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Abstract: The paper presents RoboNav, a cost-effective and accurate decimeter-grade navigation
system that can be used for deployment in the field of autonomous agricultural robots. The novelty
of the system is the reliance on a dual GPS configuration based on two u-blox modules that work
in conjunction with three low-cost inertial sensors within a Gaussian Sum Filter able to combine
multiple Extended Kalman filters dealing with IMU bias and GPS signal loss. The system provides
estimation of both position and heading with high precision and robustness, at a significantly lower
cost than existing equivalent navigation systems. RoboNav is validated in a commercial vineyard by
performing experimental tests using an all-terrain tracked robot commanded to follow a series of
GPS waypoints, trying to minimize the crosstrack error and showing average errors on the order of
0.2 m and 0.2◦ for the measurement of position and yaw angle, respectively.

Keywords: field robotics; autonomous robots; agricultural robotics; navigation systems; GPS-based
localization; heading estimation

1. Introduction

Recently, the situation of the COVID-19 pandemic has raised some concerns about
food security and supply chains, specifically associated with labor issues, especially with
worker availability and productivity and their impact on food safety. Robotics is emerging
as a smart solution to improve productivity, reduce overall production costs and human
efforts for repetitive or dangerous tasks, as well as reduce environmental impacts [1,2].
Agricultural robots have been used to automate slow or hazardous tasks [3], such as
harvesting and picking [4], weed control with cutting tools or pesticides, autonomous
mowing, seeding, spraying, and plant monitoring [5]. Important features of autonomous
agricultural robots are navigation capability [6], obstacle detection, and mapping [7,8].
Heading estimation is also a critical issue, especially during steering maneuvers in narrow
paths, due to gyroscope inaccuracies that lead to typical heading drift [9] and poor steering
angle prediction [10]. Previous research on autonomous navigation has proposed the
integration of different sensor modalities, including an Inertial Measurement Unit (IMU)
and GPS [11,12], IMU and wheel encoders [13,14], and LiDAR-only applications [15,16].
Combination of an IMU and camera within an Extended Kalman Filter to estimate the
Euler angles with good accuracy was discussed in [17,18]. While all of these navigation
approaches can correctly operate in indoor environments, almost none of them have been
extensively tested in outdoor applications due to the non-structured nature of the environ-
ment. The yaw angle can be typically obtained by integrating the angular velocity provided
by a three-axis accelerometer. Further improvements can be achieved by combining the
output of a magnetometer [19]. However, embedded magnetometers [20] are largely af-
fected by magnetic disturbances, and their calibration is very challenging, especially for
heavy vehicles moving at relatively low speeds, such as those expected for agricultural
vehicles (around 3 km/h). Therefore, none of these solutions offers a reliable method of
high accuracy for position and attitude estimation, as is needed in large grapevines or
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fruit plantations, where the rows are narrow and space is limited for maneuvers without
the use of expensive sensors [21–23].The accuracy of consumer-grade IMUs is still limited
because the estimated position and heading often have large cumulative errors over time,
while they cannot self-determine the vehicle’s initial state. Complex sensor calibration
procedures are also required to improve the estimation of the heading angle [24] by re-
ducing sensor drift [25]. The use of real-time kinematic (RTK) GPS is another method
to improve the accuracy of the GPS navigation system based on differential calculations
that can determine the position of a vehicle with centimeter-level accuracy. With such
high accuracy, a multi-receiver system can be used to determine the heading angle of a
vehicle, as shown in [26], where the idea of multiple GPS antennas is proposed along with
simulations while changing the baseline length for an Unmanned Aerial Vehicle (UAV)
considering the pseudorange and carrier phase measurement. This research demonstrates
how higher accuracy is obtained only when the antennas are placed at large distances
(>1 m), making this approach not well suited to small drones. In [27,28], a model relying
on multiple GPS receivers to determine the rotation angle is shown, providing simulated
results. In [29], a solution based on a high-precision and expensive INS system and two
GPS antennas resulted in a precision of 0.2◦ for the heading angle with a baseline of 92 cm.
However, ambiguities in the single-frequency GPS baseline were resolved in approximately
90% of the cases. Since professional and commercial navigation systems currently available
on the market are still very expensive, as a result, most farmers opt out of solutions based
on robotics units because of the large investments needed for the startup.

