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Abstract: Surgeons are at high risk for developing musculoskeletal symptoms (MSS), like neck and
back pain. Quantitative analysis of 3D neck and trunk movements during surgery can help to
develop preventive devices such as exoskeletons. Inertial Measurement Units (IMU) and markerless
motion capture methods are allowed in the operating room (OR) and are a good alternative for bulky
optoelectronic systems. We aim to validate IMU and markerless methods against an optoelectronic
system during a simulated surgery task. Intraclass correlation coefficient (ICC (2,1)), root mean square
error (RMSE), range of motion (ROM) difference and Bland–Altman plots were used for evaluating
both methods. The IMU-based motion analysis showed good-to-excellent (ICC 0.80–0.97) agreement
with the gold standard within 2.3 to 3.9 degrees RMSE accuracy during simulated surgery tasks. The
markerless method shows 5.5 to 8.7 degrees RMSE accuracy (ICC 0.31–0.70). Therefore, the IMU
method is recommended over the markerless motion capture.

Keywords: inertial measurement unit; markerless motion capture; validation study; movement analysis

1. Introduction

Musculoskeletal symptoms (MSS) are a major health issue in different kinds of oc-
cupations [1]. Surgeons are a group of healthcare professionals who are at high risk for
developing MSS [2], such as neck pain and back discomfort or pain [3–6]. Possible physical
risk factors of MSS development are (1) prolonged working in the same posture [7], (2)
unfavourable working postures [4,7,8], and (3) repetitive movements [9,10].

Quantitative analysis of the working posture of surgeons in the operating room can
provide valuable information for ergonomic interventions to reduce the development of
MSS among them [11]. In a laboratory setting, optoelectronic motion capture methods are
accepted as the gold standard to measure anatomical landmarks and derive body postures
and joint angles [12,13]. However, optoelectronic systems are dependent on a stationary
laboratory environment and cannot easily be used in real-life working environments such
as in the operating room with surgeons wearing a gown.

Alternatively, multiple inertial measurement units (IMUs) can be used to estimate
body postures outside laboratories [11]. While IMU-based movement analysis has proven
to be valid for joints with a large ROM during gross motor tasks such as knee flexion-
extension motion during walking [14], estimating spinal postures in the sagittal and frontal
plane during gait [15], assessing position accuracy in static postures [16], and trunk and
neck kinematics during small movements [17], their validity for large neck and trunk
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in multiple planes remains to be established. A disadvantage of IMU-based movement
analysis systems is that they require complex data processing steps (e.g., sensor fusion
of multiple IMUs) and calibration procedures with the participants standing in a neutral
position [18]. These data processing and calibration steps of IMU-based motion capture
analyses can be cumbersome and require high technical expertise, limiting their use to
biomechanical experts.

Another alternative for movement analysis in daily life is markerless motion capture,
a method to analyse body movement without placement of markers in the body, based
on deep learning technology [19]. For example, DeepLabCut [20] and Anipose [21] are
open-access pose-estimation toolboxes for markerless motion tracking. DeepLabCut can be
used for training a deep learning model and performing 2D postures analyses [22]. Anipose
is an addition to DeepLabCut and can be used for estimating 3D postures [23]. While the
validity and accuracy of markerless motion capture methods have been established for two-
dimensional joint angle analysis in the sagittal plane [24] and 3D position analyses [25,26],
none of the previous studies validated markerless motion capture methods on the 3D neck
and trunk kinematics.

This research aimed to establish the accuracy and validity of IMU-based and markerless-
based systems (DeepLabCut & Anipose) as compared to optoelectronic motion capture
systems in estimating 3D neck and trunk kinematics during simulated surgery tasks.

2. Materials and Methods
2.1. Participants

Ten healthy subjects (5 males, 5 females; age: 24 ± 3 years; height: 181.9 ± 11.6 cm;
mass: 79.1 ± 13.7 kg, body mass index, 23.9 ± 3.6 kg/m2) participated in this study. This
study was approved by the local Medical Ethics Review Board of the University Medical
Center Groningen (METc 2021/385). All participants were informed about the aim of
the study and signed written informed consent. The inclusion criterion was: (1) at least
18 years of age. The exclusion criteria were: (1) incapacity to follow instructions, (2) history
of medical disorders that may affect movement patterns.

