Short Time Fourier
Transform (STFT) [16] has time domain sensitivity for both
high and low-frequency signals and contains more frequency
and time-domain information for the next step than DWT.
The power band represents the frequency spectrum generated
by STFT. The spectrogram is the STFT’s magnitude squared,
this is, |X(m,w)|2. The discrete-time STFT of a signal x[n] is
calculated as X(m,w) =

∑
n x[n]w[n − m]exp(− jwn). Hamming

window is applied for the window function w[n]. By evaluating
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X(m; w) for a larger number of (m; w) points, high-resolution
information is obtained at the expense of reduced total infor-
mation and greater computing cost. We achieve a satisfactory
trade-off through experiments (shown in Sec. 7). We observe
that the vibration caused by human mobility is mostly less than
15 Hz, and a cut-off frequency of 17 Hz for F is sufficient
to preserve information for the motion sensor signal. We con-
catenate all channels and generate spectrograms to represent
high-dimensional signals. The spectrogram is represented by a
two-dimensional array with the dimension of 102 × 17.

5 User Identification
In this subsection, we will introduce user identification solution.

5.1 BiLSTM Attention Model

We propose a deep neural network (Fig. 5) for extracting subtle
and stable representations from spectrograms and classifying
users for identification and authentication. The model is divided
into three parts: the BiLSTMs layer, the attention layer, and
classifier layer. To begin, the input data are STFT-derived spec-
trograms Then, motion features are extracted using three-layer
BiLSTMs. We add an attention mechanism based on Squeeze-
and-Excitation Networks to significant aggregate information
extracted from the motion representations generated by the
BiLSTM layers. Finally, we use a Multilayer Perceptron as
the classifier in our model with a softmax activation function.
Moreover, we conduct ablation studies (described in Sec. 7.2.1)
to better understand various parts of the proposed model.

5.1.1 Representation

Due to the structural properties, Recurrent Neural Networks
(RNNs) store the memory based on historical information,
making them well-suited for processing sequential data [17].
Long Short-Term Memory (LSTM) is purpose-built to address
the problem of long-term reliance by utilizing memory cells
that work better in longer sequences. For the spectrogram of
the sequential temporal signal, BiLSTMs [18] have a greater
capacity to extract representations than LSTMs with both before
and subsequent information.

First, we get the input spectrogram s = [s1, ..., sT ], st ∈ R
d

from STFT. The BiLSTMs layer computes the forward hidden
sequence

−→
h , the backward hidden sequence

←−
h and the output

sequence ht by iterating the backward layer from t = T to
1, the forward layer from t = 1 to T . Then the layer updates
corresponding hidden states at each time-step:

−→
h t =

−−−−−−−→
LS T MF(

−−−→
hT−1, st),

←−
h t =

←−−−−−−
LS T MB(

←−−−
hT−1, st). (2)

After that, at each time step, these hidden state outputs
from the forward LSTM

−→
h t and the backward LSTM

←−
h t

are concatenated to enable encoding of information from past
and future contexts respectively. With such a small number of
training examples, models will quickly overfit. Especially since
we only have a small number of training samples, models will
easily overfit on these samples. The dropout layer randomly
discards neural network units from the network. We send these
concatenated hidden states to a dropout layer to avoid complex

Fig. 5. Model Architecture.

co-adaptations on training samples and achieve network model
averaging.

We splice three layers of the network structure introduced
above. In detail, we set the dimensionality of the Bi-LSTM
output space as 64, 32, and 32. The fraction of the input units
to drop is 0.5 in our setting. Then, a Batch Normalization
layer is used to prevent gradient disappearance and explosion
during backpropagation and to provide consistency between the
updating stages of different scales.

Convolutional Neural Networks (CNNs) make use of con-
volutions to efficiently extract meaningful information. The
features vectors created by BiLSTMs can be treated as an image.
For image segmentation, the spatial information at the pixel
level is instructive. To enhance the features’ representational
abilities, we add an attention mechanism with Channel Squeeze
and Spatial Excitation Block (sSE) [19] to the model rather than
utilizing CNNs directly, which’squeezes’ the feature along the
channels and ’excites’ it spatially.

