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Quaternion-Based Iterative Extended Kalman
Filter for Sensor Fusion of Vision Sensor and

IMU in 6-DOF Displacement Monitoring
Haemin Jeon, Jiyoung Min, Hyuntae Bang, and Wonkeun Youn

Abstract—As civil structures are exposed to various exter-
nal loads, their periodic evaluation is paramount to ensure
their safety. By estimating the 6-degree-of-freedom (DOF) dis-
placement of structures, structural behavior can be monitored
directly. Therefore, this study aims to develop a translational
and rotational displacement estimation method by fusing a
vision sensor and inertial measurement unit (IMU) using a
quaternion-based iterative extended Kalman filter (QIEKF).
The QIEKF algorithm was applied to reduce the nonlinear
influence on the measurement model. The 6-DOF displace-
ment is predicted using the integral of the gyroscope output
and updated via a combination of an accelerometer and a
magnetometer through a vector matching process in the
Kalman filter framework. Subsequently, the 6-DOF displace-
ment estimation result is updated through a vision sensor
using a 2-D planar marker and homography transformation
in the Kalman filter framework. The performance of the pro-
posed sensor fusion method was verified with experiments
using a motorized motion stage, and the results show that
the displacements can be estimated with high accuracy
regardless of measurement noise and slowly varying signal
drift.

Index Terms— 6-degree-of-freedom (DOF) displacement, inertial measurement unit (IMU), quaternion-based iterative
extended Kalman filter (QIEKF), sensor fusion, vision sensor.

I. INTRODUCTION

AS STRUCTURES age, the demand for effective
and reliable monitoring methods has increased. Periodic
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evaluation of civil structures exposed to various excessive
dynamic loads, such as earthquakes or strong winds, is para-
mount to ensure their safety. To monitor structural displace-
ments that can directly estimate structural behavior, various
sensors, such as accelerometers, global positioning system
(GPS), linear variable differential transformers (LVDTs), and
laser Doppler vibrometers (LDVs), have been widely stud-
ied. However, many of the aforementioned sensors measure
the displacement indirectly, are difficult to install, and are
expensive [1]. An accelerometer, one of the most widely
used sensors for civil engineering applications, has difficulty
accurately measuring using low-frequency dynamics [2]. Some
studies combine accelerometers and displacement measure-
ment units to achieve reliable structural behavior data, but
in these cases, prior knowledge such as the natural fre-
quency of the structure is needed [3], [4]. GPS sensors
measure displacement with high accuracy but the accuracy
is degraded in shadowed areas [5]. Additionally, LVDTs
and LDVs require a fixed reference point for displacement
measurements.

To solve the aforementioned problems, vision sensors that
provide high accuracy at a low cost have been studied [6],
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[7], [8], [9], [10], [11], [12]. With the development of hard-
ware and digital image processing technology, various studies
related to structural displacement measurement using vision
sensors have been conducted. Image processing techniques,
such as feature point extraction at subpixel accuracy, digital
image correlation, and optical-flow-based tracking algorithms,
have been used to estimate structural displacements [6], [7],
[8], [9]. By calculating the positions of artificial or natural
feature points on structure, the movement and translational
displacement of the structure in the vertical or horizontal
direction can be estimated in most cases. To estimate 3-degree-
of-freedom (DOF) translational and rotational displacements,
a homography-based displacement measurement method was
proposed [2], [10]. By calculating the positions of more
than four feature points in an obtained image, the relative
6-DOF displacement between the camera and a target point
can be estimated. Vision sensor-based displacement mea-
surement methods are computationally efficient and provide
high accuracy. However, these methods have the following
drawbacks: 1) the displacement is properly measured only
if the sensors are installed in the line of sight, i.e., it is
easily affected by changes in environmental conditions such as
illumination or weather [6], [10] and 2) the displacement res-
olution and sampling speed of the vision sensor are relatively
low [4], [11], [12].

To overcome the aforementioned limitations, data fusion
with acceleration measurement has been conducted [13], [14],
[15]. In [13], complementary filters and a time synchronization
method were proposed to integrate two different sources of
estimated displacements with different sampling frequencies.
Wu et al. [14] developed a displacement monitoring method
combined with a consumer-grade camera and accelerometers.
To improve the accuracy of the displacement measurement,
the camera vibrations were calculated using the reconstructed
displacements from an accelerometer attached on the same
side, and then eliminated via subtraction. Park et al. [15]
proposed an adaptive multirate Kalman filter for fusing low
vision sampling rate and high acceleration sampling rate
measurements. These techniques estimate pseudostatic trans-
lational displacement from the vision sensor and dynamic
translational displacement from the accelerometer. To improve
the accuracy of displacements and measure both transla-
tional and rotational displacements, this article proposes a
quaternion-based iterative extended Kalman filter (QIEKF) for
fusing an inertial measurement unit (IMU) and a vision sensor
that can estimate structural displacement with high accuracy.
To solve the gimbal lock issue in the measurement of rotational
displacement, the rotation is represented using quaternions.