2.2. Materials
2.2.1. Marker Motion Capture Measurement

A 10-camera VICON motion capture system with Nexus 2.12.1 software was used to
collect bony landmark positions at 100 Hz. The Upper Body Plug-In-Gait model [27] was
extended with the following landmarks: left distal clavicle (LCLAV), right distal clavicle
(RCLAV) and left back (LBAK) (blue dots in Figure 1). Static calibration and dynamic
movement trials of participants were recorded for subsequent kinematic processing.

2.2.2. IMU Motion Capture Measurement

Four XSens MTw inertial measurement unit sensors (Xsens Technologies B.V., En-
schede, the Netherlands) containing 3-axis linear accelerometers (range: ±160 m/s2),
gyroscopes (range: ± 2000 deg/s) and magnetometers (range: ± 1.9 Gauss) were used
to track the head and trunk segments. The size of sensor was 47 × 30 × 13 mm and the
weight was 16 g. The IMUs were placed on the back of the head, the proximal sternum and
the upper spine on the spinous process of T5 and above T10 (orange rectangles in Figure 1)
by the double-sided tape. Pilot testing revealed that three IMUs provide sound kinematics
and were selected for measuring the trunk segment. The IMU’s positive z-axis points
forward, and the positive y-axis points up. The IMUs were calibrated with the participant
standing in an erected posture. The Awinda Station connected to the laptop was used for
collecting synchronizing wireless data from all MTw sensors via MT manager software
(v2021.0.1 build 6752). The orientation data was stored in the laptop after each recording.
The sampling rate was 100 Hz.
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and 2× Sony 4K FDR-AX53 (Tokyo, Japan)) with an image resolution of 1920 × 1080 pixels 
at a sampling rate of 50 Hz. An audible cue was used to synchronize data recording be-
tween cameras. To obtain the intrinsic (focal length) and extrinsic (position and orienta-
tion) parameters of each camera, a ChArUco board was used [28]. Calibration was re-
peated until the reprojection error (geometric error corresponding to the image distance 
between a projected point and a measured one) was less than 1 pixel [21]. After data ac-
quisition, Shotcut software (https://shotcut.org/ (accessed on 24 April 2021)) was used to 
synchronize the videos for each participant. 

Figure 1. Marker (blue dots) & IMU (orange rectangles) placement.

2.2.3. Markerless Motion Capture Measurement

Figure 2 shows a schematic overview of the experimental set-up. The markerless
motion capture system consisted of 4 video cameras (2× Panasonic HC-VX980 (Osaka,
Japan) and 2× Sony 4K FDR-AX53 (Tokyo, Japan)) with an image resolution of 1920 × 1080
pixels at a sampling rate of 50 Hz. An audible cue was used to synchronize data record-
ing between cameras. To obtain the intrinsic (focal length) and extrinsic (position and
orientation) parameters of each camera, a ChArUco board was used [28]. Calibration was
repeated until the reprojection error (geometric error corresponding to the image distance
between a projected point and a measured one) was less than 1 pixel [21]. After data
acquisition, Shotcut software (https://shotcut.org/ (accessed on 24 April 2021)) was used
to synchronize the videos for each participant.
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2.3. Study Approach

To establish the accuracy and validity of the IMU and markerless motion capture
methods for neck and trunk kinematics, the following outcome variables were calculated:
(1) 3D neck angles: flexion/extension (FE) angle, lateral bending (LB) angle, transverse
angular rotation (AR) angle between head segment and trunk segment at the level of C7
and T1; and (2) 3D trunk angles: flexion/extension (FE) angle, lateral bending (LB) angle,
transverse angular rotation (AR) angle in the global coordinate system.

The 3D neck angles and 3D trunk angles obtained by IMUs and the markerless-based
system were compared with an optoelectronic marker-based system (gold standard) during
two movement tasks:(1) movements in primarily a single anatomical plane (SP-movements,
SP is the abbreviation of single anatomical plane) and (2) a simulated surgery task in
multiple planes. For SP-movements, each subject was asked to perform neck and trunk
flexion and extension, left and right lateral bending and left and right rotation subsequently.

The simulated surgery task was a task that involved simultaneous and repetitive neck
and trunk movement in the combined frontal, sagittal and transverse planes. Our goal was
to simulate the working postures and repetitive movements as performed during surgical
interventions. To simulate the surgery environment, an OR table was placed in the lab.
Participants were instructed to transfer small objects in a box on the table from left to right
using forceps in both hands. The details of the tasks were selected through observations
during surgical training and informal interviews with surgical training managers of the
Skills Center of the University Medical Center Groningen. A detailed description of the
tasks is shown in Figure 3 and Table 1.