We note the output feature map generated by representation
block as U ∈ RH×W×C . First, sSE slices the input tensor U =

[u1,1, ...,ui, j, ...,uH,W ], where ui, j ∈ R1×1×C corresponding to the
spatial location (i, j) with i ∈ {1, ...,H} and j ∈ {1, ...,W}. The
spatial squeeze operation is achieved through a convolution q =

Wsq ? U with weight Wsq ∈ R
1×1×C×1. Each qi, j represents the

linearly combined representation for all channels C for a spatial
location (i, j). Then q is passed through a sigmoid layer σ(.) to
recalibrate or excite U spatially

ÛsS E = FsS E(U) = [σ(q1,1)u1,1, ..., σ(qH,W )uH,W ]. (3)

Each value σ(qi, j) corresponds to the relative importance of
spatial information (i, j) of the given feature. This recalibration
provides more importance to relevant spatial locations and
ignores irrelevant ones.

5.1.2 Classification
In the end, we use a Multilayer Perceptron (MLP) layer with the
softmax activation as the classifier in our model. Cu represents
the classification model. We put the feature into the classifier
and obtain the finial result Cu(xi). The softmax function calcu-
lates the cross entropy, which is defined as

loss =
1
|D|

∑
xi∈D

M∑
m=1

di,m log Cu(xi). (4)

The softmax function converts the logits into a probability dis-
tribution. The probability of T -th sample for i class is calculated
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as Pi = exp(θi
T )/
∑K

k=1 exp(θk
T ), where θT is the output logits

from the previous linear layer.
For identification tasks, we choose the user class with max-

imum Pi as the prediction for identification. For authentication
tasks, the sample is labeled as a true sample for j user if
j = argmaxi {Pi | Pi > σi}, where σi is the user-defined or
adaptively learnt threshold that defines the system’s strictness.

5.2 System Evolving

5.2.1 Self Calibration

As time passes a legitimate user’s gesture may shift slightly,
necessitating that our model be adaptable to the transition in
order to avoid frequent model resets. As discussed previously,
we specify a σ threshold for a legal user, which will determine
whether or not the sample is legitimate in the authentication
task. We increase the self-calibration threshold σe and include a
sample in the training set of user i if the model determines that
the sample is valid for the related user and Pi > σe,i > σi.

Considering the computational overhead associated with
iterative updates, we additionally include a ”cache” concept: if
the newly added data exceeds half of the cache storage, we will
temporarily utilize the cache as the database and authenticate
again. If the new data’s authentication impact is superior to the
original, it will be added to the database. If not, the cache will
be cleared and the samples re-added. This approach updates the
model’s training set continually when a new positive sample
is added or when a specified number of new positive samples
is accumulated, ensuring improved authentication accuracy and
increasing the system’s reliability and adaptability.

5.2.2 Domain Transfer

When users’ domain changes, retraining the model will be time-
and resource-intensive, and the capacity to extract features will
be insufficient. We opt to retrain the new user’s model using
pre-trained and fine-tuning [20] transferable approaches, which
are frequently utilized in transfer learning. We truncate the pre-
trained softmax layer in the pre-trained model and replace it
with the softmax layer from the new datasets when adding
new datasets. To preserve the training effect of the original
large-scale data, the parameters are updated using a learning
rate of one-tenth of the train from scratch. The proposed fine-
tuning strategy effectively addresses the abovementioned issues
while preserving the model’s validity on new datasets. Although
fine-tuning process saves a lot of computational overhead and
time consumption compared with the original training, it still
puts an unbearable burden on the smartwatch. So the fine-
tuning part is recommended to be carried out on the cloud side
with abundant computational resources. The smartwatch only
deploys the trained lightweight model and performs the data
collection function in the self-calibration.

6 Command Recognition

This section will introduce the key technologies of command
recognition for smart homes based on gesture recognition and
its contextual command analysis.

Fig. 6. Model Architecture of filter F

6.1 User Identity Filter

In Sec. 5.1, we establish the BiLSTM Attention model for
user identification. The objectives of gesture classification and
user classification are similar. We can adopt the same model
architecture to classify gestures. However, the challenges of
the two tasks are different. Users use the same actions in user
identification tasks. The challenge we need to face is to extract
unique and sustainable characteristics of users from weak sig-
nals. In the task of gesture recognition, in addition to extracting
the features of different actions of the same user, we need to
consider the diversity of different users, which greatly increases
the difficulty of gesture recognition. Therefore, we designed a
user identity filter to reconstruct the STFT spectrogram. The
filter can effectively remove the user’s identity information from
the noise in a gesture recognition task and retain the action
features to improve the accuracy.