This research aims to provide a cost-effective yet highly accurate navigation system
to support autonomous driving in agricultural settings. One known limitation of exist-
ing low- or medium-end GNSS solutions is the lack of or poor accuracy in the vehicle
orientation estimation, which is critical information for an autonomous robot, especially
when negotiating narrow passages such as vineyard rows. Being able to turn even in
narrow headlands involves a challenging scenario for all medium-size robots that must
move between adjacent rows with unpredictable terrain conditions [30]. This issue has
been partially addressed by using computer vision and depth cameras [31,32], even if the
repeatability and the accuracy are still not suitable for intense or professional use. Moreover,
as soon as the robot approaches the end of the row, the front-facing camera usually used to
detect the rows will perceive less of the traversed field, while the vegetation in the head-
lands that varies for every field can easily confuse a vegetation-based detection algorithm
based on computer vision [33]. The proposed system tackles the heading angle estimation
by using three redundant low-cost inertial sensors and two GPS modules mounted on a
fixed baseline. The main novelties are related to the dual GPS module configuration, in
contrast to the standard dual antenna configuration, and the use of a Gaussian Sum Filter
(GSF) that combines states from multiple Extended Kalman Filters (EKF) to estimate the
heading of the vehicle. An important aspect of RoboNav refers to the low investment
required. The final overall cost of the proposed solution is around 1300 EUR, which can be
further lowered by achieving economies of scale, whereas professional and commercial
systems providing comparable accuracy have prices starting from 10,000 up to 25,000 EUR
and do not offer user customization.

While Sections 2 and 3 detail the RoboNav components, field validation of the system
using an all-terrain tracked robot operating in a commercial vineyard is described in
Section 4, where experimental results with different configurations are presented in order
to provide a quantitative assessment of the system performance. Finally, Section 5 draws
the relevant conclusions and lessons learnt.

2. Materials and Methods
2.1. Dual GPS with RTK

For all vehicles and robotic platforms used for outdoor applications, it is critical
to calculate the absolute heading in order to navigate safely towards the intended path.
A large variety of techniques based on encoders [34], inertial measurement units, and
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magnetometers in conjunction with other kinds of devices, such as laser sensors [35] and
dual-antenna GPS [36,37], have been used for heading estimation. However, even when
using GPS in RTK, inaccurate measurements caused by low gyroscope accuracy, magnetic
interference on magnetometers, and slipping effects lead to poor heading estimations. The
aim of this study is to provide an absolute heading estimation based on the use of two
independent GPS units in RTK mode, spaced 100 cm on a fixed baseline. In particular, two
electronic boards based on a ZED-F9P multi-band GNSS receiver have been designed. This
board has been used since it provides concurrent reception of GPS, GLONASS, Galileo and
BeiDou, multi-band RTK with fast convergence times, and centimeter-level accuracy when
combined with a fixed base station. Since the F9P is equipped with two different RS232
interfaces, a physical serial communication can be established between both modules in
order to redirect the RTCM3 corrections from a module to the other one to avoid delays.
As shown in Figure 1, in order to optimize the data communication between the modules
without overloading the hardware capacity, only the necessary wiring has been used: both
UART1 ports from each module, pin 42 and 43, have been directly wired to the UART
interfaces of the STM32 microcontroller board. A base station installed in the field and
calibrated to provide a position accuracy of ±0.1 m is used to send the RTCM3 corrections
over a radio link working at 433 Mhz to the GPS (1), which is configured as a moving base
that in turn sends the RTCM3 corrections over the RS232 connection directly to the second
GPS (2), used as a moving rover. All the F9P receivers have been updated to run the latest
firmware v3.1 since it includes a new feature of fusing different satellite systems (Glonass
and Beidou) with GPS for RTK operations. One important advantage is that the sampling
rate can be increased from 1 Hz up to 10 Hz. In this way, both the GPS sensors are in
RTK fixed mode, providing the best accuracy. Since the system must work in RTK fixed
mode, both the GPS modules placed on the baseline have been equipped with a ceramic
antenna designed for dual-band operation with working frequencies L1 = 1575.42 MHz
and L2 = 1227.60 MHz, while the return loss is less than −10 dB for both bands. It is worth
noticing that the antennas have been assembled to overlap with the GPS module.

Figure 1. The wiring harness for the F9P GPS modules.

The possibility to use two GPS modules in RTK mode provides an absolute estimate
of vehicle heading by measuring the relative position of the two antennas [38]. When
using an inertial navigation system (INS) with global navigation satellite systems (GNSS)
assistance, an Extended Kalman Filter (EKF) supports heading tracking. During nonsta-
tionary periods of linear acceleration, the filter calculates the difference between the locally
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integrated inertial solution and the GNSS global position to estimate heading. However,
this method provides acceptable results only when the vehicle is constantly moving; oth-
erwise, during stationary periods, since the heading accuracy is achieved by integrating
gyroscope measurements, the drift error will increase over time. Moreover, as soon as
the system is powered on, the EKF does not have a valid heading estimation, and so an
extended period of dynamic motion is required to converge on a heading solution. The
purpose of this research study is to install two GPS modules on a fixed baseline to solve
these problems by providing an absolute heading measurement that is not susceptible to
magnetic disturbances and does not drift over time.