The 6-DOF displacement between two points is predicted
using the vision sensor, and the translational and rotational dis-
placements are updated using the IMU. Through sensor fusion,
the IMU drift error and the loss of accuracy when the line of
sight of the vision sensor is not guaranteed are calculated.
Euler angles provide us with an angle of rotation around each
axis and are generally much more user-friendly and have more
intuitive and predictable values but have disadvantages such
as gimbal locking. As a way to solve gimbal locking [16],
quaternions are arguably an appropriate choice to represent

object rotation. They are simple and efficient for interpolating
and unambiguously representing rotation. Among the various
estimation filter algorithms, an extended Kalman filter (EKF)
is the most widely used approach for processing nonlinear
system state estimation [17]. To approximate the mean and
covariance of a nonlinear system, an EKF uses a first-order
Taylor extension to linearize a nonlinear model. If the model
has large nonlinearities and large initial state estimation errors,
there can be large errors in the true posterior mean and
covariance, which can lead to suboptimal performance and
sometimes filter divergence [18]. To overcome the aforemen-
tioned issues, we implemented an iterative EKF to improve the
linearization performance of the EKF by iteratively correcting
the linearization point of the first-order Taylor extension,
thereby reducing the linearization error [19], [20]. The pro-
posed system combines vision sensor-based displacement and
an IMU capable of low- and high-frequency displacement
measurement, respectively, using a QIEKF.

To verify the performance of the proposed QIEKF-based
sensor fusion method, an experimental test was performed
using a motorized motion stage capable of artificial trans-
lational and rotational motions. Regarding the behavior of
increasingly deteriorating port structures, the vertical settle-
ment and rotational movement in the yaw direction were
simulated [21]. The results show that robust and high-precision
6-DOF displacement estimation can be achieved for outliers
caused by feature point position errors in a captured image or
temporary loss of the communication link in the vision system.
Additionally, drift errors in the IMU were mitigated as a result
of sensor fusion. The remainder of this article is organized
as follows. In Section II, a vision-based displacement mea-
surement method and sensitivity analysis of a proposed pla-
nar marker are described. The quaternion-based displacement
estimation using an IMU and the QIEKF-based displacement
estimation algorithm are described in Section III. To validate
the performance of the proposed algorithm, experimental tests
were conducted, and the results are discussed in Section IV.
Conclusions and further research directions are discussed in
Section V.

II. HOMOGRAPHY-BASED DISPLACEMENT ESTIMATION

A. 6-DOF Displacement Estimation Using
a Vision Sensor

The relative displacement between the vision sensor and
the target structure can be estimated using four or more
feature points and the intrinsic parameters composed of the
optical properties of the camera lens [21], [22], [23]. To find
the translational and rotational displacements, the geometric
relationship between two images of the same planar sur-
face, called a homography matrix, needs to be estimated.
To compute the planar homography, camera calibration and
undistortion of the captured images are performed using the
following equations. In (1), ri j (i = 1, 2, 3; j = 1, 2, 3) and
tk(k = x, y, z) are components of the rotational displacement
matrix and the translational displacement vector, respectively.
Qi = [X, Y, Z , 1]T and qi = [u, v, 1]T are object points in
the global frame represented in the three-dimensional coordi-
nate system and correspondence points captured on the 2-D
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Fig. 1. Dimensions of planar markers and examples of internal rectan-
gular arrangement (unit: mm).

image frame, respectively. The image point coordinates after
undistortion are represented in (2) and (3). In (3), as shown at
the bottom of the next page, r2 = x2

c +y2
c and Ki are radial and

tangential distortion coefficients, respectively. In (4), fu and fv
are the focal lengths; cu and cv are the principle points; and u
and v are the corresponding coordinates of the feature point
on the image plane

⎡
⎣Xc

Yc

Zc

⎤
⎦ =

⎡
⎣r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

⎤
⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ (1)

[
xc

yc

]
=

[
Xc/Zc

Yc/Zc

]
(2)

⎡
⎣u
v
1

⎤
⎦ =

⎡
⎣ fu 0 cu

0 fv cv
0 0 1

⎤
⎦

⎡
⎣xd

yd

1

⎤
⎦ . (4)

After the calculation of the camera intrinsic parameters
using checker boards, a homography matrix, H, that maps
the points between two images of the same planar surface
taken from different camera locations and orientations can be
estimated. The relationship between the corresponding pair of
points, qi

1 and qi
2, projected on the image plane of I1 and I2 is

as follows:
qi

1
T

H qi
2 = 0. (5)

With the 3 × 3 homography matrix, H3×3, more than four
corresponding pairs of points (i ≥ 4) are required to create a
matrix with eight unknowns.