6.1.1 Filter Architecture
The Auto-Encoder (AE) network is a commonly used unsu-
pervised learning network that has been extensively used for
anomaly detection and noise reduction [21]. AE includes an
encoder that compresses the dimensions and extracts the repre-
sentation from input samples and a decoder that reconstructs the
data from encoded characteristics as nearly as possible to the
original. The loss function typically employed in the training
process is the MAE between inputs and reconstructed outputs.
Inspired by the CNN-based AE networks introduced in [22], we
develop a privacy-preserving filter (denoted as F, as shown in
Fig. 6) that treats users’ identities as noise and extracts activity
features. Instead of uploading the actual IMU signals to the
server, the filter generates the reconstructed STFT spectrogram.

As mentioned in Sec. 5, CNNs have a high capacity for
representing image data. We leverage a two-layer CNN to
extract gesture features with a 2D kernel filter for the encoder.
Following each convolution layer is a max-pooling layer that
reduces the dimensionality of the data. The numbers of output
filters in the convolution layers are 32 and 64, respectively. And
the kernel size, i.e., the height and width of the 2D convolution
window, is 3. We set the pool size of the max-pooling layer as
(2,2) in the implementation. Finally, we produce the compressed
feature using a fully connected layer with the rectified linear
unit (ReLU) activation function. The impact of dimensionality
of fully connected layer output is discussed in Sec. 7.3. The
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decoder part consists of one fully connected layer with a
ReLU function that initially introduces nonlinearity. The data
is upsampled using the transposed convolution layer with a 2D
kernel. We set filters=64, kernel size=(3, 3), and strides=2.
The final fully connected layer generates the reconstructed
spectrogram using ReLU as the activation function.

6.1.2 Loss Definition
The critical issue is how to train the filter discussed above.
The loss function combined with multiple loss functions for
different tasks is widely used in the multi-goal learning process,
such as transfer learning [23]. We consider the independent loss
function for each task and summary the overall loss.

First, the reconstructed data should achieve great perfor-
mance on the activity recognizer. We use the cross-entropy as
the loss function of activity classifier (Ca), which is given as:

lossa = −
1
|D|

∑
xi∈D

N∑
n=1

di,n log Ca(F(xi)), (5)

where N is the number of gestures, di,n is a binary variable
that indicates whether the sample i belongs to the class n.
We train the activity classifier by minimizing lossa so that the
classifier can predict the gestures correctly. Second, we aim to
preserve users’ identity information, of which the goal is to
prevent distinguishing users. We amend the loss function of
identification classifier (Cu), which is given as:

lossu =
1
|D|

∑
xi∈D

M∑
m=1

di,m log Cu(F(xi)), (6)

where M is the number of users, di,m is a binary variable that
indicates whether the sample i belongs to the user m. When
minimizing lossu, the user authentication model can not work
with the generating data. Combining the Equation (5) and (6),
we have the overall loss function of privacy preserving network:

loss = lossa + αlossu, (7)

where α is the trade-off parameters.
In the implementation, we adopt the same network of

ThumbUp as the Ga and Gu. More specifically, we train a model
as Ga, and we train a Gu for each gesture; we have N Gu models.
In Ga, we only splice two layers of the Bi-LSTM structure and
set the dimensionality of the Bi-LSTM output space as 64 and
32. We save the parameter weights for models and use the fine-
tuning method introduced in Sec. 5.2.2 in the training process,
in which we freeze the loaded models and only train the layers
in the filter to minimize overall loss.

Numerous wristwatch programs capture and upload IMU
signals to the server as the primary input data, including fall
detection, gait counting, and other activity trackers [24]. In
Sec. 5.1, our user identification model demonstrates that IMU
signals expose the user’s personal information, and so pose a
danger of privacy disclosure. For instance, if a user uses our
system as the unlock scheme, an attacker can tap the data pack-
age used for online activity recognition programs and utilize the
data to compromise the smartwatch. With our identity filter, we
inverse the reconstructed STFT spectrogram to sequence signal
and then upload the reconstructed signal instead of raw data for
other activity trackers, which successfully protect users’ privacy
and ensure activity trackers function correctly.

6.2 Contextual Command Analysis

People have potential behavior patterns in daily life, such as
fixed mealtimes, the loop of switches, and the sequence of
actions like opening curtains and windows. When using ges-
ture commands to control smart homes, mining the contextual
correlation between commands improves command recognition
precision. However, to achieve real-time control, a significant
problem is finding an effective way to achieve accurate recogni-
tion and reduce computational complexity simultaneously.