Figure 2 shows a typical configuration for the dual GPS system, where it is possi-
ble to see that GPS1, the moving base, and GPS2, the moving rover, are both placed at
distance b = 100 cm, and P is the middle point on the baseline, which is consistent with the
geometric center of the vehicle’s frame. The heading θ, considered as clockwise starting
from North, can be obtained by using the Haversine relation [39], where

θ = atan2(A, B) (1)

with A and B that are two quantities that can be calculated as

A = cosα1sin(∆(β1, β2)) (2)

B = cosα1sinα2 − sinα2cosα1cos(∆(β1, β2) (3)

where α1, β1, and α2, β2 are the latitude and longitude measured from GPS1 and GPS2,
respectively. The heading θ obtained as in Equation (1) allows a faster filter convergence
after system startup by also improving the filter performance during this convergence
period and by providing heading tracking during stationary and quasi-stationary periods,
as opposed to what happens when using one or more inertial sensors combined with only
a single GPS module.

Figure 2. Heading estimation, where p1 and p2 are the coordinates reported by each GPS module in
RTK mode; P is the vehicle position located on the baseline b = 100 cm. The GPS antennas coincide
with the GPS module position.

2.2. IMU

In order to be able to accurately track the vehicle position without having to use one
or more high-quality and expensive sensors, three different 6-axis low-cost inertial sensors
have been used, featuring complementary performance: the first one is a wide-range 6-axis
motion tracking device with an extended Full Scale Range (FSR) of ±4000 dps for gyroscope
and ±30 g for accelerometer, with also a 4 kB first-in-first-out (FIFO) buffer that enables
the application’s processor to read the data in bursts; the other two sensors have lower
performance since the second one provides only a 2 kB FIFO buffer and a FSR of ±2000 dps
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for gyroscope and ±16 g for accelerometer, while the third one has the same characteristics
but only supports a 1 kB FIFO buffer. The use of three inertial measurement sensors having
different features allows the system to address the systematic errors that typically affect a
single IMU by providing a solution based on the error observed during previous moments
in time.

The use of the FIFO buffer allows the storage of multiple sensor samples in a data
structure by reducing host–sensor communication and by avoiding data loss; however, on
the other hand, clock drifts and communication delays can be amplified since the process
of reading a large amount of data requires as much time as the size of the used buffer.
Moreover, the integration of sampled data of a FIFO buffer without taking into account
the relative drift can lead to an error in the orientation estimation. For this reason, two
inertial sensors with the same features but with different FIFO buffers have been selected.
The wiring was carried out using only the necessary connections, so only the power supply
and I2C bus channels have been used, as shown in Figure 3. No magnetometers have been
adopted as they do not provide a reliable measurement source.

Figure 3. A sample wiring harness for the three IMU modules showing the main components used
for the connections. Note that a 10 pF capacitor was also used on the I2C bus (not shown in figure).

2.3. The Rover Hardware Architecture

Figure 4 shows the vehicle used to validate the developed autonomous navigation
system on the agricultural field. The platform is based on rubber tracks with a passive
suspension system adopted to minimize vibrations on the frame and on the three inertial
sensors as a consequence. It is equipped with two 350 W 24 V DC brushed motors with a
gearbox defined by a ratio τ = 30 and two quadrature optical encoders with 1024 pulses. The
vehicle provides an upper flat surface, which has been used to place an aluminum frame to
support the horizontal bar used as a baseline for the GPS modules, with a total height from
the ground of 120 cm. The main system runs on a dedicated controller board that has been
developed for this research study by using EAGLE CAD, which is a scriptable electronic
design automation (EDA) software program. The controller is based on a STM32F769xx
microcontroller with a 216 MHz CPU that incorporates high-speed embedded memories
with Flash memory with up to 2 Mbytes, 512 Kbytes of SRAM (including 128 Kbytes of
Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical
real-time routines), 4 Kbytes of backup SRAM available in the lowest-power modes, 12-bit
ADCs, and twelve general-purpose 16-bit timers, including two PWM timers for motor
control; it also features up to four I2C buses in addition to four UARTS interfaces. The first
I2C bus is used to communicate with the three IMU sensors, while UART1 is connected
to the master GPS and UART2 is optional for computer communication. A connector is
used to acquire the RC PWM pulses coming from a FlySky FS-i6 radio transmitter and
to send the correct PWM pulses to the DC motors. In order to save resources and to
speed up the execution of the instructions and support the sensor filtering process, a C++
low-level programming approach [40] based on navigation libraries [41] has been selected
over an ROS architecture, which is only used to retrieve sensor information; for this reason,
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STM32CubeIDE, which is an advanced C/C++ development platform with code generation
and compilation features for STM32 microcontrollers and microprocessors, has been used
to flash the board. As reported in Figure 5, the control board integrates the three inertial
measurement sensors and accepts three RC pulses as input from the remote receiver that
sends a pulse for the forward/backward motion (1) and another pulse for the steering (2),
in addition to an extra pulse to trigger actions (3); moreover, the board generates two PWM
commands for the left (4) and the right (5) motors used for the vehicle locomotion. UART1
and UART2, configured to communicate at 460,800 bps, are used to acquire the position
data from the GPS modules. Pulses (1) and (2) are then mixed together by a software routine
in order to produce linear and angular velocity compatible with skid-steering driving mode.
The skid-steering controller used to turn the robot requires the motors to spin in the same
direction but with different velocities in order to follow curved trajectories; if the curvature
radius is too narrow, then the controller forces the motors to rotate at different directions to
allow the vehicle to turn on the spot. This solution is preferred over the pure skid-steering
mode (e.g., one side motor is stopped) since the power consumption significantly increases,
especially on agricultural terrain.