Before each trial, the participants were asked to stand up straight, facing forward
as a neutral reference position. During both SP-movements and the simulated surgery
task, neck and trunk motion were captured with a marker-based optoelectronic system,
multiple IMUs and a markerless-based system simultaneously. Each participant performed
the series of SP-movements and the simulated surgery task twice. The first trial of each
participant’s movement task was used for training the DeepLabCut model and excluded
from accuracy and validity analyses. Trunk flexion was used for time synchronization of
the motion data obtained by 3 methods based on a cross-correction algorithm [29].
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Table 1. Detail of simulated surgical task.

Task Set-Up Instructions

Picking up small
objects,

transferring them
and putting them

down

An operating table was placed in
front of the participant. The height
of the operating table was adjusted
to the most comfortable position for

participants. A box with tilted
containers was placed on the

operating table. The function of
tilted containers is to block the

vision of the participants so that
they need to look down to see the
forceps. Five small objects (bottle
caps) were placed inside the box,
two forceps were placed on the

left table.

(1) Pick up both forceps on the left
side of the table (one in each hand).
(2) Use the forceps to grasp a bottle
cap with the left hand from the left

tilted container.
(3) Transfer the object from the

left-hand forceps to the right-hand
forceps.

(4) Put the bottle cap into the right
tilted container.

(5) Put the forceps down at the
original position.

(6) Get back to normal position.

2.4. Data Analysis

For all three assessment methods (Sections 2.2.1–2.2.3) the same customized OpenSim
4.3 musculoskeletal model was used [30]. The customized model was modified from
the full body thoracolumbar spine model and locked all the degrees of freedom except
for: pelvis translation_x, pelvis translation_y, pelvis translation_z, trunk FE, trunk LB,
trunk AR, neck FE, neck LB, neck AR) [30]. The model used in this research can be found
in the Supplementary Material. The standard OpenSim scaling and inverse kinematic
workflows were used to compute neck and trunk angles from 3D marker data, IMU data
and markerless data [31,32].

2.4.1. Marker-Based Data Processing

Gaps in the raw optoelectronic motion capture data were filled (Gap-fill Woltering filter,
max gap length 10 frames) and filtered using a 4th order Butterworth lowpass filter (6 Hz) to
remove high-frequency noise by Nexus 2.12.1 software. The static calibration trial was used
for scaling to obtain a customized model of the subject in the OpenSim. The scaling maxi-
mum and RMS marker errors of bony landmark positions were less than 1 cm for each par-
ticipant. Using the scaled model, the OpenSim Inverse Kinematics tool (IK) (OpenSim 4.3)
was used to estimate 3D neck and trunk kinematics. The IK maximum errors and RMS
errors for bony landmarks were less than 4 cm and 2 cm, respectively in accordance with
common practice [33] (OpenSim IK Best Practices https://simtk-confluence.stanford.edu:
8443/display/OpenSim/Simulation+with+OpenSim+-+Best+Practices (accessed on 11
November 2021)).

2.4.2. IMU-Based Data Processing

MT manager [34] was used to export IMU data (3-axis acceleration and direction cosine
matrix) based on the Xsens fusion filter algorithm. Gap filling was performed when less
than 10 consecutive data points were lost. A static calibration trial of the subject standing
in a neutral pose was used for calibration. Based on the scaled model and orientation files,
customized MATLAB scripts were used to perform the OpenSim IMU Inverse Kinematic
workflows.

2.4.3. Markerless-Based Data Processing

The first trial of each movement task was used for algorithm training. In total,
200 frames were extracted based on DeepLabCut algorithm from four cameras and 10
participants for deep learning model training. The virtual tracking points on the head
and trunk (three yellow dots on the head: left and right of the eyebrows, on the chin; and
four red dots on the trunk: on the left and right distal clavicle, proximal and distal of the
sternum) were labelled manually (shown in Figure 4a). DeepLabCut [20] was used to train

https://simtk-confluence.stanford.edu:8443/display/OpenSim/Simulation+with+OpenSim+-+Best+Practices
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Simulation+with+OpenSim+-+Best+Practices
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the algorithm and predict the 2D position of tracking points on a GPU (GEFORCE RTX
2060 Max-Q, Nvidia Corp, Santa Clara, CA, USA) for 120,000 iterations in around 12 h.
Anipose [21] was used to analyse the separate videos based on the trained model and
predict the 3D coordinates of tracking points. The workflow was followed as described
previously [20,21]. The tracking point position data were further processed with OpenSim
software as described in Section 2.4.1. to obtain segment positions and joint kinematics.
The workflow for the markerless method is summarized in Figure 4b.
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2.5. Statistical Analysis