Regarding contextual inference methods, Hidden Markov
Model (HMM) is the most commonly used method and has
achieved great results in many scenarios. However, in our
command process, we do not infer the current command only
based on the history of the command alone. We aim to identify
whether the result predicted by the deep model is plausible
with assisted past commands. Decision-tree-based algorithms
are widely used in the field of HAR due to the advantages
of simplicity, accuracy, and interpretability [25], which suits
our scenarios very well. Caros et al. [26] present a decision-
tree-based light-weight approach for real-time human activity
classification. Random Forest (RF) contains multiple decision
trees and outputs the class label based on the results from trees,
which determines the importance of inputs without dimensional-
ity reduction and feature selection [27]. RF algorithm calculates
the number of votes received by each prediction target. The
prediction target that gets the highest number of votes is used
as the final prediction, of which the RF algorithm has a high
resistance to over-fitting. We adopt the RF classifier to analyze
the contextual sequential pattern of the commands. Without
additional sensors, we combine two inputs: the deep model
recognition results as the recognition feature and t historical
commands as the contextual feature. The model is quite a
lightweight method with a fast training speed. Besides, we use
the process introduced in Sec. 5.2.1 to update the recognition
model and decision tree. It is worth mentioning that contextual
analysis is applicable in the case of command correlations such
as home control and industrial production. In the open scenario,
we only adopt the gesture recognition model introduced above
when the effect of sequential classification is not satisfactory.

7 Evaluation
We conduct a comprehensive evaluation of ThumbUp through
laboratory studies. We first collected motion sensor signals from
65 participants to determine the accuracy of ThumbUp in user
identification and gesture recoginition with micro and macro
benchmarks. Then, we explore the robustness of authentication
with imitation attacks. We evaluate ThumbUp in home control
on the real dataset in smart home. We show the performance of
our system about the real-time ability and power consumption.
Additionally, we perform the user study and illustrate how to
choose gestures for better performance.

7.1 Implementation

Motion sensing: We conduct all our experiments using the
HUAWEI-WATCH with Android Wear 2.0.0 and Android Oper-
ating System 7.1.1. For the motion signal collection, we utilize
the built-in accelerometer and gyroscope in the smartwatches
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Fig. 7. (a) Identification accuracy, (b) Comparisons, (c) 3 Periods w & w/o calibration, and (d) Placement.

and use the motion readings through existing Android Wear
APIs to detect signals. The sampling rates of the accelerometer
and gyroscope are both 100Hz.

Algorithm model: We use TensorFlow for construction and
training for the neural networks off-line. We train the deep learn-
ing model offline on a PC with 12 Intel i7-8700K CPU kernels,
64GB memory, and 4 Titan X GPUs. We build the trained model
in the TensorFlow Lite framework and employ our system on
the Android mobile platform for real-time evaluation.

7.2 User Identification

We recruit 65 volunteers and perform extensive studies on the
collected dataset for over three months. 35 participants are male,
and 30 are female. Their ages range from 19 to 57 (AVG=28.6,
6 > 50s). 75% are students, and the rest are non-students. 41 of
them is fairly experienced with smart-phones and computers. 23
of them are familiar with wearables.

7.2.1 Classification Accuracy
We first investigate the accuracy of our system across multiple
users. Before the experiments, we briefly explained our system
and showed the participants the example photos of 9 gestures (il-
lustrated in Fig. 1). We ask participants to wear the smartwatch
on their dominant hands, maintaining a comfortable tightness.
Before the data collection, the participants are asked to practice
the gestures a few times. Once comfortable, each participant is
asked to perform 9 gestures with 20 repetitions. Participants are
free to sit or stand while trying to avoid large body movements.
We have 65 × 9 × 20 gestures in the dataset.

(a) Gesture Collection (b) Imitate Attack

Fig. 8. Illustrations of Dataset Collection.

