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Abstract: Ground penetrating radar (GPR) is a very useful nondestructive evaluation (NDE) device for locating and mapping underground
assets prior to digging and trenching efforts in construction. This paper presents a novel robotic system to automate the GPR data-collection
process, localize underground utilities, and interpret and reconstruct the underground objects for better visualization, allowing regular non-
professional users to understand the survey results. This system is composed of three modules: (1) an omnidirectional robotic data-collection
platform that carries a RGB-D camera with inertial measurement unit (IMU) and a GPR antenna to perform automatic GPR data collection
and tag each GPRmeasurement with visual positioning information at every sampling step, (2) a learning-based migration module to interpret
the raw GPR B-scan image into a two-dimensional (2D) cross-section model of objects, and (3) a three-dimensional (3D) reconstruction
module, i.e., 30.0% GPRNet, to generate underground utility model represented as fine 3D point cloud. Comparative studies were performed
on synthetic data and field GPR raw data with various incompleteness and noise. Experimental results demonstrated that our proposed method
achieves a higher GPR imaging accuracy in mean intersection over union (IoU) than the conventional back-projection (BP) migration
approach, and 6.9% − 7.2% less loss in Chamfer distance (CD) than point cloud model reconstruction baseline methods. The GPR-based
robotic inspection provides an effective tool for civil engineers to detect and survey underground utilities before construction. DOI: 10.1061/
(ASCE)CP.1943-5487.0001062. © 2022 American Society of Civil Engineers.

Introduction

Ground penetrating radar (GPR) is widely used in nondestructive
testing (NDT) for civil engineers to locate and map buried objects
(e.g., utilities, rebars, underground storage tanks, and metallic or
plastic conduits), measure pavement thickness and properties, and
locate and characterize subsurface features (e.g., subgrade voids be-
low concrete slabs or behind retaining walls). The GPR inspection is
a wave-propagation technique that transmits a pulse of polarized
high-frequency electromagnetic (EM) waves into the subsurface me-
dia. An EMwave attenuates as it travels in media and reflects when it
encounters a material change. A GPR antenna would thus record the
strength and traveled time of each reflected pulse (Demirci et al.
2012b). The reflections are then amplified, processed, and displayed
on a screen as an A-scan signal, analogous to a waveform in an
oscilloscope. When the GPR device moves along a straight line
perpendicular to utility pipes, the ensemble of the A-scans forms

a B-scan, which is shown as the hyperbolic feature, indicating the
objects’ locations as well (Li et al. 2016a; Yuan et al. 2018a).

There are two pain-points limiting the GPR applications on
revealing subsurface flaws and helping underground object recon-
struction. The first one is how to determine GPR’s position and
orientation accurately and in real time, and synchronize with GPR
measurements at each GPR sampling step. In current practice of
GPR data collection, inspectors would either move a GPR cart
(Li et al. 2016b) along premarked grid lines and count on the survey
wheel encoder to trigger GPR measurements while obtaining the
accurate linear positions for detailed mapping and survey, or count
on a high-precision global positioning system (GPS) to provide
accurate position information for detecting large underground
objects or surveying a large area along nonlinear trajectories.

In encoder-triggered manual data collection, it is time-consuming
and tedious for the inspector to premark the grid intersection points,
take notes and photographs, and push the GPR device to closely
follow the gird lines in X-Y directions. On the other hand, GPS
equipment is expensive and its accuracy is still not sufficient for
the three-dimensional (3D) GPR imaging projects where every
scan must be accurately localized and targets must be resolved in
inches. In addition, GPS accuracy is degraded in urban environments
where buildings may obstruct and distort GPS signals (Wells et al.
1987). Furthermore, GPS cannot work in indoor environments.

The second challenge is how to develop an efficient 3D GPR
imaging method to visualize the subsurface objects allowing regular
nonprofessional people to understand. Unfortunately, the current
commercial GPR postprocessing software cannot process GPR data
collected from nonlinear trajectories.

To address these challenges, we implement a low-cost vision-
based positioning method, tag the pose information at each GPR
sample, and develop GPR analysis software that provides a holistic
solution for automated GPR data collection and 3D GPR imaging
and reconstruction.

As shown in Fig. 1, the main contributions of this work can be
summarized as follows:
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• An omnidirectional robot is developed that carries a GPR an-
tenna on the chassis, moves forward, backward, and sideways
in a fast and swift manner and enables the detailed survey to be
conducted in arbitrary nonlinear trajectories. Compared with
Feng et al. (2022), this robot is more portable and lightweight
and can run with a consistent and stable trajectory.

• A learning-based module that uses two separate deep neural net-
works (DNNs) is presented. The first network aims to interpret
the B-scan data and the second network reveals the object model
structure based on the interpreted data and presents the 3D
model in point cloud.

• Compared with Feng et al. (2021a), we further augmented our
GPR data set with the point cloud models. We released this
unique data set to contribute to the learning-based GPR process-
ing communities (Feng 2022).
Fig. 1 shows the system archictecture, where the system contains

three modules. First, a vision-based robotic GPR data-collection
module automates the GPR data collection and tags the GPR data
with visual positioning information. Second, MigrationNet inter-
prets the B-scan image to a two-dimensional (2D) cross-section im-
age of the object model. Third, GPRNet registers 2D cross-section
images into the 3D space as a sparse model and transfers the sparse
model to the 3D dense model of subsurface objects.

This paper is organized as follows. In the section “RelatedWorks,”
we review related works on conventional GPR migration methods, as
well as the recent GPR 3D reconstruction algorithms. Section
“Vision-Aided Robotic GPR Data Collection” introduces the robotic
GPR data-collection system and verifies the vision-based positioning
accuracy. Sections “MigrationNet for GPR Data Interpretation” and
“GPRNet: GPR Pipes Reconstruction Network for 3D Modeling”
present the learning-based GPR data processing methods. Section
“Experimental Study” introduces the proposed GPR data set and
presents extensive experimental results. At last, section “Conclusion”
concludes the paper and presents future research directions.

Related Works

GPR migration and model reconstruction are popular topics in
NDT and civil engineering and have been extensively investigated
in the last 2 decades.

Conventional GPR Migration Methods

GPR migration is a process that converts the unfocused raw B-scan
radargram data into a focused target. Conventional migration
methods can be roughly categorized into Kirchhoff migration
(Schneider 1978), the phase-shift migration (Gazdag 1978), the
finite-difference method (Claerbout and Doherty 1972), and back-
projection (BP) algorithm.

The BP algorithm is the most significant and commonly used
2D imaging reconstruction method in the GPR industry (Demirci
et al. 2012a, b). When GPR emits the radiation pulse, the BP algo-
rithm assumes this wave path shares a semisphere pattern with an
equal energy level. After GPR receives the radiation pulse back, the
BP algorithm stack the radiation energy along the hyperbolic tra-
jectory; then, the sum of the responded amplitude could reflect the
target region (Schofield et al. 2020; González-Huici et al. 2014;
Feng et al. 2022).