B. Design of Planar Marker and Sensitivity Analysis of
6-DOF Displacement Estimation

As described in Section II-A, for homography-based 6-DOF
displacement measurement, at least four feature points are
required to construct homography matrix, H. In this study,
a 2-D planar marker was designed for 6-DOF displacement
estimation with two rectangles on the lower left and a triangle
on the upper right, as shown in Fig. 1. The inner rectangles are
arranged vertically, diagonally, or horizontally so that multiple
markers can be generated and applied to various positions
on the structures. The 6-DOF displacements are measured
based on a total of 16 feature points, i.e., the corner points
of two pairs of rectangular, inner and outer squares. For
stable displacement measurement, only the corner points of the
black shapes with a high contrast ratio as shown in Fig. 2(b)

Fig. 2. Image processing process for 6-DOF displacement estimation.
(a) Undistorted image. (b) Red channel image. (c) Contour detection.
(d) Corner detection.

were used. To avoid copyright issues, the marker has been
redesigned in consideration of possible application to actual
port structures.

The marker images are captured with a distant camera, and
the process for feature point detection using various image
processing techniques is shown in Fig. 2. The camera lens
distortion is corrected via the previously calculated intrinsic
parameters using checker boards. From the undistorted image,
the corner points of the rectangles are detected using various
image processing techniques, such as RGB channel separation,
image binarization, and contour detection. By calculating more
than four feature points on a planar marker, the 6-DOF
displacement between the camera and the marker can be
estimated using homography transformation equations.

To numerically verify the accuracy of the homography-
based displacement measurement system using the designed
planar marker, sensitivity analysis with Monte Carlo simula-
tions was performed as follows [10]: 1) 6-DOF displacements,
x = [x, y, z, θ, φ,ψ], were established considering the trans-
lational and rotational movement; 2) the measurement data, the
positions of the corners qi , (i = 1, . . . , nc), where nc is the
number of corner points, were calculated with x and the intrin-
sic camera parameters given a priori; 3) measurement noises
were added to qi considering measurement errors during
image processing; and 4) the displacements were calculated
using (1)–(4) [10]. The simulation for sensitivity analysis of
the homography-based displacement measurement method is
described in the pseudocode of Algorithm 1. To reflect various
errors that occur during image processing, uniform random
noise of ±0.2 pixels considering measurement variance with
the sensor used in this study was added.

The simulation was performed using 100 cases with a
distance between the marker and camera of 10 m. For the
estimation, the Newton–Raphson (NR) method was used to
solve the nonlinear problem as described in the algorithm.
The number of NR iterations was set to 20, and the intrin-
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Algorithm 1 Pseudocode for the Simulation of Homography-Based Displacement Measurements

for i = 1, . . . , nc do � Generation of measurement equation: qp
i

gTc=

⎡
⎢⎢⎣

1 0 0 0
0 cθ −sθ 0
0 sθ cθ 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

cφ 0 sφ 0
0 1 0 0

−sφ 0 cφ 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

cψ −sψ 0 0
sψ cψ 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

⎤
⎥⎥⎦ � cθ and sθ are cosθ and sinθ , respectively

Qc
i =g Tc · Qi � 3-D global coord. to 3-D camera coord. See eq. (1)

qi =
[

xc

yc

]
=

[
Qc

i (1)/Qc
i (3)

Qc
i (2)/Qc

i (3)

]
� 3-D camera coord. to 2-D image plane coord. See eq. (2)

r = √
x2

c + y2
c[

xd

yd

] [
xc(1 + k1r2 + k2r4 + k3r6)+ 2K3xc yc + K4(r2 + 2x2

c )

yc(1 + k1r2 + k2r4 + k3r6)+ K3(r2 + 2y2
c )+ 2K4xc yc

]
⎡
⎣ui

v i

1

⎤
⎦ =

⎡
⎣ fu 0 cu

0 fv cv
0 0 1

⎤
⎦ ·

⎡
⎣xd

yd

1

⎤
⎦ ,qp

i =
[

ui

v i

]
� 2-D image plane coord. to 2-D pixel coord. See eqs. (3)-(4)

end for
Jq =

[
∂qp
∂x ,

∂qp
∂y ,

∂qp
∂z ,

∂qp
∂θ ,

∂qp
∂φ ,

∂qp
∂ψ

]
� Generation of the Jacobian matrix of qp: Jq

for t = 1, .., Ns do � Generation of 6-DOF disp. with translational movement and estimated using NR

x̄ =
[
5 5sin( 2π

Ns
)t H 1 5 −1

]
; � Ns : number of samples for MCS, units are mm and degrees

x̂0 = [
0 0 H 0 0 0

] ;
q̄ = qp|x=x̂i + (2ep × rand(si ze(q̄, 1), 1)− ep) � ep: measurement noise at the pixel level
for j = 1 : Niter do � Niter : number of iterations