Figure 4. The rubber tracked vehicle during the experimental tests.

Figure 5. The overall hardware architecture used for this research study.
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2.4. Bill of Materials

RoboNav relies on three ZED-F9P GNSS modules from u-blox coupled with two
ceramic antennas and an external antenna for the base station, all provided by Kyocera,
in addition to three inertial sensors (ICM) from Invensense, a STM32F769xx made by
STMicroelectronics, and an RC receiver from Futaba. Table 1 reports a list of the main
components used for the system, with a total price of 696 EUR, which must be added to the
cost for the wiring, connectors, and prototyping, which is around 600 EUR.

Table 1. List of the main components for the proposed navigation system.

Part Qty Type Cost (€) Total (€)

ZED-F9P 3 GPS 180 540
ICM 3 IMU 30 90

STM32 1 CPU 30 30
RF 3 ANT 12 36

Total cost for the system 696

The proposed navigation system is platform-agnostic—that is, it can be easily inte-
grated on a different, already existing robot or tractor. The vehicle used in this research
was completely custom-built, with a cost of around 12,000 EUR.

3. The Navigation System

Real-time kinematic (RTK) performance can degrade in rough environments with
continued signal loss, causing the pose estimation to fail in most cases. Therefore, several
research studies have focused on mixing the output of the global positioning system (GPS)
and inertial navigation system (INS) due to their complementary characteristics, enabling
such integrated systems to also provide accurate and continuous navigation information
(e.g., position and velocity) even when the GPS signal is disturbed [42]. However, the pose
estimation may not be as accurate as desired since the state estimates from an Extended
Kalman Filter are subjected to perturbations when the covariance matrix of measurement
noise or the covariance matrix of process noise do not match the real vehicle position or the
hardware is not able to run the execution of the filter at the appropriate frequency to update
the state of the system. To overcome these issues, RoboNav resorts to a Gaussian Sum
Filter that combines multiple Extended Kalman Filters. Specifically, three EKF instances
are considered that use a different sensor combination, i.e., IMU1+Dual GPS, IMU2+Dual
GPS, and IMU3+Dual GPS. By checking and evaluating the internal consistency of each
EKF instance, the EKF selector picks the EKF and sensor combination with the best data
consistency. This enables faults such as sudden changes in IMU bias or GPS signal loss
to be detected and isolated. The code used to read the GPS measurements provides a
STATUS flag that reports the content of the UBX-NAV-STATUS message thanks to the
u-blox libraries. This message can be 0, 1, 2 depending on the quality of the current GPS
signal: no signal, RTK float, RTK fixed. Each filter used to estimate the current position of
the vehicle relies on the analysis of ten states, as follows:

p =
[
q0, q1, q2, q3, VN , VE, VD, PN , PE, PD

]
(4)

where the first four components [q0, . . . q4] are related to the quaternion that defines the ro-
tation from the body frame to the navigation inertial frame, while VN , VE, VD and PN , PE, PD
are the velocity and the position expressed following the North East Down (NED) coor-
dinate system. The rotation matrix TB

N from body to navigation frame can be obtained by
considering the quaternion from Equation (4):

TN
B =

[
q2

0+q2
1−q2

2−q2
3 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2
0−q2

1+q2
2−q2

3 2(q1q3−q0q2)