To further improve the effectiveness of the conventional BP
algorithm, several modified BP methods have been proposed.
Xie et al. (2020) presented the bifrequency BP (BBP) to enhance
the visualization quality of the subsurface objects, especially for
grouting. Fast BP (FBP) was proposed by Zhou et al. (2011); it
is an approximation method that could run faster by simplifying
the computation of subsurface dielectric (Gharamohammadi et al.
2019). In addition, many researchers focused on the cross-
correlation BP (CBP) method (Cai et al. 2020; Lin et al. 2020;
Jacobsen and Birkelund 2010; Zhang et al. 2015). CBP can cut
down the round trip time-of-flight from a stimulating source to
a focal point and back to a receiver. Moreover, Liu et al. (2020)
improved the BP algorithm by integrating a correction factor for
radiation pattern in the subsurface to reduce the negative influence
of the traditional homogeneous radiation pattern on GPR. Filtered
BP (FBP) is another modified BP method. Schofield et al. (2020)
and Chetih andMessali (2015) investigated this method to get rid of
the noise effects back in the GPR images.

Three-Dimensional GPR Imaging Methods

In recent years, research on GPR imaging has made commendable
progress in academia (Dinh et al. 2021; Hou et al. 2021; Qin et al.
2021; Xiang et al. 2021). Researchers at Texas A&M University

Fig. 1. System architecture.
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published a series of papers on automatic subsurface pipeline map-
ping and 3D reconstruction using a GPR and a camera (Li et al.
2019; Chou et al. 2016, 2017, 2018; Li et al. 2018; Chou et al.
2020). They modeled the GPR sensing process and proved the
hyperbola response for general scanning with nonperpendicular
angles, which is novel. They fused visual-simultaneous localization
and mapping (V-SLAM) and encoder readings with GPR scans to
classify hyperbolas into different pipeline groups and applied the
J-linkage and maximum likelihood method to estimate the radii and
locations of all pipelines. However, the average error for pipe radius
estimation was over 35%, which is not good enough for practical
use (Li et al. 2019). They encountered calibration and synchroni-
zation problems and had to use customized artificial landmarks to
synchronize camera poses (temporally evenly spaced) to the GPR
data (spatially evenly spaced) (Chou et al. 2020).

Similarly, researchers at the University of Vermont published
several papers related to 3D reconstruction from both ground and
air-coupled multistatic GPR (Pereira et al. 2018b, 2019a, b, 2020).
The main contribution of these works was the consideration of
phase compensation for different receiver antennas. They not only
stacked the B-scan images to model the 3D multistatic GPR
imaging, but also took the different gains and dielectric contrast
of each receiver antenna into consideration and further fused it with
a Hessian-based enhancement filter to formulate the final 3D
reconstruction model. However, the noise reconstructed in the
3D model was still not clearly removed by the proposed method,
which makes the 3D model not good enough for visualization.
In addition, a Google Tango device was used to provide position
information to GPR scan data (Pereira et al. 2018a). However, the
limitation of this method is that Google Tango is no longer in ser-
vice and thus this method cannot be implemented in practice.

Vision-Aided Robotic GPR Data Collection

Robotic Data-Collection Platform

As shown in Fig. 2, we developed an omnidirectional robot for the
inspection of underground utilities. Our robot has four Mecanum

wheels that allow forward, backward, and sideways motion to fol-
low grid pattern without spinning. A PaveScan GPR antenna from
Geophysical Survey System Inc. (GSSI) (Nashua, New Hampshire)
was installed at the bottom of the robot chassis to perform GPR data
collection. An Intel Realsense (Santa Clara, California) RGB-D
camera (D435i) was mounted at the robot’s front. This camera
could support indoor and outdoor working environment, which
boosts the robustness for our vision-based positioning system.
A six-axis inertial measurement unit (IMU) was embedded in
the camera to provide accurate and robust pose estimation. The
robot carried a rechargeable battery and a high-level controller
(i.e., Intel NUC) to provide power to the system and synchronize
the pose data with GPR scan data.

Fig. 3 depicts the inverse kinematics model of the omnidirec-
tional robot. The highly maneuverable design allows the robot
to move in any direction without spinning and thus provides free
motion trajectories for the GPR data collection. The robot motion
satisfies the following equation:

vx ¼
R
4
ðw1 þ w2 þ w3 þ w4Þ

vy ¼
R
4
ð−w1 þ w2 − w3 þ w4Þ

ωo ¼
R

4ðL2 tanαþ L1Þ
ð−w1 þ w2 þ w3 − w4Þ ð1Þ

where R = radius of the Mecanum wheel; fwigN¼4
i¼1 = angular veloc-

ity of each Mecanum wheel; L1 and L2 = width and length of the
robot chassis, respectively; α = angle of the roller, which equals
45°; vx, vy, and ωo = linear velocity in x- and y-directions and
the angular velocity of the robot chassis, respectively; fxigN¼4

i¼1

and fyigN¼4
i¼1 = local coordinate frame of each Mecanum wheel;

x and y = robot coordinate frame of the robot motion; and o =
center of the robot chassis and the robot coordinate origin.

Eq. (2) demonstrates how robot position and orientation update.
In detail, the current pose (xtþ1, ytþ1, θtþ1) is updated according to
its pose information (xt, yt, θt) at the previous time, as well as the
robot orientation angle θ and unit sampling time Δt

θtþ1 ¼ θt þ ωo ×Δt

xtþ1 ¼ xt þ vx cos θtþ1 ×Δt − vy sin θtþ1 ×Δt

ytþ1 ¼ yt þ vx sin θtþ1 ×Δtþ vy cos θtþ1 ×Δt ð2Þ

To remotely control the robot motion and conduct GPR data
collection, we designed an Android application (APP) whose
graphic user interface (GUI) is illustrated in Fig. 4. We provided

Fig. 2. Omnidirectional robot for vision-based GPR data collection,
where a GPR antenna is installed at the bottom of the robot chassis.
(Images by authors.) Fig. 3. Structural schematic diagram of our GPR cart.
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two control modes in this remote-control APP: (1) automatic; and
(2) manual. In automatic mode, the user needs to define the width,
length, and grid resolution of the survey area; then, our APP will
generate a zigzag path along the grid to cover the survey area ac-
cording to the predefined parameters, and the robot starts the data
collection automatically. The user could stop an automatic data col-
lection by pressing the red stop button at the bottom left of the GUI.

On the other hand, manual mode can be activated anytime to
control the robot with the virtual joystick button (the double circles
at the bottom right of the GUI). The virtual joystick button controls
the robot motion direction by pushing the middle gray circle to the
desired angle. If the joystick is released and the gray circle rests in
the middle, then the robot stops. Moreover, the user could define
the linear velocity of the robot through the sliding bar and show the
first person view (FPV) of the robot in the window.