We evaluate the identification quality of the 9 gestures by
precision, recall, and F1-Score. For each gesture, we repeat
the training process for 10 times by randomly selecting 10 of
20 samples as the training samples and compute the average
results in the rest 10 samples. The results (shown in Fig.
7(a)) demonstrate that our system obtains average accuracy of
95.7% for nine gestures. The accuracy of G2 (finger-turning in
circles) and G9 (finger-bending) is up to 97%, which confirm

the ability of identification. We compare our design with state-
of-the-art baselines: SVM [28], kNN [29], SignSpeaker [30],
and XHAR [23]. Moreover, we use the features extracted by
BiLSTM as the input of traditional classification algorithms
(SVM, KNN), which achieves higher accuracy than the original
spectrogram and shows the effectiveness of our model for
feature extraction. The result (shown in Fig. 7(b)) displays that
our model achieves the highest accuracy on our dataset with
acceptable computation cost.

Impact of parameters configuration: For the input spec-
trogram of extracted features, our model reaches the best per-
formance with the 128 widths of a sliding window (choose from
[256,128,64,32]), 8 for increment (choose from [32,16,8,4]). We
perform ablation studies to know the importance of various
components in the model (shown in Table 1). We verify that
the good performance of our model mostly results from using
the sSE network and using 3-layer BiLSTM. We observe that
4-layer BiLSTMs achieve comparable accuracy to 3-layers. To
balance the high-precision and computation cost, we adopt 3-
layer BiLSTMs in our system. Meanwhile, we compare two
commonly used attention mechanisms: cSE [31] and scSE [19].
Also, we find that the Batch Normalization layer and Dropout
layer have a significant effect on the stability and generalization
ability of the model.

TABLE 1
Results of the proposed model with different switch configurations.

Models Highest
F1-score

Lowest
F1-score

Average
F1-score

DT 0.90 0.96 0.935
RF 0.90 0.96 0.941

4-layer BilSTMs 0.92 0.97 0.946
without sSE 0.92 0.96 0.937

cSE 0.92 0.97 0.945
scSE 0.93 0.97 0.949

All (Full model+sSE) 0.94 0.97 0.957

Impact of time horizon: To evaluate the similarity and re-
peatability of authentication over time, we test the performance
of ThumbUp over 3 months. We recruit 20 participants ranging
in age from 19 to 29 (AVG: 24.8, SDT: 2.5) included in the
list of the above 65 participants. Each participant repeats 9
gestures 20 times in each session (Date1, Date2, and Date3).
The gap between two sessions is 3-4 weeks. Fig. 9(a) intuitively
shows the temporal stability of the accelerometer signals and
its spectrogram for two users over time. Fig. 9(b) shows the
difference in DTW distance among different periods. The sig-
nals undergo some changes after a long interval of 3 periods
but still similar. We notice that the user remembers the type
of gestures but might forget the specific details after months,
which are essential factors of user uniqueness, especially for
tiny gestures. In order to maintain the usability of the model,
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Fig. 9. (a) Temporal stability of users for different gestures, (b) DTW distance, and (c) ROC for Imitation Attack.

we add the evolving mechanism described in Sec. 5.2.2. We
train the initial model with 10 samples collected at the first
session. In each subsequent period, we split 10 samples from
20 samples and select them to update the model based on
the evolution mechanism. The remaining samples are used to
test the accuracy of the model. We compare the authentication
accuracy of this method with/without the update mechanism.
The result (Fig. 7(c)) shows that our system is less effective
as the time gap increases between two separate authentication
attempts, which leads to a problem that it cannot be used
in applications with long intervals without the opportunity to
update itself. However, ThumbUp achieves high accuracy with
evolving mechanism. As our experiments show, our method
displays 0.95 F1-value even after two periods and increases 0.18
than the one without updating, which shows that our system with
an evolving mechanism is effective.

Impact of body motion: The body motion of users creates
non-zero acceleration readings. We asked 5 participants to wear
the smartwatch and perform gesture G9 under different motion
states: stilling the body’s locomotion (sitting) and sustained
movement (walking and running). Evaluations show that when
the user body is at a static position, the average F1-score is 0.93.
However, with body sustained movement, the F1-score comes
down to 0.67 (walking) and 0.42 (running). The results reveal
that large body motion brings a huge disruption to our system.

Impact of placement: In everyday life, users may not wear
the smartwatch at the standard position. In order to test the
impact of the wearing position, we asked 5 participants to
wear the smartwatch at two atypical positions shown in Fig.
7(d). Evaluations show that the average F1-score is 0.93 for
the standard position, 0.44 for the loose band, 0.13 for the
forearm, which reveals that the system can not identify users
with smartwatch at atypical positions. We think that the signal
is too weaker at the forearm with a loose band.