2(q1q2−q0q3) 2(q1q2+q0q3) q2
0−q2

1−q2
2−q2

3

]
(5)
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Starting from the angle measurements coming from each inertial sensor, defined as

∆anglegyro =

∆anglex

∆angley

∆anglez

 =
∫ tn+1

tn
ω dt (6)

it is possible to derive the truth delta angles, as the following equation shows:

∆angletruth
= ∆anglegyro − ∆anglebias

(7)

where ∆anglebias
is the delta angle bias value, which is a critical aspect to consider when using

inertial sensors for navigation. The heading based on the dual GPS system is calculated as
reported in Equation (1) and its observation model is fairly straightforward since it is based
on absolute readings. It is important to highlight that, contrary to what happens with GPS
receivers, the bias for a gyroscope or for an accelerometer is the offset of the sensor output
signal from the real angular velocity or acceleration value; a constant bias error causes an
error in position, which grows with time. In order to compensate for this issue, the system
tries to obtain an estimation of the bias by measuring the long-term average values coming
from the gyroscope and the accelerometer included in each sensor at each startup. During
navigation, large gyroscope bias offsets are normally detected when the change in the value
of delta angle bias is greater than 3◦/s; in this case, the vehicle stops and tries to estimate
the bias again. The truth delta velocities are calculated following the relation

∆veltruth
= ∆velsensor − ∆velbias

(8)

where ∆velsensor are the values measured by each inertial sensor and ∆anglebias
are the delta

angles’ bias states. By using the mathematics of quaternions, it is possible to define the
rotation between two consecutive quaternions from time t to t + 1 considering the truth
delta angle ∆veltruth

as expressed by Equation (7) using the classic angle approximation:

∆q =


∆q0

∆q1

∆q2

∆q3

 =


1

∆angletruthx
2

∆angletruthy
2

∆angletruthz
2

 (9)

It is then possible to calculate the new quaternion in t + 1 starting from ∆q by using
the quaternion product rule:

∆qt+1 =


q0∆q0 − q1∆q1 − q2∆q2 − q3∆q3

q0∆q1 + ∆q0 q1 + q2∆q3 − ∆q2 q3
q0∆q2 + ∆q0 q2 − q1∆q3 + ∆q1 q3
q0∆q3 + ∆q0 q3 + q1∆q2 − ∆q1 q2

 (10)

The next truth velocity vector in t + 1 is obtained by the velocity vector in t and by
rotating it from body to earth frame, as described in Equation (5), as follows:VN

VE
VD


t+1

=

VN
VE
VD


t

+ TB
N∆velthruth

+

0
0
g

∆t (11)

where g is the contribution of gravity along the vertical axis. Finally, the result from
Equation (11) allows the calculation of the next position states:PN

PE
PD


t+1

=

PN
PE
PD


t

+

VN
VE
VD


k

∆t (12)
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Figure 6 shows a block diagram with a combination of three EKF instances and the
GSF for the heading estimation Θ and the weight Θw for each EKF result in order to pick the
most accurate output each time. It should be noted that the Kalman filter runs at a higher
frequency with respect to the robot navigation system (100 Hz versus 10 Hz), allowing the
filter switching to be accommodated via buffer averaging.

Figure 6. The block diagram for yaw angle estimation based on the three EKF instances and the
attitude and heading reference system (AHRS) obtained as a combination between GPS and the three
inertial sensors.

3.1. Path following with Crosstrack

The path following strategy relies on a reference point that is placed on the desired
trajectory and on the generation of a lateral acceleration based on the reference point,
which is then converted into corresponding PWM commands of the drive motors thanks
to the use of a PID controller. PWM values from 900 µs to 1450 µs cause the motors to
spin counterclockwise, while values from 1550 µs to 1900 µs command the motor to spin
clockwise. Figure 7 shows a typical trajectory, where P1 and P2 are the successive waypoints
to follow, Ve is the longitudinal velocity of the vehicle, Td is the along-track distance, which
is defined as the horizontal distance between the vehicle’s current position and a reference
point on the desired trajectory; D is the distance between Td and a generic point on the
trajectory as a momentary goal, while ψ and φ are the correction angles relative to the
trajectory from P1 towards P2. The lateral acceleration for the trajectory correction [43],
which is a type of banking turn for the vehicle, can be described as:

Acc =
KVesin(ψ + φ)

D
(13)

where the parameter K is an integer value used to adjust the algorithm and avoid over-
shooting during the trajectory tracking.