To establish the accuracy and validity of the IMU and markerless computations of neck
and trunk kinematics, the following variables were computed and statistically analysed:

• The root mean square error (RMSE) between the IMU/markerless-based method and
the marker-based method of the 3D neck and trunk angles over total movement time.

• The difference in absolute ROM between the IMU/markerless-based method and
marker-based method of the 3D neck and trunk angles. The first data point of the
angle-time series from each measurement system was subtracted to correct the offset
between systems. For SP-movements, the ROM was defined as the maximum dif-
ference between the starting anatomical angle and the maximum angle of the neck
and trunk [35]. For simulated surgery tasks, the ROM was defined as the difference
between the minimum and maximum angle [17].

• Relative ROM error, the ratio of IMU/markerless ROM difference to the gold standard
ROM.

• Paired t-tests on the mean differences in ROM between IMU/markerless-based method
and marker-based method to obtain systematic biases.

• Bland–Altman plots of the IMU and markerless method for 3D neck and trunk ROM
were used to show the limits of agreement and systematic biases.

• The intraclass correlation coefficient ICC (2, 1) for ROM between the IMU/markerless-
based method and marker-based method to establish the validity of the system. ICCs
were considered as follows: 0.9–1 as excellent, 0.70–0.89 as good, 0.40–0.69 as accept-
able, and <0.40 as low correlation [36]. The level of significance was set at 0.05.

Statistical analyses were performed in IBM SPSS Statistics, version 27. As a quality cri-
terion, measurement errors (RMSE) within 5.0 degrees were interpreted as acceptable [37].
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3. Results

Representative 3D neck and trunk angles during SP−movements and the simulated
surgical tasks are shown in Figures 5 and 6.
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LB (between to dash line was the simple plane movement).

3.1. Accuracy and Validity for IMU-Based Neck and Trunk Kinematics

The RMSE between the IMU-based method and the marker-based method were all
below 3 degrees except for the trunk AR (4.7 degrees) and neck FE (3.7 degrees) when
moving in a single plane (SP). During the simulated surgery task, the RMSE was less than
3.0 degrees for the trunk FE & LB, and less than 4.0 degrees for other neck and trunk angles.
The ROM differences between the IMU-based method and the optoelectronic system were
less than 3 degrees except for the trunk AR (5.0 degrees) and neck FE (5.4 degrees) during
SP-movements. The ROM differences between methods during the simulated surgery task
were less than 3 degrees (shown in Figures 7 and 8 and Table 2). Limits of agreement (LOA)
and mean relative ROM error for the IMU method during SP-movements and the simulated
surgery task are shown in Table 2. There were systematic biases for ROM on the trunk
FE/LB/AR and neck FE (p < 0.05) for SP-movements. The IMU method underestimated
trunk FE, trunk LB and trunk AR, but overestimated neck FE angles. During simulated
surgery tasks, there were systematic biases for ROM on trunk FE and neck AR (p < 0.05).
Trunk FE was underestimated, but the neck AR ROM was overestimated.
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Table 2. RMSE (mean ± SD), Range of motion difference (mean ± SD, in degrees), Limits of agreement
and Relative ROM error between the IMU/Markerless method and the gold standard.

Trunk FE Trunk LB Trunk AR Neck FE Neck LB Neck AR

IMU method

SP-movements

RMSE 2.3 (1.3) 2.1 (0.9) 4.7 (1.7) 3.7 (2.2) 2.0 (1.0) 2.2 (1.1)

ROM difference 2.3 (2.1) 2.2 (1.2) 5.0 (2.9) 5.4 (4.1) 0.2 (2.6) 0.4 (2.4)

LOA −1.9~6.4 −0.2~4.5 −0.6~10.6 −13.5~2.74 −4.9~5.3 −5.1~4.3

Relative ROM error 0.035 0.053 0.070 0.11 0.0057 0.0058

Simulated surgery
task

RMSE 2.3 (1.1) 2.5 (1.2) 3.6 (1.8) 3.6 (2.2) 3.9 (2.0) 3.6 (2.1)