7.2.2 Authentication Robustness

For exploring the security against attackers, we focus on the
imitation attack which we believe is the most threatening attack
type. We asked 10 participants (attackers) outside the list of
65 participants in the training set to imitate motion patterns of
10 participants (targets) who are included in the training set.
Then we calculate their chances of successful imitation, i.e.,
ThumbUp mistakenly accepts samples from the attackers. The
attackers’ ages range from 19 to 50; 5 are male. All participants
are relatively proficient with computers and smartwatches and
familiar with these gestures. We take video footage when the
five target participants perform the gestures. Each attacker
mimics 9 gestures eight times to their best effort while watching
the targets’ videos. In summary, we collect 40 samples for each

gesture each target user. We also ask the target users to repeat
each gesture 40 times in order to balance the number of positive
and negative samples in evaluation.

We calibrate the threshold σ in the authentication mech-
anism to observe the False Rejection Rate (FRR) and False
Acceptance Rate (FAR). The Receiver Operating Characteristic
(ROC) curve of one user is shown in Fig. 9(c). We summarize
the average Equal Error Rates (EER) for the nine gestures in
Table 4. We observe that under an appropriate threshold, we
can make a proper distinction between attackers and legitimate
users. As the table shows, G2 (finger-turning) and G4 (hand-
waving) perform best against imitation attacks, while G7 (gun-
gesture) is close behind.

We compare our authentication performance with state
of the art one-class classifiers: GAN [32] and Autoen-
coder+SVM [33]. Compared to 0.221 for GAN and 0.173 for
AE+SVM, our design achieves the lowest average EER, which
is 0.025. We suspect the number of training samples is too
few for a one-class deep neural network classifier. ThumbUp is
trained by the number of training samples from different users,
which take advantage of the feature extraction that happens
in the front layers of the network without developing the
network from scratch. Then, we compare our work with state-
of-the-art authentication methods based on IMU signals. As
shown in Fig. 9(b), the DTW distance from different users,
which is used in [7] and needs fewer pre-detected samples,
cannot be distinguished. The authentication system proposed
in [34] achieved an EER of 0.054, which offers comparable
authentication performance.

We explore the effectiveness of our model when valid users
perform unknown gestures. In our design, samples of unknown
gestures should be determined as an illegal sample, even from
valid users. We collect 20 unknown gesture samples from 5
legitimate users and 20 samples from G1 to G9 as the inputs of
corresponding authentication models. The average EER among
9 models is 0.008, which proves the effectiveness of our method
for determining unknown gestures.

7.3 Command Recognition

First, we evaluate the accuracy of our model for gesture
recognition. We choose four gestures (G1-G4) from the dataset
collected from 65 participants as described above and use half
of the samples from each user as the training dataset and the rest
as the test dataset. We compare our method with the state of art
DNN methods: the LSTM based classification model proposed
in [35] and the CNN-IMU model introduced in [36]. We also
compare with traditional algorithms such as SVM and random
forest (RF) classifier. The results shown in Table 2 demonstrate
that our model achieves the highest accuracy of 91%.
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Fig. 10. Impact of (a) core size and (b) loss parameter α for user identity filter. And (c) the impact of training size in contextual command analysis

TABLE 2
Comparisons with state of art methods.

Models Precision Recall F1-score
LSTM [35] 0.80 0.80 0.80

CNN-IMU [36] 0.83 0.83 0.83
RF 0.84 0.83 0.84

SVM 0.87 0.86 0.87
ThumbUp w/o Filter 0.88 0.87 0.88

ThumbUp 0.91 0.91 0.91

Besides, the experiments indicate that our filter process ef-
fectively increases the accuracy from 88% to 91%. We evaluate
the performance of the filter over different core sizes. The result,
shown in Fig. 10(a), illustrates that the medial compressed
feature with a larger core size provides more information of both
user and activity. Next, we study the impact of loss parameter,
i.e., α, in the model training process with core size equals 128,
as shown in Fig. 10(b). In our dataset, when α = −0.6, the
filter achieves the lowest user accuracy (F1-score=0.02) with a
F1-score of 0.93 for gesture classification. In the user privacy
protection task, adding noise is the most common method [37].
We compare our filter with a commonly used noise method:
adding uniform noise. The result shows that when the Fi-score
of user classification is 0.02, the noise method achieves 0.37
accuracy for gesture classification (0.91 for ours).

TABLE 3
Performance of Contextual Command Analysis.