The direction of the lateral acceleration Acc depends on the position of the generic
reference point on the path compared to the longitudinal velocity vector of the vehi-
cle Ve. For instance, if the reference point is to the left of the velocity vector Ve and
φ < 20◦, then the controller will generate the PWM signals to command the left motor (i.e.,
PWMle f t = 1700 µs) to decrease its forward velocity, while increasing the velocity on the
right motor (i.e., PWMright = 1900 µs) in order to allow the vehicle to change its orientation,
pointing towards the reference point. Furthermore, if φ > 20◦, then the vehicle is supposed
to be too far from the reference point and therefore the controller changes the spinning
direction of one motor (i.e., PWMright = 1300 µs) as compared to the second motor (i.e.,
PWMle f t = 1700 µs) to perform a turn-on-the-spot rotation. The PID parameters for the
controller were empirically determined as KP = 0.20, KD = 0, KI = 0.20 and allow a
smooth convergence to the desired path by minimizing the distance along the track Td. For
more details, the interested reader is referred to [44]
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Figure 7. A typical configuration of the robot moving from P1 to P2.

4. Experimental Results
4.1. Path following Validation

Several experimental tests have been performed on a farmland located in San Cassiano,
South of Italy, in order to validate RoboNav. Before beginning the experiments, with a clear
sky, the GPS base station was placed and installed in the field to run the static calibration
procedure needed to achieve an accuracy of ±0.1 m for the RTK mode running at 10 Hz.
Figure 8 shows the setup used for the tests.

Figure 8. On the left, the vehicle with the dual GPS system. On the right, the base station antenna.

Afterwards, a set of GPS waypoints was generated by using Google Earth in order
to drive the vehicle along the vineyard, which includes a total of twelve rows. However,
from the preliminary calibration stage, it was found that the GPS waypoints selected via
Google Earth were affected by bias errors [45]. Therefore, a different strategy has been
adopted in order to define the desired path: the vehicle has been driven along the the
vineyard by a remote operator while collecting a certain number of waypoints as estimated
by the GPS. Figure 9 shows the desired path loaded on a mission planner software program,



Robotics 2022, 11, 99 11 of 22

as obtained by interpolation of the pre-learned collected waypoints. One of the most
important aspects to consider is how the vehicle performs at the end of the row, where a
very tight steering maneuver is required in a limited operating space with only a terrain
patch of 1.5 × 1.5 m available. Then, the vehicle has been placed at the beginning of the first
row and commanded to follow autonomously the pre-planned path ten times, by running
each loop at different times of the day with different weather conditions, both with clear
sky and cloudy, and by driving on different kinds of terrain surfaces, i.e., at the beginning
of the row, the terrain is flat and compact, while in the middle, it is ploughed. Various tests
have been also performed with the use of a single GPS receiver. Unfortunately, the heading
provided by the single GPS sensor did not allow the vehicle to drive safely along the rows,
leading to continuous stops due to obstacle detection warnings. A dedicated test for the
direct comparison of the dual and single GPS configuration is presented later in Section 4.4.

Figure 9. A typical pre-planned path in a vineyard. Green label: waypoints. Yellow line: interpolated path.

Figure 10 highlights the discrepancy between the reference path, in black, and the
path autonomously followed by the robot, in red, using RoboNav during test 8. It is worth
noticing that the sampling rate used for collecting the data is 20 Hz for each test. To make
all the graphs more readable, a 3-D coordinate transformation function has been applied to
convert latitude, longitude coordinates to x,y coordinates in a local Cartesian coordinate
system. It can be observed how the followed path almost overlaps the reference path during
straight trajectories, while they deviate slightly during the turning maneuver and also for
few meters after the steering, before returning to the correct track for the straight trajectory,
as it is possible to observe in Figure 11. In this specific test, the deviation error from the
reference path registered while driving along the first row is Ex = 10 cm for the x axis,
whereas the deviation error on the headland is Ex = 4 cm, while the maximum deviation
error is reported when the vehicle tries to enter the next row shortly after the steering
maneuver with Ex = 19 cm. For each test, the error deviation between the reference path
and the followed path has been measured both for straight and steering maneuvers by
using a tape measure and props to mark the position of the vehicle. Table 2 reports the
errors Ex, Ey along the x,y axis and Eh for the heading estimation measured for each loop
and shows how the maximum error is always registered during the steering maneuver,
while all the errors for the straight path have been measured immediately after the steering
operation, and this is due to the fact that the control algorithm tries to reach the desired
position by facing also the classic slipping effects caused by the different velocities applied
on each track. The average error along the x axis is Exa = 13.41 cm, while on the y axis,
it is Eya = 15.00 cm. The average error in the heading estimation is Eh = 0.15◦, showing
how the use of two GPS modules with multiple EKF instances is able to provide a steady
heading prediction. It is worth noticing that test 8 is affected by large errors since it has
been performed with an overcast sky with a reduced number of satellites.
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Figure 10. A comparison between the pre-planned path made by remotely controlling the vehicle, in
black, and the path followed by the robot driving autonomously using RoboNav, in red.