Tagging GPR Measurement with Pose Information

It is very crucial that the GPR data are tagged with the robot pose
at each GPR sampling, which will eliminate the constraint of need-
ing GPR data collection along straight lines in X-Y directions.
Allowing the robot to scan in arbitrary and irregular trajectories
makes the GPR data collection much easier and facilitates the
3D GPR imaging data analysis.

Specifically, our robot carries a RGB-D camera embedded with
an IMU sensor to collect RGB and depth images of the construction
surface, together with the corresponding IMU data, e.g., quaternion,
angular velocity, and linear velocity. Then, by taking advantage of
the ORB-SLAM3 (Campos et al. 2021) algorithm, it takes RGB
images and depth images as the input to conduct visual odometry
and fuses with IMU measurement to perform real-time localization.
Then, we implemented a time synchronizer function in Robot
Operation System (ROS), which takes in messages of different
types from multiple sources and outputs them only if it has received
a message on each of those sources with the same timestamp. It is
used to synchronize the GPR sampling with vision-based position-
ing data so that the GPR data collection would not be constrained to
a straight line.

The frame rate of the RGB-D camera is 30 Hz, and the IMU
update rate is 200 MHz. Through interpolation, we achieved
200 Hz for position updates. Because the PaveScan GPR sampling
rate is 100 Hz, we synchronized the vision-based positioning and

GPR updating at 100 Hz in the experiments. In other words, our
robotic data-collection system could collect 100 scan data tagged
with pose data per second, and the spacing between the consecutive
measurements would be 5 mm when robot moves with a 0.5 m=s
linear velocity. It demonstrates that the vision-based accurate posi-
tioning solution has met the low latency requirement because
100–200 Hz is more than good enough for almost all commercial
GPR applications. Fig. 5 illustrates an example of how GPR B-scan
data are collected and tagged with pose information in a zigzag
motion as well as a spiral motion, and it does not require the in-
tervention of the human inspector.

Furthermore, we conducted an accuracy test of the robot motion
using a VICON system (Hauppauge, New York) (Merriaux et al.
2017). As shown in Fig. 6, we controled the robot move in a zigzag
pattern, where lines indicates the ground truth of the motion trajec-
tory provided by the VICON system, and the r motion trajectory
estimated by an RGB-D camera. Fig. 7 and Eq. (3) denote the root
square error (RSE) between the ground truth and vision-based tra-
jectory. The mean RSE is around 1 cm, which satisfies the require-
ment for highly accurate positioning by the GPR industry

MeanRSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1

��yðiÞ − ŷðiÞ��2
N

s
ð3Þ

where N = number of position samples; i ¼ ith position sample;
and yðiÞ and ŷðiÞ = ground-truth position and estimated position,
respectively.

MigrationNet for GPR Data Interpretation

We present the learning-based GPR data processing methods as
shown in Fig. 8, which consists of MigrationNet and GPRNet,
as well as a point cloud conversion process. In this section, we train
a network, MigrationNet, to interpret the input B-scan data to a
cross-section image of the underground object model.

Given the kth B-scan data Bk ¼ fðAk
i ;TiÞgNi¼1 ∈ RN×M×1 where

k ¼ 1; : : : ;K, we assume Bk consists of N tuples of A-scans Ak
i ¼

fðaj; tjÞgMj¼1
∈ RM×1 along with their corresponding pose Ti ∈

R3×4 (where in Ak
i , M indicates the number of samples in an

A-scan data; aj and tj denote the amplitude and traveling time
of the jth A-scan sample). Our goal is to distill B-scan data into
a BP-based representation Θ. In addition, we are interested in
the GPR data processing Θ that allows us to interpret the ΘðBÞ
into a clear, user-friendly cross-section image of the underground
object model. In the following, we first formalize Θ and then dis-
cuss the details of interpretation algorithm in Φ. In all, Algorithm 1
describes the processing of this approach, which is called Migra-
tionNet (Feng et al. 2021b).

Algorithm 1. MigrationNet for GPR data interpretation
Input:

B-scan data Bk ¼ fðAk
i ;TiÞgNi¼1 ∈ RN×M×1;

Output:
A cross-section image Ik of the subsurface utility’s geometry;

1: for k←1; n do
2: Downsample the B-scan data Bk to B̂k

3: Sparse back-project B̂k via function Θ to get the input Zk.
4: Extract ffigN¼3

i¼1 ∈ RM×N×512 from fEM
i gN¼3

i¼1 ;
5: Estimate Ik through the decoder.
6: end for
7: return ΦðZkÞ ¼ Ik;

Fig. 4. Remote-controller APP GUI of our robot data-collection
platform showing FPV.
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Sparse Back-Projection Aggregation

As discussed in section “Related Works,” the BP approach Θ serves
as a common solution to process the GPR data (Li et al. 2019). How-
ever, there are some limitations existing in the BP approach. First of
all, it needs to back-project each A-scan Ak

i into a predefined 3D
volumetric map. Second, each A-scan Ak

i covers a cone-volume
of subsurface, and it usually overlaps with other neighbor A-scans.
The back-projection of each A-scan would result in heavy computa-
tion during the fusion because of the indexing, which is computation
expensive and requires large memory to support the computation.

In order to address this challenge, we introduce a multispatial-
resolution algorithm to aggregate the A-scans, where the resolution
denotes how many A-scan measurements N̂ (0 < N̂ < N) from a Bk

are used for back-projection. In particular, because each Bk might
have a different number of A-scan measurements N, for any Bk

whose number of A-scan measurements are less than 1,024, we
only picked N̂ ¼ 256, 128, and 64 A-scan measurements for
back-projection and stack them in the spatial domain as the input.
This is how we distinguish the different spatial resolutions in the
input data. Otherwise, for those Bk with more than 1,024 A-scan

measurements, we introduced a sliding-window crop operation to
split the B-scan data into multiple segments. As introduced in
Eq. (4), we fixed the sliding window length to 1,024, where q is
equal to the ceiling value of this equation, which represents the
number of cropped B-scans after the trim operation

q ¼ bN=1024c ð4Þ

Then, by taking advantage of the BP algorithm, each sample’s
amplitude in an A-scan is converted into a semisphere shape at its
corresponding traveling time. As illustrated in Fig. 9, the brighter
semisphere indicates the higher-amplitude part in the A-scan. Fur-
thermore, the radius of each semisphere in a BP image indicates the
depth between the ground and the object, which is illustrated by
Eq. (5) (Li et al. 2019)

∀ Ak
i ∈ B̂k; ðx − txÞ2 þ ðy − tyÞ2 ¼ ðaj � tjÞ2

y < 0; 1 < i < N; 1 < j < M ð5Þ

where tx and ty = position of the current A-scan Ak
i .

(b)

(a)

Fig. 5. B-scan profile tagged with metric positioning information when a robot moves along a zigzag and spiral trajectory: (a) B-scan profile in a
zigzag motion trajectory; and (b) B-scan profile in a spiral motion route.
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In particular, given a 2D back-projected data Pk
i converted

from Ak
i as shown in Fig. 9, its height and width are the same

as a raw B-scan Bk, which are equal to M and N, respectively.
It is because BP is an algorithm that aggregates each back-projected
data Pk

i from a B-scan Bk, and the intersection part in the aggre-
gated BP data

P
N
i−1 Pk

iwith the highest energy level indicates a
potential target.