Models Command Latency t
1 2 3 4 6 8 10

SeqDT [25] 0.85 0.88 0.85 0.91 0.81 0.86 0.78
HMM 0.41 0.66 0.73 0.77 0.77 0.77 0.72

LR 0.91 0.90 0.90 0.87 0.86 0.86 0.82
DT 0.94 0.93 0.94 0.92 0.94 0.93 0.91
RF 0.95 0.95 0.96 0.94 0.94 0.93 0.93

To obtain a further evaluation of our models in smart home
control, in this work, we have experimented with the dataset
proposed in [38]. We map the collected gesture samples to
four activity labels (Toileting, Breakfast, Lunch and Dinner),
representing the control of the related activities. After that, we
have a sequential command whose length is 400. We compare
the performance of our method (RF) with state of the art
sequential prediction methods: SeqDT [25], HMM, Logistic
Regression (LR) and Decision Tree (DT). We evaluate the
impact of command latency t, and the results of F1-Score is
shown in Table 3, where we observe that RF always performs
the best for different numbers of command latency over other
the baseline methods. Specifically, the RF increases the accuracy
from 91% to 96% when t = 3. Besides, the decision tree
algorithm works well for different command latency. Moreover,
Fig. 10(c) presents the comparison results on the training size on
our model with the same test dataset. The result shows that when

training size reaches 50, our model leads to a 90% accuracy. As
the number of training samples increases, the accuracy of our
model increases drastically.

7.4 Delay and Power Consumption

We deploy our system on a HUAWEI-WATCH to explore the
real-time ability of ThumbUp. We estimate the delay of 5000
times. The average latency from the time when the user finishes
their gestures to the time that authentication is finished is 0.085s.
The result indicates the real-time ability of our system.

We use the Android Debug Bridge (ADB) tool for evaluating
power consumption. We compare two states of the smartwatch:
idle display and running the authentic system 5 times per
second. Then we estimate the power consumption of the screen-
on smartwatch for one hour. With our system running, the power
capacity of the smartwatch drops to 213mAh, while the initial
is 264mAh before running our system. Meanwhile, when the
system is idle, the power capacity of the smartwatch drops to
231mAh with the same initial battery capacity.

7.5 User Study

We analyzed the impact of user factors using our system in user
identification task.

Impact of proficiency: We ask the participants to record
the proficiency of gestures at the end of experiments and
divide samples from 34 participants into these 3 categories
(Rusty, Understanding, Proficient) (32:100:183). We calculate
the average F1-score for each category. As shown in Fig. 11(a),
for a certain gesture, the more proficient the user is, the higher
stability the authentication process has.

Impact of fatness: We record the Body Mass Index (BMI)
values and waist circumference of participants, which is used
to quantify the amount of tissue mass in an individual [39].
We divide participants into 3 categories (underweight, normal,
and overweight) (13:24:12) according to [40]. As shown in
Fig. 11(b), we observe that the F1-score decreases slightly as
fatness rises. And we make the assumption that the abilities
to control muscles decline as fatness rises and may affect the
accuracy.

Impact of age and gender: We divided participants into 4
categories by age (6:10:32:16). According to the result shown in
Fig. 11(c), users between 23 and 28 have higher F1-score, which
may be related to the stiffness or fatigue of muscles caused by
increasing age. Another reason may be that younger participants
are more adept at these gestures according to the user survey.
Besides, we choose 30 males and 30 females that cover the age
range from 19 to 60 separately. In Fig. 11(d), the F1-Scores of
male and female are roughly the same.
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Fig. 11. Impact of proficiency, fatness, age, and gender

At the end of the study, we survey the participants’ opinions
about the usability, applicability, and usefulness of the system.
84% of participants think that ThumbUp is convenient and
reliable. They are willing to use our system as the approach
to get access to the smartwatches in daily life. Furthermore,
participants are asked to choose three gestures that they are
most willing to use in their daily lives. The result is depicted
in Table 4. The popularity decreases from top to bottom, ’1’
represents the gesture with the highest user satisfaction, and ’9’
represents the least. Our survey shows that most users prefer
relatively simple gestures like G5(fist-making) and G8(thumb-
up). Combining the statistical results of previous experiments,
we generally recommend the top five gestures (listed in Table
4) with both user-friendliness and usability. Considering the re-
lationship between proficiency and accuracy of gestures (shown
in Fig. 11(a)), users can redefine their personal unlock gestures
with the most familiar gestures for better security.