J = Jq|x=x̂ j

q̄ = qp|x=x̂ j � q̄, q̂: absolute and estimated value of measurement q , respectively
x̂ j | j = x̂ j | j−1 + λJ−1(q̄ − q̂); � x̄, x̂: absolute and estimated value of the 6-DOF displacement D, respectively

end for
x̂i = x̂ j | j

end for

sic parameters were set as follows: [ fx , fy] = [2634.64,
2624.02], [cx , cy] = [1023.62, 380.04], and [k1, k2, k3,
k4] = [−0.4629, 0.3087, 0.0059, 0.0008] [21]. By considering
the variance of the measurements, the measurement noise at
the pixel level was set to ep = 0.2. Fig. 3 shows a box-
plot of the translational and rotational errors estimated from
the 2-D marker using the homography transformation. The
true displacement values for the translational and rotational
movement are x̄ = [5, 5sin((2π/100)t), 10 000, 1, 5,−1] and
x̄ = [5, 5, 10 000, 1, 5sin((2π/100)t),−1], respectively, and
all units are in mm or degrees. The results obtained by
applying sinusoidal movements with uniform random mea-
surement noise to the translational displacement along the
Y -axis and the rotational displacement around the yaw axis
are shown in Fig. 3(a) and (b), respectively. As shown in
the figure, the translational displacement along the Z -axis
and rotational displacements around the pitch and yaw axes
are more sensitive to measurement noise since the distance
between the marker and the camera is much larger than
the other components [10]. Since vision-based displacement
measurement results do not guarantee the same level of high

accuracy in all axes, a quaternion-based sensor fusion method
with an IMU is proposed.

III. QUATERNION-BASED ITERATIVE EXTENDED KALMAN

FILTERING FOR SENSOR FUSION
To improve the accuracy of the displacement measurement,

an IMU was added for sensor fusion. Due to the nonlinearity of
the kinematics, EKF measurement updates were iterated (see
Algorithm 2). The iterations were stopped when there were no
significant changes in consecutive iterations or the maximum
number of iterations was met. In this study, a QIEKF is intro-
duced to address the gimbal locking in the Euler angle-based
pose estimation problem.

A. Preliminary Definitions
The attitude can be expressed using the unit quaternion as

follows [24]:

q = qw + qx i + qyj + qzk =
[

qw
qυ

]
=

⎡
⎢⎢⎢⎣

cos( γ2 )

exsin( γ2 )

eysin( γ2 )

ezsin( γ2 )

⎤
⎥⎥⎥⎦ (6)

[
xd

yd

]
=

[
xc

(
1 + K1r2 + k2r4 + k3r6

) + 2K3xc yc + K4
(
r2 + 2xc

2
)

yc
(
1 + K1r2 + k2r4 + k3r6

) + K3
(
r2 + 2yc

2
) + 2K4xc yc

]
(3)
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Fig. 3. Error analysis of 2-D marker with applying (a) translational
movement in Y-axis and (b) rotational movement around the yaw axis.

where qw and qυ = qx i + qyj + qzk represent the real
and vector parts of the quaternion, respectively. γ and
ē = [ex , ey, ez]T represent the angle of rotation and the axis
of rotation, respectively.

The quaternion multiplication ⊗ is defined by

p ⊗ q =
[

pwqw − pυT qυ
pwqυ + qwpυ + pυ × qυ

]
. (7)

In this article, an arbitrary 3-D vector in the body-fixed
frame, vb, can be transformed into the corresponding vector
in the navigation frame, vn , by the rotation matrix, Cn

b(q),
as follows:

vn = Cn
b (q) vb (8)

where superscripts {n} and {b} refer to the navigation frame
and body-fixed frame, respectively.

The rotation matrix Cn
b(q) represents the rotation matrix

from the body frame to the navigation frame as follows (9),
as shown at the bottom of the next page.

A unit quaternion can be expressed by its Euler angles
[φ, θ, ψ]T , where φ, θ , and ψ represent roll, pitch, and yaw,

respectively,

q =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos
(
φ
2

)
cos

(
θ
2

)
cos

(
ψ
2

)
+ sin

(
φ
2

)
sin

(
θ
2

)
sin

(
ψ
2

)
sin

(
φ
2

)
cos

(
θ
2

)
cos

(
ψ
2

)
− cos

(
φ
2

)
sin

(
θ
2

)
sin

(
ψ
2

)
cos

(
φ
2

)
sin

(
θ
2

)
cos

(
ψ
2

)
+ sin

(
φ
2

)
cos

(
θ
2

)
sin

(
ψ
2

)
cos

(
φ
2

)
cos

(
θ
2

)
sin

(
ψ
2

)
− sin

(
φ
2

)
sin

(
θ
2

)
cos

(
ψ
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(10)

Conversely, the Euler angles can be calculated from their unit
quaternion through the following relation [16]:

⎡
⎣φθ
ψ

⎤
⎦ =

⎡
⎢⎢⎣

atan2
(

2
(
qwqx + qyqz

)
/1 − 2

(
q2

x + q2
y

))
asin

(
2

(
qwqy − qzqx

))
atan2

(
2

(
qwqz + qxqy

)
/1 − 2

(
q2

y + q2
z

))
⎤
⎥⎥⎦ .