In summary, we leverage on the BP principle to represent and
process the cropped B-scan B̂k as a function Θ

Θ∶RN̂×M×1 → RN̂×M×N ; B̂k ↦ ΘðB̂kÞ ¼
X̂N
i¼1

Pk
i ¼ Zk ð6Þ

In this way, a sparse-stacked multiresolution input Zk is created.
We chose to sparsely aggregate the back-projected data Pk

i because

Fig. 6. Motion trajectory between ground truth, which is provided by a VICON system, and camera. This motion is in a 2 × 2-m square pattern.

Fig. 7. RSE error distribution between the ground-truth motion and estimated motion provided by visual positioning. The mean RSE error is only
1.03 cm, which could meet the positioning accuracy in practical GPR collection.
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a sparse data can decrease the computational cost and can provide
multiple resolution of the input data in the spatial domain. We
provide more details and experiments in section “Experimental
Study.”

MigrationNet Formulation

Given a sparse-stacked input Zk, we introduce a interpretation
algorithm Φ that maps a sparse-stacked B-scan data to an image
Ik as follows:

Φ∶RN̂×M×N → RM×N×1; ΘðB̂kÞ ↦ ΦðZkÞ ¼ Ik ð7Þ

In particular, Φ is composed of an encoder, which has
multiple spatial resolutions to extract features from multiple res-
olution input Zk, and a decoder, to interpret the features and
predict a cross-section image Ik of the subsurface utility’s
geometry.

Multiple Spatial Resolution Encoder
A multiresolution representation is the key for Φ to interpret Zk.
Thus, we first introduce our feature extractor, named Multiple
Spatial Resolution Encoder (MSRE). Here, we take inspiration
from the Feature Pyramid Network (FPN) (Lin et al. 2017) struc-
ture. FPN belongs to the class of object detection algorithms that

Fig. 8. Network architecture. MigrationNet aggregates the BP data with multiple resolutions and interprets those BP data into a set of 2D images that
indicate the cross section of the subsurface utilities. Then, the cross-section images are converted into the sparse point cloud and GPRNet completes
the sparse point cloud to make it dense and continuous.

Fig. 9. Given a B-scan data combined with A-scan, the BP algorithm converts the A-scan raw data into a set of semispheres.
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inhereted the feature capture ability by introducing a multiresolu-
tion input and reveal the rich local structure information in the
spatial domain.

Specifically, the input Zk ∈ RN̂×M×N has three resolutions,
where N̂ ¼ f256,128; 64g. Thus, to extract features from Zk, we
use three independent feature extractors fEM

i gN¼3
i¼1 composed of

several downsampling groups fdigN¼3
i¼1 . Each downsampling group

fdigN¼3
i¼1 is a combination of two convolution layers and one max-

pooling layer, where the kernel size fski gN¼3
i¼1 of the max-pooling

layer is different. Specifically, when N̂ ¼ 256, the kernel size of
the max-pooling layer in the corresponding extractor is equal to
sk1 ¼ 8. In addition, the kernel size in the max-pooling layer is
set to sk2 ¼ 4 when N̂ ¼ 128, whereas the max-pooling kernel size
is equal to sk3 ¼ 2 when N̂ ¼ 64. Hence, three corresponding latent
feature maps ffigN¼3

i¼1 ∈ RM×N×512 are extracted from fEM
i gN¼3

i¼1 .

Decoder
To estimate a cross-section image Ik from the extracted features,
here we introduce the decoder frame work. Given our current
feature maps ffigN¼3

i¼1 ∈ RM×N×512, we concatenate them to F ∈
RM×N×1536 and pass them through the encoder. In particular, this
decoder is composed of four upsampling groups fuigN¼4

i¼1 , and each
group contains two convolutional layers and one deconvolutional
layer. Besides, we also take advantage of skip connections, which
skip-connects features between fdigN¼3

i¼1 and fuigN¼4
i¼1 .

To summarize, the decoder interprets the concatenated feature
map FM ∈ RM×N×1536 to a cross-section binary image Ik ∈
RM×N×1, where the open region indicates the cross-section of
the utilities and the solid area indicates the background.

Loss Design and Training
To constrain the shape and size of the underground cylindrical ob-
jects, we leverage on a joint loss L that consists of two terms: a
structure similarity loss and a cross entropy loss.

In particular, in most of the real nondestructive testing test cases,
objects such as rebars, utilities, and PVC pipes all have a round
shape cross section. Hence, it is necessary to compare structure
similarity between the predicted image and the ground truth to
maintain the proper size and shape. Inspired by Wang et al.
(2004), Zhao et al. (2015), and Godard et al. (2017), we demon-
strate the structure comparison loss between predicted image X and
ground truth Y as follows:

LS ¼
σxy þ C

σxσy þ C
ð8Þ

where σx and σy = standard deviation as an estimate of the image
contrast; C = constant value; and σxy = covariance, which is calcu-
lated as follows:

σxy ¼
1

M × N − 1

XM×N

q¼1

ðxq − μxÞðyq − μyÞ ð9Þ

where μx and μy = mean intensity of the predicted image Ik and
ground truth, respectively; xq and yq = each pixel’s coordinate; and
M × N =number of pixels in the image.

We then use cross entropy loss (Ronneberger et al. 2015) as the
second loss expression in this joint loss design

LCE ¼
X
xk∈M

wlðxÞ logðpðxk;lÞÞ ð10Þ

where xk = element in given input; M, pðxk;lÞ = element xk prob-
abilistic prediction over class l; and wl = weight of each classes.

Finally, our loss function is expressed in Eq. (11), where λi and
λj denote the weight of cross entropy loss and structure loss that
satisfy the relation as λi þ λj ¼ 1

L ¼ λiLS þ λjLCE ð11Þ

For training, the weights governing the terms in loss function was
set to λi ¼ 0.1 and λj ¼ 0.9. We also used the stochastic gradient
descent (SGD) and selected momentum as 0.9 and weight decay as
1 × 10−8. As for the initial learning rate (LR) and input scale, by
evaluating the average accuracy, average precision, average recall
as well as F1 score in training data set with different LR and scale,
the learning rate was set to 5 × 10−6 and the input scale was 0.25.

GPRNET: GPR Pipes Reconstruction Network For
3D Modeling

In this section, we introduce Algorithm 2 which is a 3D modeling
network that reconstructs underground pipes (named as GPRNet).