Figure 11. Details related to the headland turning agility at the end of the first vineyard row, where
the maximum displacement error is registered at the end of the steering maneuver.
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Table 2. Maximum errors reported over the ten tests to validate the path tracking control.

Test Ex (cm) Ey (cm) Eh (°)

1 12.20 15.20 0.10
2 12.50 15.10 0.12
3 12.40 14.40 0.20
4 13.10 14.00 0.12
5 12.90 14.00 0.17
6 13.8 13.90 0.11
7 12.00 13.50 0.20
8 18.85 19.43 0.20
9 13.5 15.00 0.17
10 12.90 15.60 0.12

4.2. Performance with Limited Number of Visible Satellites

Additional tests have been carried out to evaluate the performance of the path follow-
ing algorithm based on the number of satellites visible in the sky. Figure 12 highlights the
performance of the tracking algorithm when the vehicle is commanded to autonomously
follow a closed-loop path on an asphalt runway with a reduced number of visible satellites,
with the GPS status ranging from single precision to RTK float mode. It is interesting
to note how the straight trajectories perfectly overlap, while a maximum deviation error
Exa = 1.29 m is registered on the curved trajectory. Figure 13 shows the results of another
test that has been carried out in a steep slope vineyard by commanding the vehicle to move
down the first row and to climb to the starting position by moving along the next row. In
this case, the maximum deviation error Exa = 0.87 m registered when the vehicle switches
between the rows is partly due to the reduced number of visible satellites but also to the
efforts made by the tracking controller to keep the vehicle on its track, since it is forced to
execute a steering maneuver while facing a slope of more than 10◦, as reported in Figure 14.
It is relevant to observe that the navigation system is able to generate a consistent heading
even when the RTK mode is not steady, by providing heading errors that range from 0.1
to 0.3◦, as highlighted in Figure 15, by relying on the position of the two GPS modules,
as described in Section 2.1. One of the key aspects of the use of two GPS modules is that
it is always possible to calculate the vehicle heading, even if the GPS receivers are not in
RTK mode, as long as their positioning error is less than b = 100 cm, which is the distance
between GPS1 and GPS2, as reported in Figure 2.

4.3. Tracking Controller Evaluation

It is critical to be able to accurately estimate the vehicle yaw in order to increase the
performance of the tracking controller. Figure 16 reports the performance for the yaw
tracking by comparing the desired orientation, in black, versus the actual heading of the
vehicle, in red, respectively; as can be seen, the vehicle drives forward along the first
straight path pointing almost to the North; in fact, the registered yaw is around θ = 348◦,
while it points towards the South during the second straight motion after the steering,
with a registered value of around θ = 165◦. It is worth highlighting that the yaw tracking
is consistent along all the loop. The correct orientation reported by the system has been
double-checked with an external digital compass oriented according with the orientation
of the vehicle—in particular, a TRAX2 AHRS digital compass able to provide superior
heading and orientation under a wide range of demanding conditions has been used as
ground truth to validate the performance of the system.
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Figure 12. A comparison between a closed-loop path on asphalt made by remotely controlling the
vehicle used as a reference, in black, and the path followed by the vehicle, in red, with a reduced
number of visible satellites.

Figure 13. The reference path, in black, and the followed path, in red, for a steep slope vineyard with
a reduced number of visible satellites.
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Figure 14. The variation in slope in the vineyard used for the test.

Figure 15. Heading calculated with the dual GPS system while operating with a limited number of
visible satellites.
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Figure 16. Desired yaw vs. actual yaw using the dual GPS configuration during test 8.

Figure 17 depicts the overall performance of the tracking controller, where the red
line is the desired speed Vmax = 0.3 m/s set by the controller, the blue line is the integral
controller correction trying to adjust the generated speed command, while the green line
is the actual speed for the vehicle that ranges from 0.30 m/s to 0.32 m/s. It is important
to note that all the tests were performed with a forward velocity of 0.3 m/s, which equals
50% of the maximum velocity of the vehicle (0.6 m/s). It is chosen as a conservative speed
in consideration of the full autonomy of the navigation system. Higher velocities would
have entailed higher risks for the robot and the environment. Nevertheless, this velocity
is found to be a good trade-off between safety and efficiency, as the farmer robot is able
to survey a vineyard of 1 hectare (50 rows of 100 m length) in around 25 min. Moreover,
by looking at Figure 18, it should be noted that the generated output for the turning rate,
which is the red line, is able to correctly follow the desired angular velocity marked by the
green color; moreover, it is interesting to see how the controller produces small corrections
even along the straights in order to follow the desired path and to minimize the along-track
distance Td, as described in Section 3.1, whereas it introduces a desired turning rate of up
to 40◦/s to face the turning maneuver.