(11)

B. Sensors
An IMU measures the acceleration in three axes, the angular

velocity about three axes, and the magnetic field in three
axes relative to a body-fixed frame, and the measurements
are corrupted by white Gaussian noise and slowly changing
bias terms. The following mathematical model represents the
relationship between the IMU-measured signal and the true
value [24], [25]:

ωm = Kgωt + ωb + ωn (12)

am = KaCb
n(q) (at − g)+ ab + an (13)

mm = KmCb
n(q) · Mn + mb + mn (14)

Mn =
⎡
⎣ |M| cos (α) cos (β)

|M| cos (α) sin (β)
|M| sin (α)

⎤
⎦ (15)

where the subscripts {m}, {t}, {b}, and {n} denote measured,
true, bias, and nonzero, respectively. Kg,Ka , and Km are the
scale matrices, which are ideally equal to the 3 × 3 identity
matrix I3×3. ωm = {pm, qm, rm} ∈ R

3 are the measured
angular rate signals, and ωt , ωb, and ωn ∈ R

3 are the
true angular rate signal, slowly varying bias, and zero-mean
Gaussian noise, respectively. am = {amx , amy, amz} ∈ R

3 are
the measured accelerations, and g ∈ R

3 is the gravitational
acceleration in the inertial frame, and at , ab, and an ∈ R

3 are
the true acceleration, slowly varying bias, and zero-mean
Gaussian noise, respectively. mm ∈ R

3 is the measured
magnetic field, mb is a slowly varying bias term, and mn

is zero-mean Gaussian noise [26]. In (15), Mn is the mag-
netic field vector of the Earth, |M| is the magnitude of
the magnetic flux density, α is the inclination angle of the
Earth’s magnetic field, and β is the declination angle. |M|,
α, and β depend on the geodetic location and time and can
be obtained from the World Magnetic Model database. The
effects of misalignment and scaling factor errors on the IMU
were ignored in this study, as the effects of these parameters
could be minimized with appropriate corrections [27].
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C. Problem Formulation
In this study, the following discrete-time nonlinear state

space system was investigated [28]:

xk = f ( xk−1 , uk, wk) (16)

zk = h (xk , vk) (17)

where xk ∈ R
n , uk ∈ R

l , and zk ∈ R
m are the state,

input, and measurement at time k, respectively, and f(·) and
h(·) represent the equations of state and the measurements,
respectively. The process noise wk and measurement noise vk

were assumed to be uncorrelated, white, zero-mean Gaussian
noise as follows [29]:

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

E
[
wkvT

k

]
= 0 (18)

where N (μk,
∑

k) is a Gaussian distribution with mean μk

and covariance
∑

k .
In the QIEKF prediction step in the continuous time domain,

the true state, biases of the position, gyroscope, and magne-
tometer can be represented as follows:

ẋ =

⎡
⎢⎢⎣

q̇
ṗ
ω̇b

ṁb

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2 q ⊗ (ωm − ωb − ωn)

pω
ωω
mω

⎤
⎥⎥⎦ (19)

where pω, ωω, and mω are the driving noises for the posi-
tion, gyroscope, and magnetometer biases, respectively, which
are assumed to follow a random walk (RW) process. The
discrete-time expression of (19) is defined by

xk =

⎡
⎢⎢⎣

qk

pk

ωb,k

mb,k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

qk−1 ⊗ q
{(

ωm,k − ωb,k
)
t

}
pk−1

ωb,k−1
mb,k−1

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

wq,k−1
wp,k−1
wg,k−1
wm,k−1

⎤
⎥⎥⎦ (20)

where t is the sampling time interval of the IMU, which is
almost constant

q
{(

ωm,k − ωb,k
)
t

}
=

⎡
⎣ cos

((
ωm,k − ωb,k

)
t/2

)
(ωm,k−ωb,k)

‖(ωm,k−ωb,k)‖sin
((

ωm,k − ωb,k
)
t/2

)
⎤
⎦ . (21)

During the sampling time interval t , linear evolution of
ω is assumed. Thus, the first-order quaternion integrator is

implemented as follows:

qk = qk−1 ⊗
(

q (ω̄kt)+ t2

24

[
0

ωk−1 × ωk

])
(22)

where ω̄k = 0.5(ωk +ωk−1) is the average angular rate during
time steps k − 1 and k.

At (13), the initial accelerometer bias ab is usually removed
through calibration in the lab for various temperatures.
In our approach, the measured acceleration magnitudes were
pretested for significant deviations from gravity. Under sta-
tionary or low-dynamics conditions, the measured acceleration
from (13) can be approximated as follows:

am =
⎡
⎣amx

amy

amz

⎤
⎦ ≈ −Cb

n(q) g + an

=
⎡
⎢⎣

2
(
qx · qz − qw · qy

)
2

(
qy · qz + qw · qx

)
q2
w − q2

x − q2
y − q2

z

⎤
⎥⎦ + an. (23)