Algorithm 2. GPR-based subsurface pipe reconstruction
Input:

The interpreted cross-section image, Ik ∈ RM×N×1;
The pose associated with B-scan data, Tk;

Output:
Dense point cloud set PD of the subsurface pipes;

1: for k←1; n do
2: Convert the given Ik and its corresponding pose Tk to a sparse

point cloud set P.
3: end for
4: Extract the point feature vector fvigN¼3

i¼1 from fEG
i gN¼3

i¼1 ;
5: Estimate PD through the decoder.
6: return ΨðPÞ ¼ PD;

From 2D Image to 3D Point Cloud

We introduced the GPR interpretation algorithm in last section, and
we now expect to reveal the spatial information of the subsurface
objects’ structure based on the interpretation results. Hence, we first
register the predicted binary cross-section image set I ¼ fIk ∈
RM×N×1jk ¼ 1; 2; : : : ;Kg into the 3D space according to its pose
T, where T ¼ fTk ¼ fTigNi¼1jk ¼ 1; 2; : : : ;Kg and k represents
the kth image/pose corresponding to B-scan data Bk. The pose Ti
was obtained from the vision-based positioning introduced in section
“Vision-aided Robotic GPR Data Collection.” In this way, we can
make sure for any interpreted image Ik, it shares the same pose
information Tk as its corresponding B-scan data Bk.

We further convert the registered image set to get a sparse point
cloud set P ¼ fpigCi¼1. We regard this point cloud P as consisting
of C points with each point pi ∈ R3.

Specifically, Ik is a binary image, and the white pixel value is
equal to 1. Thus, we register these 2D white pixels into a 3D space
by aggregating multiple images, and the third dimension is pro-
vided by visual positioning information that tagged with the image.

Once obtain P, we use iterative farthest point sampling (IFPS),
which is a sampling strategy applied in Pointnet++ (Qi et al. 2017b)
to get a set of skeleton points. IFPS can represent the distribution
of the entire point sets better compared with random sampling,
and it is more efficient than convolutional neural networks (CNNs)
(Huang et al. 2020). After the implementation of IFPS, we evenly
distribute each point cloud P ¼ fpigCi¼1 as input to GPRNet, where
C equals 1,500.
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GPRNet Formulation

Formally, given a set of sparse point cloud P ¼ fpigCi¼1, GPRNet
aims to complete the gap between sparse point clouds and predict a
continuous, dense point cloud representation PD ¼ fpd

i gC
0

i¼1, where
pd
i ∈ R3 and C 0 > C. We now reason about this procedure through

Ψ, and Ψ defines a learning model that has an encoder decoder
structure. This procedure is illustrated in the following:

Ψ∶RC×3 → RC 0×3; P ↦ ΨðPÞ ¼ PD ð12Þ

Encoder
Similar to our MigrationNet, GPRNet’s encoder fEG

i gN¼3
i¼1 takes ad-

vantage of multiresolution structure. Each subnet EG
i is a PointNet

layer (Qi et al. 2017a) that consists of three convolutional multi-
layer perceptron (MLP) layers and one max-pooling layer. Given
the input point cloud set P, each subnet EG

i extracts the point feature
vector fvigN¼3

i¼1 ∈ RC×j, where j ¼ f256,128; 64g, respectively.
Then, a max-pooling layer is conducted on each fvigN¼3

i¼1 to ob-
tain three intermediate features fgigN¼3

i¼1 with the same dimension
as fvigN¼3

i¼1 . Furthermore, we concatenate each point feature vector
fvigN¼3

i¼1 and each intermediate feature fgigN¼3
i¼1 together and ex-

press as a fused feature matrix. At last, another MLP layer extracts
the feature map as a FG ∈ RC×896, which is represented in light
gray color, as shown in Fig. 8.

Hierarchical Scene Representation
Our key idea is to represent the point cloud geometry and appear-
ance with hierarchical feature layers and incorporate the inductive
biases of decoders at different spatial resolutions. The fully con-
nected decoder (Achlioptas et al. 2018) is good at predicting the
global geometry of point cloud but ignores the local features.
In contrast, the FoldingNet decoder (Yang et al. 2018) is good
at generating a smooth local feature. Hence, we take advantage
of these decoders and introduce a decoder with a hierarchical struc-
ture similar to that of Huang et al. (2020), which contains the fully
connected (FC) layer, MLP layer, and FoldingNet layer. In particu-
lar, FG is passed through an FC layer as well as an MLP layer,
and concatenate together as F ∈ R896×3. In addition, we leverage
the folding operation, where a patch of nine points is generated
at each xyz map in the feature F . Thus, we can obtain the detailed
output consisting of 896 × 9 (8,064) points. That is to say, a dense
point cloud output, PD, is thus generated from our multiresolu-
tion decoder via the fully-connected and folding operations.
PD ¼ fpd

i gC 0
i¼1, C

0 is equal to 8,064.

Loss Design and Training
To constrain and compare the difference between the predicted
point cloud set PD and the ground-truth point cloud set PGT, an
ideal loss must be differentiable concerning point locations and
invariant to the permutation of the point cloud. In this paper, we
use Chamfer distance (CD) (Fan et al. 2017) loss LCD to calculate
the average closest point distance between PD and PGT, which is
shown in Eq. (13)

LCD ¼ 1

PD

X
pm∈PD

min
pn∈PGT

kpm − pnk2 þ
1

PGT

X
pn∈PGT

min
pm∈PD

kpn − pmk2

ð13Þ

where pm and pn = point in PD and PGT, respectively.
The Chamfer distance finds the nearest neighbor in the ground-

truth point set. Thus, it can force output point clouds to lie close to
the ground truth and be piecewise smooth.

Experimental Study

In this section, we first introduce the preparation of the field and syn-
thetic GPR data used for training and testing. Then, we present sev-
eral experiments such as a comparison study and ablation study to
demonstrate the effectiveness of our proposed learning-based method.

Data Preparation

To verify the proposed DNN models in this paper, we prepared a
GPR B-scan data set for training and testing purposes. The data set
we provide contains both synthetic and field B-scan data.

Field GPR Data Generation
We firstly collect the field GPR data with our robotics GPR inspec-
tion system on a concrete slab at City College of New York
(CCNY) Robotics Lab Testing Pit. As mentioned in section
“Vision-aided Robotic GPR Data Collection,” the GPR sensor
we used is a GSSI PaveScan RDM 1.0, with a 2-GHz frequency
and 20-cmmax depth detection range. Fig. 10 shows the design and
layout of concrete slab, whose dimension is 2.84 × 1.11 × 0.22 m
(length × width × thickness), and there are 10 pipes embedded in
the concrete slab with different sizes, depths, and materials.
Notably, the two gray pipes are PVC pipes, where their dimensions
are 7.62 cm; the leftmost PVC pipe is also filled with electrical
wires. Moreover, there are three normal PVC pipes, where the
diameters are 3.175 cm. In addition, there are three other normal

Fig. 10. Design details and ground truth of the concrete slab buried with pipes with different locations, dimensions, and directions.
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PVC pipes with a smaller dimensions of 1.905 cm. Finally, there
are two copper pipes with dimensions of 1.905 cm.