TABLE 4
F1-score of identification, EER of Imitate-Attack, and the rank of

user-friendliness for each gesture.

Gesture F1-score of
Identification

EER of
Imitation Attack

Rank of
Friendliness

G5 0.96 0.028 1
G8 0.94 0.033 2
G2 0.97 0.014 3
G6 0.95 0.026 4
G9 0.97 0.027 5
G7 0.96 0.020 6
G4 0.96 0.018 7
G1 0.95 0.032 8
G3 0.95 0.025 9

8 RelatedWork
Existing biometrics classification approaches can be divided
into two categories: physiological and behavioral techniques.
Physiological techniques take advantage of the physical charac-
teristics of the human body [28]. Behavioral techniques utilize
unique manners, such as kinesiological movements [41] and
even tongue movement [42], which are closely related to per-
sonal behavioral habits. PerAE [43] is an identity recognition
system based on the electrocardiogram; It maintains an AE
module to classify the heartbeats of other users as anomalies.

Gesture-based recognition have drawn great attention in
academia and industry, with sensor signal based on capaci-
tance [44], wireless backscattering [45], cameras [46], etc. Yang
et al. [47] present the study of mobile authentication using free-
form touchscreen gestures generated by participants instead of
text passwords. Some gesture-based studies use IMU: Authors
in [48] undertake an investigative analysis to study the feasibility

and practical deployability of handwriting-based authentication
techniques that utilize motion sensors. Sun et al. [49] propose
a 3D hand gesture signature-based biometric authentication
system with an on-phone accelerometer, and the results tested
by 19 users show 4.65% FRR and 0.27% FAR. MotionAuth [6]
uses the arm movement signals measured by wrist-worn smart
devices, which is similar to our design. It authenticates with
large-scale arm-generated gestures like lifting the hand, while
ThumbUp achieves a comparable secure authentication using a
simple hand gesture.

There are also some relative works about subtle gesture
kinematics analysis used for wrist-worn or other mobile devices.
TwistIn [50] takes a smartwatch as an authentication token
for access and control of other smart devices by twisting the
phone a few times, and it achieves 95% accuracy for 12
users. Taprint [7] proposes a secure PIN input system, which
extends a virtual number pad on the back of hands with smart
wristbands. It uses tapping vibrometry as biometrics with an
authentication accuracy of 96% for 128 users. WatchAuth [51]
also shows the tap gesture’s biometric capability to authenticate
users and recognize intent-to-pay simultaneously. Li et al. [52]
investigates the feasibility of authenticating users by sensing
hand motions of signing their names in the air using fingers,
which achieves 0.83% EER against insider adversaries.

9 Discussion
Nevertheless, this is only the first step toward completing an
extremely difficult assignment. Several open research questions
remain as follows:

Accuracy Improvement: Current recognition accuracy is
restricted to two main issues. On the one hand, the signals of
small gestures are weaker and more susceptible to perturbation
than a large range of body movements; it is very difficult to
extract user identity features from small gesture movements.
On the other hand, we only collect adequate user samples in
cold-start conditions. We designed the system considering that
asking users to collect too much gesture sample data during
the cold start phase would decrease user-friendliness, so we
set the number of data used for initial model recognition to
10. We explore the effect of the number of training samples
in Fig. 10(c). The result demonstrates that as the number of
training samples increases, the accuracy of our model increases
drastically. Thus, with the self-calibration section, we can per-
form user data updates with less computational overhead.

Body Motion: The evaluation in Sec. 7.2.1 reveals that the
body motion of users brings a huge disruption to our system as it
creates non-zero acceleration readings. Enhancing the system’s
robustness in a more hostile environment when users engage in
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other daily activities, such as walking and running, is necessary
to improve the usability of our system. Using the periodicity of
body movements during continuous body motion to filter out
noise signals is a potentially viable practice [53].

10 Conclusion
In this work, we present ThumbUp for identifying and authenti-
cating users with only a single basic gesture, such as a thumbs-
up, and we introduce the extension of ThumbUp in smart
home control. We carefully design pre-processing methods for
reducing noisy, weak inputs to a spectrogram containing user
characteristics. A light-weight robust deep neural network is
used to extract unique representations from motion signals.
We illustrate its utility through extensive experimental inves-
tigations conducted over a three-month period with 65 users.
We believe that our approach will open up a wide range of
exciting opportunities for convenient and safe authentication
using wearable smart devices.
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