The measurement model is defined by stacking the
accelerometers am,k , magnetometers mm,k , vision-based yaws
ψk , and vision-based position measurement vectors pk as
follows:

zk =

⎡
⎢⎢⎣

am,k

mm,k

ψk

pk

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

−Cb
n(qk) g + va,k

Cb
n(qk)Bn + ωb,k + vm,k

atan2
(

2
(
qwqz + qxqy

)
/1 − 2

(
q2

y + q2
z

))
+ vψ,k

pk + vp,k

⎤
⎥⎥⎥⎦ .
(24)

The accelerometer, magnetometer, vision-based yaw, and
vision-based position measurement noises va,k , vm,k , vψ,k ,
and vp,k are considered as uncorrelated zero-mean white
Gaussian noise. Their measurement covariance matrices are
Ra

k = σ 2
a · I3×3, Rm

k = σ 2
m · I3×3, Rψ

k = σ 2
ψ · I1×1, and

Rp
k = σ 2

p ·I3×3, where I3×3 and I1×1 denote the 3 × 3 and 1 ×
1 identity matrices, respectively. Therefore, the measurement
covariance matrix Rk is defined as

Rk =

⎡
⎢⎢⎣

Ra
k 0 0 0

0 Rm
k 0 0

0 0 Rψ
k 0

0 0 0 Rp
k

⎤
⎥⎥⎦ . (25)

To compute the predicted state x̂k|k−1 and the covariance
Pk|k−1, a standard EKF is implemented as follows:

x̂k|k−1 = f
(
x̂k−1|k−1

)
Pk|k−1 = Fk−1 Pk−1|k−1 FT

k−1 + �k−1Qk−1�
T
k−1 (26)

Cn
b (q) =

⎡
⎢⎣

q2
w + q2

x − q2
y − q2

z 2
(
qx · qy − qw · qz

)
2

(
qx · qz − qw · qy

)
2

(
qx · qy + qw · qz

)
q2
w − q2

x + q2
y − q2

z 2
(
qy · qz − qw · qx

)
2

(
qx · qz − qw · qy

)
2

(
qy · qz + qw · qx

)
q2
w − q2

x − q2
y − q2

z

⎤
⎥⎦ (9)
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where the Jacobian matrix for the system dynamic equation,
Fk−1, is defined as

Fk−1 = ∂f
∂x

∣∣∣∣
x=x̂k|k−1

= I13×13 + ANt (27)

where AN is defined as

AN = ∂f (x, · )/∂x =

⎡
⎢⎢⎣

W 03×3 E 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3

⎤
⎥⎥⎦ (28)

where

W = ∂ 1
2 q ⊗ (ωm − ωb)

∂q
(29)

E = ∂ 1
2 q ⊗ (ωm − ωb)

∂ωb
(30)

and �k−1 is defined by

�k−1 = ∂f (x, · )/∂w =

⎡
⎢⎢⎣

Z 03×3 03×3 03×3
03×3 I3×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

⎤
⎥⎥⎦ (31)

0i× j refers to a matrix with rows i and columns j where all
values are zero, and Z is defined by

Z = ∂ 1
2 q ⊗ (ωm − ωb − ωn)

∂ωn
. (32)

The updated state x̂k|k and the corresponding error covari-
ance Pk|k are computed as

x̂k|k = x̂k|k−1 + Kk νk

Pk|k = Pk|k−1 − KkSkKT
k (33)

where the Kalman gain Kk and the innovation νk are defined
as

Kk = Pk|k−1HT
k S−1

k (34)

νk = zk − h
(
x̂k|k−1

)
(35)

and Sk can be expressed as

Sk = HkPk|k−1HT
k + Rk (36)

where Hk is defined as

Hk = ∂h
∂x

∣∣∣∣
x=x̂k|k−1

.

An iterated EKF (IEKF) is designed to improve estimates
since there is significant nonlinearity in the accelerometer
am,k , magnetometer mm,k , and vision-based yaw measurement
models ψk . These improvements are achieved through local
iterations of the EKF measurement update [30], [31]. IEKF
iterations are usually stopped when there is no significant
change in the estimate of the measurement update iterations
or when other criteria are met, such as the maximum number
of iterations, as described in Algorithm 2 [32]. The IEKF
recursively corrects the center point of the Taylor extension
to improve the linearization of the EKF while reducing the

linearization error, but it has a limitation in that the compu-
tation time increases. Since the vision-based position xk is
a measurement in the direct state, the measurement model
is linear. Therefore, for vision-based position measurement,
measurement updates from the standard EKF algorithm were
applied.