We controled the omnidirectional robot to move along a zigzag
path to scan the slab. In the end, there were 24 automated GPR tests
conducted, which contributed 120 field B-scan data to our data set.

gprMax Data Generation
However, the collected field data is still not enough for the DNN
model training purpose. Thus, by taking advantage of gprMax
(Warren et al. 2016), we built a synthetic testing environment that
simulates the real NDT condition. Most common assetst buried
underground are cylindrical with a round cross section, for exam-
ple, rebars, utilities, and PVC pipes. Our simulated environment
emulated this condition and involved cylindrical objects with dif-
ferent locations, dimensions, and directions. Furthermore, in order
to match the data collection in field GPR test, we also used a syn-
thetic GPR antenna with 2-GHz frequency (Stadler and Igel 2018;
Warren and Giannopoulos 2011; Giannakis et al. 2018). At last, we
made the spacing of consecutive measurements to 5 mm to match
the same property in our field data collection.

Specifically, we built 507 different synthetic concrete slabs with
4,563 B-scan data in gprMax. The simulated GPR pulse was a
Gaussian norm wave that had a central frequency fc ¼ 2 GHz. The
distance between transmitter and receiver of the antenna was set to
5 cm, with a sensing time window of 5 ns. The surrounding
medium of all the concrete slab models was set to a similar value
that could mimic the concrete environment, where the relative per-
mittivity was equal to 7 and conductivity was set to 0.01. Assuming
the nonmagnetic property of the surrounding environment, the rel-
ative permeability was set to 1. All the simulated objects were
designed as a perfect electric conductor (PEC). At last, we made
the spacing of consecutive measurements to 5 mm to match with
the same property in our field data collection. All the slabs have the
same dimension, which is 0.35 × 0.25 × 0.25 m (length × width×
thickness). There were two to six PEC circular-section reinforcing
bars buired in each slab with different radii, directions, and depths.
The aforementioned properties make our generalized B-scan data
set have a similar configuration compared with the real GPR data.
The front view figure of our synthetic slabs is shown in Fig. 11.

In all, we have combined 4,683 synthetic and real B-scan data in
this article, and we used 3,510 B-scan data in training, 723 data in
validation, and 450 B-scan data for testing.

Ground Truth of Point Cloud Model Generation
Due to the well-designed field and synthetic slab, we were able to
easily generate the ground-truth point cloud for training purpose. In
particular, because we know the physical properties, layout, and
dimension of each pipe, we can simply calculate the linear equation
based on that information. Then, for each point along a line, we
adopted a cross-section region within a circle or ellipse. Specially,
if an utility pipe is parallel with the x- or y-direction, then the
adopted region is a circle and the radius of this circle rc is equal
to pipe’s radius r; otherwise, if the pipe is diagonal inserted in a slab
with a slope s, the cross-section region will be an ellipse, and its

semiminor axis length rb is equal to pipe’s radius r abd the
semimajor axis length ra is equal to a × arctan s.

All points were normalized to have zero-mean per axis and unit-
variance. Following prior convention, we generated 8,096 points in
each ground-truth point cloud set during both training and testing.

Experiments Study of MigrationNet

Effectiveness of MigrationNet
Fig. 12(a) shows the collected onsite GPR B-scan data, which
areillustrated in a highlighted hotmap format. Figs. 12(b and d)
represent the back-projected data in the time domain and are dis-
played with a highlighted parula color code; specifically, Fig. 12(b)
shows the conventional migration result using a sparse input BP
data, and Fig. 12(d) uses the full BP data as input. We further
applied the Hilbert transform filter in Fig. 12(d). The filtered BP
image is shown in Fig. 12(f) with a highlighted parula color code.
Fig. 12(e) indicates the ground truth of the cross-section image
corresponding to the field B-scan data, and Fig. 12(c) demonstrates
the B-scan interpretation result using MigrationNet.

The quantitative effectiveness comparison between the conven-
tional migration and MigrationNet is presented in Table 1. In the
conventional migration method, the energy level is continuous
distributed from 0 to 1. In contrast, the energy level in Migration-
Net is binary distributed. That is, 0 stands for the background, and
1 presents the target area. For this reason, we convert the conven-
tional migration results to the binary image by selecting the lumi-
nance threshold as 0.45. This luminance threshold would convert
the region where the energy level is greater than 0.45 to 1, and the
rest of the region to 0. In this way, we can compare the GPR image
reconstruction results between the conventional and learning-based
methods with multiple metrics.

In particular, we used multiple metrics for the quantitative evalu-
ation. The metrics shown in Eqs. (14)–(18) include mean intersec-
tion over union (IoU), pixel accuracy, mean square error (MSE),
signal-to-noise ratio [SNR (dB)], and structural similarity index
(SSMI). For metrics mean IoU, pixel accuracy, SSMI, and MSE,
the larger the value, the better the performance it stands for; in con-
trast, for SNR, the lower the value, the better performance it stands
for. As indicated in Table 1, compared with the conventional mi-
gration method, MigrationNet gains a 30% higher performance in
mean IoU, 5.7% higher performance in pixel accuracy, 24.3%
higher performance in MSE, 22.2% higher performance in SSMI,
and 42.5% less noise in SNR. We can conclude that MigrationNet
could effectively improve the performance of GPR imaging
reconstruction

loUðSt; SÞ ¼
St ∩ S
St ∪ S

¼ Sl ∩ S
jStj þ jSj − St ∩ S

ð14Þ

Pixel accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð15Þ

Fig. 11. CAD models built by gprMax. All the models emulate the concrete slab property where multiple pipes with different sizes, directions, and
depths are inserted.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. Qualitative migration result comparison between MigrationNet and conventional migration method: (a) raw real GPR B-scan image;
(b) sparse BP image aggregated in the time domain; (c) predicted image regarding plot (a); (d) full BP image aggregated in the time domain
(e) ground-truth image regarding plot (a); and (f) filtered BP image using Hilbert transform algorithm.
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MSE ¼ 1

n

Xn
i¼1;j¼1

ðXi;j − Yi;jÞ2 ð16Þ

SNR ¼ 10 × ðlog 10ðX=YÞÞ ð17Þ

SSIMðX;YÞ ¼ ð2μXμY þ C1Þð2σXY þ C2Þ
ðμ2

X þ μ2
Y þ C1Þðσ2

X þ σ2
Y þ C2Þ

ð18Þ

where St = ground-truth region of interests (ROI); S = predicted
ROI; TP, TN, FP, and FN = true positive, true negative, false pos-
itive, and false negative of the pixel label, respectively; i, j = pixel
index in image X and image Y; in Eq. (17), X = noise signal and is
compared with respect to ground-truth image Y; μX , μY , σX, σY ,
and σXY = local means, standard deviations, and cross-covariance
for images X, Y; and C1 and C2 = constant values.

We then provide the noise robustness test of MigrationNet. To
do this, we added Gaussian white noise, salt and pepper noise, and
speckle noise, respectively, to the input GPR data. Each type of the
noise has four different variance and noise density parameters,
which are 0.05, 0.1, 0.2, and 0.5. We finally compared the root-
mean square error (RMSE) metric for the conventional migration
method and MigrationNet. As illustrated in Table 2 and Fig. 13, we
could find that our proposed method has high noise robustness. In
contrast, the noise would significantly degrade the migration results
when deploying the conventional method.