The small corrections are also related to compensation effects strictly caused by slip-
ping effects on soft agricultural terrain, as it is also possible to verify during the first
600 samples, where some spikes in the actual turning rate have been registered before the
controller started the corrections. Finally, Figure 19 shows the motor controller output
provided by the motor control board to command both the left and right motor in blue and
red color, respectively. In this case, it is particularly interesting to note how only the left
track is subjected to an increase in the turning speed, since the vehicle steers on the right
when it reaches the end of the first row, while the right track only tries to compensate for
the skidding effects since the maneuver is very tight.
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Figure 17. Performance for the tracking controller during test 8: the red line is the desired speed, the
blue line is the integral controller, while the green line is the actual speed of the vehicle.

Figure 18. Turning rate and desired turning rate for test 4: the green line is the desired angular
velocity, while the red line is the generated turning rate.
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Figure 19. PWM output generated for motor control: the red line is for the left motor while the right
one is for the right motor.

4.4. Dual GPS vs. Single GPS Navigation

Various tests have been also performed with the use of a single GPS receiver placed
in the center of the fixed baseline in order to compare the localization and the heading
estimation capabilities without using two GPS receivers. The first test was performed
by commanding the vehicle to follow the path previously generated to run the tests
in Section 4.1 and described in Figure 9. Unfortunately, while the localization was still
acceptable mostly for the straight trajectories, the heading provided by the single GPS
sensor did not allow the vehicle to drive safely along the row, especially during the steering
on the headland at the end of the first row, leading to continuous stops due to obstacle
detection warnings. Figure 20 includes an enlarged view of the turning maneuver that
highlights how the vehicle failed the heading estimation twice and was forced to stop to
avoid collisions with the vine plants. The maximum error Ex = 0.62 m registered in this
test would have been greater with the vehicle free to move around the field. As shown in
Figure 21, an additional test has been performed in a obstacle-free zone by commanding
the vehicle to follow a closed loop with both the straight trajectories that overlap for a
short section. As reported in Figure 22, following the black line, the vehicle begins to move
pointing towards North-East, and then it turns almost on the spot and moves back to the
starting position pointing to South-East. Even in this test, the system failed to correctly
estimate the heading by losing the consistency of all the EKF instances and by forcing the
vehicle to change its direction with an unpredictable behavior. These tests demonstrate
how the heading estimation is reliable only when using the dual GPS configuration. For
safety purposes, a routine has been included in the navigation software in order to stop the
vehicle if the signal from both the GPS modules is lost.
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Figure 20. Navigation test using dual and single GPS configurations in a vineyard, in black and
red lines, respectively; the vehicle was stopped multiple times in single GPS mode due to obstacle
detection warnings.

Figure 21. Navigation test using dual and single GPS configuration: the test was stopped due to
safety issues since the vehicle ran off the track.
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1 
 

 Figure 22. Heading estimation obtained from the dual GPS configuration, in black, and from the
single GPS, in red.

5. Conclusions

A cost-effective and high-precision autonomous navigation system for agriculture
applications has been presented, along with a series of experimental tests in real settings. A
dual GPS configuration based on two u-blox modules in conjunction with three low-cost
inertial sensors has been used to run a Gaussian Sum Filter capable of combining multiple
Extended Kalman Filters. The system was able to provide estimation of both position and
heading with high precision and robustness, by dealing with IMU bias and GPS signal
loss, minimizing the crosstrack error and showing average errors on the order of 0.2 m
and 0.2◦ for the measurement of position and yaw angle, respectively. The total cost of
the proposed solution is around 1300 EUR, which is significantly lower when compared
to commercial solutions based on professional dual-antenna GPS. The tracking controller
used for the path following algorithm performed as expected, and the vehicle was correctly
able to traverse one or more vineyard rows autonomously. In addition, the controller has
also been tested in narrow spaces where tight steering operations are requested to allow the
vehicle to adjust its position to move out of the previous row and enter the next one. Future
work will rely on the integration of a 3D laser sensor and RGB-D cameras for mapping and
obstacle avoidance, to improve the controller’s performance, particularly also when the
GPS signal is weak or when only a GPS module can be used. Alternative control strategies
for path tracking will be also investigated to further improve the system’s performance.
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