Algorithm 2 Pseudocode for IEKF Measurement Updates

x̂0
k = x̂k|k−1 � Initialization: Set iteration i = 0, and set

predicted state x̂0
k = x̂k|k−1

while ‖x̂i+1
k − x̂i

k‖/x̂i
k ≤ ε and i < Nmax do � IEKF

measurement update iterations
Hi

k = ∂h
∂x

∣∣∣
x=x̂i

k

� Computes the Jacobian from the best

available state estimate
Ki

k = Pk|k−1(Hi
k)

T (Hi
kPk|k−1(Hi

k)
T + Rk)

−1 � Compute
the Kalman gain

x̂i+1
k = x̂k|k−1 + Ki

k(zk − h(x̂i
k)− Hi

k(x̂k|k−1 − x̂i
k)) �

Compute the state estimate
i = i + 1 � Repeat the IEKF measurement update until

a stopping criterion is satisfied
end while
x̂k|k = x̂i+1

k � Update the final state x̂k|k
Pk|k = Pk|k−1 − Ki

kSi
k(K

i
k)

T � Update the final covariance
matrix Pk|k

In particular, in vision-based measurement, the measure-
ment value may be an outlier measurement due to issues such
as illumination or visibility changes. Therefore, even if an
abnormal vision measurement occurs, a stable state estimation
can be achieved by applying chi-square-based defect detection.
Specifically, the statistical parameter for measurement fault
detection can be defined as follows [33]:

ε̄k = νT
k S−1

k νk . (37)

The hypothesis test for evaluating system failure based on
chi-square fault detection is as follows:{

H0 : ε̄k < λ Normal

H1 : ε̄k ≥ λ Fault
(38)

where λ can be determined based on the desired confidence
level of the chi-square distribution, and the 95% confidence
level is used. Chi-square-based fault detection is suitable for
detecting sudden faults but not for detecting slowly increasing
or constant faults [34].

IV. EXPERIMENTS

To verify the performance of the proposed sensor fusion
algorithm, an experimental test was performed using a motor-
ized motion stage capable of linear and rotational motion. The
overall experimental setup using a network camera, IMU, and
the motion stage is shown in Fig. 4. In the experiments, a com-
mercial vision sensor from Hanwha Techwin (XNZ-L6320),
an IMU from Xsens (MTi-680G), and motion stages from
Thorlabs, Ins (PT1/M-Z8, MLJ150/M, KRRMTE/M) were
used. The distance between the camera and the target planar
marker installed on the stage was set to 10 m. The images
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Fig. 4. Configuration of the experiments. The distance between the two sides is set to 10 m.

obtained from the vision sensor and the accelerations, angular
rates, and magnetic fields from the IMU were transferred via
a real-time streaming protocol (RTSP) and serial communica-
tion, respectively. User datagram protocol (UDP) communica-
tion, which transmits data between computers over a network
using IP without establishing a connection a priori, was used
to eliminate the physical connection with the main computing
device and to expand the monitoring point by expanding the
markers to multiple numbers.

A motion stage provides motorized linear translation and
yaw motion to create motion between the two sides. Con-
sidering the behavior of port structures that are increasingly
deteriorating, vertical settlement and rotational movement in
the yaw direction were simulated. In a vision-based displace-
ment measurement system, measurement errors may occur due
to hardware limitations such as temporal aliasing or rolling
shutter phenomena [35], [36], [37], [38]. Temporal aliasing
artifacts are likely to appear when the sampling frequency
is lower than twice the maximum frequency of the original
signal [35], [36]. A rolling shutter is a method of image
capture that does not capture an entire scene at a single instant
in time but rather rapidly scans across the scene [37], [38].
In the experiments, it is assumed that the aforementioned
hardware limitations do not occur with a stationary camera
and low-frequency movements of motion stage within 15 Hz,
which is half of the sampling frequency.

The 6-DOF displacements were calculated based on the
marker image, and the accuracy was increased using the
QIEKF with the accelerations, angular rates, and mag-
netic fields of the three axes obtained from the IMU (see
Figs. 5 and 7). A low-pass filter, a conventional filtering
method, was applied to the displacement results from the
vision sensor for fairer comparison with the QIEKF with chi-
square-based defect filtering. The low-pass filter on the time
domain with the smoothing factor, α, is as follows:

x̄k = αx̄k−1 + (1 − α) xk (39)

where x̄k and xk are the kth filtered output and raw-data input,
respectively. In this experiment, α is set to 0.8. The estimated
results using the QIEKF were compared with the values
obtained from the motion stage, which can be considered
the ground truth. In the sensor fusion, the covariance of the
translational displacement along the Z -axis and the pitch and
yaw were set to be larger than the other components by
considering the sensitivity of the vision-based displacement
measurement system as described in Section II-B (see Fig. 3).
In the experimental tests, therefore, the process noise of Q was
set to diag([0.015 · I3×3 , 0.001 · I3×3 , 0.001 · I3×3 , 0.35 ·
I3×3]). The measurement noises of Ra

k , Rm
k , Rψ

k , and Rp
k

were empirically set to 0.35 · I3×3, 0.05 · I3×3, 0.09, and
diag([0.25, 0.25, 0.5]), respectively, through trial and error.
In addition, the value of Nmax was set to 20, which is a
sufficiently large value empirically through trial and error.
Since the IMU sensor used in this study can provide only the
roll, pitch, and yaw attitudes as an attitude heading reference
system (AHRS), only the attitude of the IMU was compared
in the subsequent analysis.