At last, we compared the average processing time between the
BP-based migration inference time and the MigrationNet inference
time. The result is given in Table 3, which indicates that Migration-
Net outperformed the BP-based migration method in computation
cost due to its sparse-input assumption.

Ablation Study for MigrationNet

Why Does B-Scan Sampling Density Matter?. It is interesting to
discuss the relationship between the channel numbers of input
stacked BP data and the migration performance. In common sense,
a small spacing between consecutive measurements would lead to a
high-performance migration result (i.e., a sharper, brighter, and
more focused target point in the energy map). Still, it also brings
a costly computation problem when processing a large amount of
data. Therefore, how to balance the measurement sampling density
and migration result is worth investigating.

Given raw B-scan data, we extracted BP data with different
numbers of channels, such as 64, 128, 256, 128þ 64, and
256þ 128, as indicated in Table 4. In this way, we can distinguish
the GPR imaging performances among all input types. Specifically,
the metrics we used for performance evaluation were MSE, SNR
(dB) and SSMI. The lower the MSE value, the better performance
it presents, whereas the higher SSMI and SNR values, the better
performance they present.

The results indicate that our current input resolution of 256þ
128þ 64 gained the best performance on SNR, and second best
performance on MSE and SSMI compared with other resolutions
of input data. When the input channel number decreases to 64, it
will go beyond the MigrationNet’s ability to learn spatial features
from such a sparse input. We also chose to reserve the raw input
data without doing any sampling process, which leds to the best
performance, but with more computation and longer processing
time as expected.
Why Does the Structure Similarity Loss Matter?. To verify the
effectiveness of our joint loss, we further provided a comparison
study with or without structural similarity loss, as demonstrated
in Table 5. As indicated in Table 5, our joint loss has a better per-
formance than the single cross-entropy loss, which reveals that this
hybrid loss design can help capture structure information with a
clearer boundary.

Experimental Study of GPRNet

Effectiveness of GPRNet
To evaluate the effectiveness of GPRNet, we compared it with
baseline methods such as PCN (Yuan et al. 2018b) and TopNet
(Tchapmi et al. 2019) as indicated in Table 6 and Fig. 14. In par-
ticular, we used three evaluation metrics for the quantitative effec-
tiveness comparison in Table 6: CD, earth mover’s distance (EMD)
(Achlioptas et al. 2018), and L1 distance. CD indicates the average
squared distance between two points; EMD represents the average
distance between corresponding points; L1 denotes the average dis-
tance from each point cloud to the centroid point in a point cloud
set. Table 6 indicates that our proposed method outperforms other
methods in all the three evaluation metrics. Compared with the
PCN and TopNet, GPRNet gains 5.9% less and 7.2% less Chamfer
distance respectively. We upscaled all the metrics by 103 for better
perception.

In addition, the qualitative comparison result among GPRNet,
PCN, and TopNet is depicted in Fig. 14. Compared with PCN and
TopNet, our proposed method obtains a better qualitative perfor-
mance on different model structures where utility pipes have differ-
ent radii embedded with different angles, depths, and positions.
Moreover, GPRNet can present the fine details of the object struc-
ture, such as a pipe with a joint at the center as shown in Fig. 14.
Based on the quantitative and qualitative results, we can conclude
that our method outperforms the other methods in spatial continuity
and shape accuracy level.

Table 2. Noise robustness comparison: RMSE comparison between conventional migration and MigrationNet

Metrics

Conventional migration MigrationNet

Gaussian Salt and pepper Speckle Gaussian Salt and pepper Speckle

Without noise 37.3491 3.3500
Variance and noise density ¼ 0.05 54.3589 51.6030 56.1675 11.4624 11.2508 10.2708
Variance and noise density ¼ 0.1 62.2094 61.1385 61.8539 17.8093 16.3628 16.0731
Variance and noise density ¼ 0.2 75.3084 77.7894 76.1743 32.1583 30.9074 29.5939
Variance and noise density ¼ 0.5 92.4765 90.1059 92.0384 45.3853 42.8437 41.2759

Table 1. Quantitative results on MigrationNet: Migration effectiveness
comparison between conventional migration and MigrationNet

Metrics Conventional migration MigrationNet

Mean IoU 62.99 89.97
Pixel accuracy (%) 90.48 95.70
MSE 531.71 661.13
SSMI 0.770 0.941
SNR (dB) 5.747 3.307

Note: Bold values indicate the better results.
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Furthermore, we analyzed the effectiveness of our network
with different sampling numbers in input point clouds, where the
number N varied among 1,000, 1,500, 2,000, 3,000, and 4,000.
In Table 7, we notice that the performance of GPRNet increases
when the input number of point clouds increases. That is to say,
the more point clouds sampled in the input, the less complicated the
reconstruction task is. This experiment enlightens us to balance the
sampling number of input point clouds and the performance of
the reconstruction point cloud model. Thus, we decided to use

1,500 as the number of sparse input point cloud in all other studies
because it requires less collected B-scan data and computation
time, but it is still can achieve a relatively good reconstruction
performance.

Fig. 13. Qualitative noise robustness comparison between conventional and proposed migration method with/without salt and pepper noised input:
(a) GPR 2D image interpretation results with salt and pepper noise using MigrationNet; (b) GPR 2D image interpretation results without salt and
pepper noise using MigrationNet; (c) conventional migration results with salt and pepper noise; and (d) conventional migration results without salt
and pepper noise.

Table 3. Computational cost comparison between BP-based migration and
MigrationNet

Method Average time cost (ms)

BP-based migration 23.12
MigrationNet 5.68

Note: Bold values indicate the better results.

Table 4. Evaluation performance comparison with different spatial
resolution inputs of MigrationNet on three metrics

Multiresolution
input channels MSE SSMI SNR (dB)

256þ 128þ 64 661.1313 0.9413 3.3066
256þ 128 717.1609 0.9250 3.5947
128þ 64 832.5777 0.9199 5.7474
256 1.4553 × 103 0.9035 7.1199
128 1.433 × 103 0.9075 7.0553
64 — — —
Raw input 630.7042 0.9565 3.3849

Note: Bold values indicate the better results.
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In addition, the average cost of inference time between our
method and the baseline methods was determined. We calculated
the inference time on every test data on our data set for each method
and then obtained the average time cost. As presented in Table 8,
TopNet gains the best time computation performance over the
others. That is because both GPRNet and PCN have a multireso-
lution structure decoder, which increases the computational cost.

Noise Robustness of GPRNet
To evaluate the effectiveness of our method under different sensor
noise levels, we perturbed the input sparse point cloud with multi-
ple Gaussian white noise levels as shown in Fig. 15, where the
noise variances are 0.01, 0.05, 0.1, and 0.2, respectively. We further

performed a quantitative study on noise comparisons among
GPRNet, PCN, and TopNet with different metrics of CD, EMD,
and L1 distance as illustrated in Table 9. We could conclude our
proposed method gains higher robustness against noise in compari-
son with PCN and TopNet.

Field Test Model Reconstruction Comparison
This section compares the effectiveness of the 3D reconstruction
model between the proposed GPRNet and conventional migration
method with the field data collected on the CCNY testbed. As illus-
trated in Fig. 16, the solid outlined window region in Fig. 16(a)
indicates the data-collection area and the three 2D images demon-
strate migration results from the top view. The pipe in Fig. 16(a)
could not be recovered; the reason is that its depth was out of the
GPR detection range (Fig. 10 shows the concrete slab details).
Furthermore, we also illustrated the raw and filtered 3D models
generated by conventional migration methods in Fig. 16(b), where
the deployed filter is Hessian filter (Pereira et al. 2020). Due to the
limitation of the conventional migration method, the noise data are
hard to be cleaned out and differentiated from the raw GPR data,
which causes the filtered 3D model to still be hard to recognize by
normal GPR users.

Table 6. Quantitative effectiveness comparison results between GPRNet
and other baselines

Metrics GPRNet PCN TopNet

CD 6.328 6.725 6.821
EMD 6.536 6.827 7.173
L1 2.016 2.430 2.621

Note: Bold values indicate the better results.

Fig. 14. Qualitative comparison results between GPRNet and baseline methods. The comparison of completion results between other methods and
our network: (a) slab CAD model; (b) input data; (c) our method; (d) PCN; (e) TopNet; and (f) ground truth. The results show our method could
reconstruct a better 3D model for visualization.

Table 5. Performance comparison between the joint loss and cross entropy
loss in MigrationNet

Metrics Joint loss Cross entropy loss

Mean IoU 89.97 87.65
Pixel accuracy (%) 95.70 94.65
E_distance 35.5809 38.9276
MSE 661.1313 764.5629
SSMI 0.9413 0.9378
SNR (dB) 3.3066 5.0584

Note: Bold values indicate the better results.

Table 7. Evaluation performance comparison with various numbers of
input point cloud

Sampling number of
input point cloud CD EMD L1

1,000 7.264 7.498 2.629
1,500 6.328 6.536 2.016
2,000 6.174 6.236 1.823
3,000 5.524 5.563 1.585
4,000 4.773 4.925 1.430

Note: Bold values indicate the better results.

© ASCE 04022049-14 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2023, 37(1): 04022049 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Sh
an

gh
ai

 J
ia

ot
on

g 
U

ni
ve

rs
ity

 o
n 

11
/0

4/
22

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



At last, Fig. 16(c) illustrates the reconstructed point cloud model
using GPRNet, where the depth of the pipe is indicated. In field
test, the positioning accuracy would affect the distribution of the
sparse input, which would introduce the noise in reconstituted point
cloud model. However, under the supervision learning of the
ground truth, the model could cover the uneven distributed area
and fill up with point clouds to reveal the real 3D model of the
target. As we can see, compared with the traditional migration
method, our method only requires a sparse input and further gen-
erate a fine and continuous output 3D model of underground pipes.
It facilitates the GPR users to understand the complex raw GPR
B-scan data.

In addition to the better performance, the data-collection time
was also significantly reduced by using the proposed GPR-based
robotic inspection platform. Without the robotic data-collection
platform, the inspector has to push the GPR device to follow ex-
actly premarked grid lines, bring the GPR device back to the start
points, mark the scanned points, and take notes. Our robotic-based
data-collection process would only take around 3 min to scan the
outlined area shown in Fig. 16(a), whereas manual collection usu-
ally takes more than 15 min to cover the same area. We can con-
clude that our robotic-based data-collection system could provide a
more efficient way for GPR-based construction surveys.

Conclusion

This paper presented a robotic inspection system consisting of an
omnidirectional robot and GPR postprocessing software to auto-
mate the GPR data-collection process and reconstruct a 3D model
of underground utilities for construction surveys. Our omnidirec-
tional robot allows the GPR device to move forward, backward,
and sideways in a fast and swift manner. We proposed a low-cost
solution for vision-based accurate positioning, localization, and
mapping. By tagging the robot position information with GPR
measurements at each sampling step in a synchronized way, it en-
ables the robot to scan the surface in free-motion trajectory and
facilitates high-resolution 3D GPR imaging. It eliminates the time,
hassle, and cost of laying out grid lines on flat terrain and reduces
the hassle to closely follow the grid lines and the note-taking time
to record the linear motion trajectory in the X-Y directions in the
current GPR data-collection process.

In addition, we proposed a DNN-based method for 3D GPR
imaging that contains two modules: MigrationNet and GPRNet.
We evaluated the performance and validated the feasibility of
our innovative method in the experimental studies. By using syn-
thetic data and real GPR data with a ground-truth value in our quali-
tative and quantitative experiments, it demonstrated that our 3D
GPR imaging methods can produce a 3D model of underground
utilities with less noisy data compared with the conventional
BP-based migration. The concrete slab GPR data set is released
to public and will benefit the research communities.

This study does have some limitations, which are as follows.
One of the limitations lies in the limited amount of the real GPR
data being used for training and testing the proposed methods.
Although we have carefully designed the parameters of the GPR
antenna in synthetic data generation, the real-world noise that exists
in the real GPR data can hardly be simulated. Thus, we are also

Table 9. Noise Robustness Evaluation between GPRNet and baselines with three metrics

Metrics

GPRNet PCN TopNet

CD EMD L1 distance CD EMD L1 distance CD EMD L1 distance

Variance and noise density ¼ 0.01 6.419 6.628 2.287 6.901 7.266 2.619 6.894 7.024 2.5498
Variance and noise density ¼ 0.05 7.722 8.124 2.565 7.965 8.313 2.702 8.248 8.480 2.7973
Variance and noise density ¼ 0.1 7.774 8.068 2.601 8.141 8.458 2.783 8.489 8.517 2.857
Variance and noise density ¼ 0.2 8.069 8.369 3.046 8.495 8.901 2.956 8.662 8.956 3.130

Note: Bold values indicate the better results.

Fig. 15. Qualitative noise robustness results on GPRNet, which indicate the slab model, noise input with different noise variances, and the
reconstructed point cloud model.

Table 8. Computational cost comparison among GPRNet, PCN, and
TopNet

Method Average time cost (ms)

GPRNet 8.04
PCN 8.62
TopNet 7.91

Note: Bold values indicate the better results.
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consulting with field engineers to collect a large amount of field
GPR data for training and testing to further increase our method’s
robustness. Another limitation of this article is that we only used
GSSI PaveScan to test and verify the effectiveness of our proposed
method. But we also believe our method is applicable to other
GPR antenna models with different frequencies. We also plan to
use other types of GPR antenna and design a more extensive
robotic-based data-collection system in the near future.

Data Availability Statement

All GPR data and models are available for noncommercial use, and
all the code that support the findings of this study are available from
the corresponding author upon request.
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