As shown in Fig. 5, the QIEKF-based displacement results
are reliably estimated even if the vision-based displacements
deviate significantly due to erroneous detection of marker
feature points. As shown in the figure, the innovation-based
chi-square defect detection method can detect abrupt errors
in measurements with a small number of calculations based
on the discrepancy between the actual and predicted measure-
ments. By applying this algorithm, excessive measurements
that can be considered outliers are removed from the QIEKF
results.

More specifically, Fig. 6(a) and (b) represents the innovation
sequence νk with the corresponding standard deviation of
the innovation covariance matrix (i.e., ±3(S)1/2) and ε̄k =
νT

k S−1
k νk with the threshold λ, respectively. The estimated

translational displacement in the Y -axis of approximately
12 and 90 s extracted based on the vision sensor are out-
lier measurements because the innovation value has a much
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Fig. 5. Translational displacements along (a) X, (b) Y, and (c) Z axes
via vision and IMU sensor fusion.

larger value than the standard deviation value. The outlier
measurement value detected through the proposed chi-square
fault detection is not used for the measurement update of the
proposed QIEKF algorithm, as shown in Fig. 6(b). Therefore,
it can be seen that the proposed QIEKF algorithm outputs
reliable pose estimation values regardless of the outlier mea-
surement values of the pose measurements extracted from the
vision sensor.

Additionally, the results of the QIEKF can be confirmed
through Fig. 7, which shows that the signal drift of the
IMU is eliminated as a result of the proposed sensor fusion.

Fig. 6. Performance of the chi-square fault detection method. (a) Inno-
vation analysis of vision-based Y-axis displacement and (b) statistical
parameter for measurement of fault detection with a threshold of 95%
confidence level.

The gravitational vector measured by the accelerometer con-
tains only roll and pitch information, and by comparing
the measured magnetometer value to the magnetic field in
the north, east, and down (NED) coordinate system at that
location, three-axis information about roll, pitch, and yaw
can be obtained. However, the measured magnetic field can
be easily distorted and interfered with by external electro-
magnetic disturbances induced by time-varying currents in
ferrous objects, motors and transmission wires. Therefore,
we designed the proposed filter to apply more weight to the
attitude measurements calculated based on the vision sensor.

As shown in the results from the proposed filter, the
rotational displacements about the three axes achieve reliable
estimation by fusing data from the vision sensor and the
IMU. In particular, the yaw angle estimation results from
the proposed QIEKF algorithm are the most accurate and
reliable by combining observations from different sensors,
such as vision, inertial, and magnetic sensing. To quantitatively
verify the proposed algorithm, the estimated pose based on the
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TABLE I
RMSE OF TRANSLATIONAL AND ROTATIONAL DISPLACEMENTS, RESPECTIVELY

Fig. 7. Rotational displacement results. (a) Roll, (b) pitch, and (c) yaw
via vision and IMU sensor fusion.

root-mean-square error (RMSE) is evaluated against the
ground truth. The RMSE in both cases is summarized in
Table I. The RMSE for the proposed sensor fusion method is

smaller than 10 mm and 0.5◦ for translational and rotational
cases, respectively, after fusing the vision with the IMU.

V. CONCLUSION

In this article, a QIEKF method for fusing a vision sensor
with an IMU is proposed. By using the feature points of
a 2-D planar marker, the 6-DOF displacements between a
camera and a marker can be estimated. A vision-based dis-
placement measurement system, however, has drawbacks in
that displacement error may occur due to measurement noise
and is highly limited to environmental conditions such as light
or weather. An IMU sensor, which can measure accelerations,
angular rates, and magnetic fields, measures the behavior of
the system with high accuracy; however, there are several
problems with signal drift and misalignment. To solve the
aforementioned problems, a QIEKF for fusing different types
of sensors is proposed. The QIEKF can be summarized as
follows.

1) The proposed algorithm first integrates the angular
velocity of the gyroscope to predict the attitude. Then,
the attitude is updated via vector matching in the NED
frame of measurements from the accelerometer and
magnetometer. The estimated gyro biases are compen-
sated from angular rates from the gyroscope to mitigate
the drift error.

2) The attitude is updated using the yaw and the position
values calculated from the vision sensor as measure-
ments. Here, the state transition model of the position
is modeled as a Gaussian random distribution.

3) An iterative EKF was applied to the measurement
update to reduce the influence on the nonlinearity of
the nonlinear measurement model corresponding to the
accelerometer and magnetometer.

4) In addition, the influence of outliers from vision sensor
measurements was minimized through a chi-square-
based defect detection algorithm.

Experimental tests were performed to verify the performance
of the proposed system. By considering the sensitivity of the
vision-based displacement measurement system due to mea-
surement noise in image processing techniques, the covariance
of the translational displacement along the Z axis and the pitch
and yaw were set to be larger than the other components. The
results show that the proposed QIEKF method estimates 6-
DOF displacements with the lowest RMSE in comparison with
the results from the vision and IMU sensors. The proposed
system can be applied in the field, such as port structures,
where the behavior, especially the settlements, must be mea-
sured regularly.
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