ROM difference 1.7 (1.9) 0.3 (2.8) 2.9 (4.2) 0.8 (4.1) 0.3 (2.8) 2.2 (3.0)

LOA −2.1~5.4 −5.7~5.2 −5.3~11.1 −7.2~8.8 −5.2~5.8 −8.1~3.7

Relative ROM error 0.043 0.0077 0.072 0.024 0.0084 0.048

Markerless
method

SP-movements

RMSE 9.6 (12.5) 4.5 (4.0) 14.9 (10.1) 4.7 (3.0) 7.6 (3.8) 15.2 (8.2)

ROM difference 6.4 (7.1) 5.5 (12.1) 11.7 (13.5) 2.9 (8.5) 2.8 (16.0) 18.5 (10.4)

LOA −7.5~20.4 −29.2~18.2 −14.8~38.1 −13.6~19.5 −28.5~34.1 −1.9~38.8

Relative ROM error 0.10 0.13 0.16 0.058 0.080 0.26

Simulated surgery
task

RMSE 5.5 (2.1) 5.6 (3.3) 8.7 (4.1) 6.1 (3.2) 7.0 (4.2) 7.3 (2.7)
ROM difference 8.3 (5.8) 4.8 (7.13) 3.6 (13.8) 10.3 (14.7) 12.0 (11.1) 2.2 (9.9)

LOA −19.8~3.2 −19.3~9.6 −30.6~23.5 −39.4~18.9 −34.8~10.9 −24.3~20.0

Relative ROM error 0.21 0.12 0.089 0.31 0.33 0.048

Bold values indicate a significant difference between the IMU/Markerless method and the gold standard.
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The ICC (2,1) for ROM between IMU and the optoelectronic measurement system
showed excellent correlation (>0.9), except for neck FE where ICC was good [ICC (2,1) = 0.8]
during the simulated surgery task (Table 3).

Table 3. ICC (2,1) of ROM for the IMU/Markerless method.

Trunk FE Trunk LB Trunk AR Neck FE Neck LB Neck AR

IMU
method

SP-movements
ICC (2,1) 0.98 0.95 0.92 0.90 0.99 0.97
95% CI

(p value)
0.74~1.00
(p < 0.001)

0.10~0.99
(p < 0.001)

0.03~0.98
(p < 0.001)

0.16~0.98
(p < 0.001)

0.96~1.00
(p < 0.001)

0.88~0.99
(p < 0.001)

Simulated
surgery task

ICC (2,1) 0.96 0.97 0.95 0.80 0.96 0.95
95% CI

(p value)
0.72~0.99
(p < 0.001)

0.88~0.99
(p < 0.001)

0.74~0.99
(p < 0.001)

0.39~0.95
(p < 0.01)

0.83~0.99
(p < 0.001)

0.73~0.99
(p < 0.001)

Markerless
method

SP-movements
ICC (2,1) 0.83 0.59 0.08 0.86 0.09 0.28
95% CI

(p value)
0.25~0.96
(p < 0.001)

0.041~0.88
(p < 0.05)

−0.25~0.56
(p = 0.351)

0.57~0.96
(p < 0.001)

−0.61~0.67
(p = 0.408)

−0.10~0.72
(p < 0.05)

Simulated
surgery task

ICC (2,1) 0.55 0.70 0.56 0.31 0.47 0.42
95% CI

(p value)
−0.11~0.88
(p < 0.01)

0.18~0.92
(p < 0.01)

−0.06~0.87
(p < 0.05)

−0.19~0.75
(p = 0.122)

−0.11~0.83
(p < 0.05)

−0.27~0.82
(p = 0.1)

Bold values indicate statical significance.

3.2. Accuracy and Validity for Markerless-Based Neck and Trunk Kinematics

The RMSE between the markerless-based method and the marker-based method were
all below 10.0 degrees except for the trunk AR (14.9 degrees) and neck AR (15.2 degrees)
during SP-movements. For the simulated surgery task, the RMSEs were less than 6 degrees
for the trunk FE & LB, and less than 8.0 degrees for the neck FE, LB and AR.

The markerless-based method had less than 7.0 degrees of ROM difference except for
the trunk AR (11.7 degrees) and neck AR (18.5 degrees) during SP-movements. During
the simulated surgery tasks, ROMs were less than 5 degrees for the trunk LB, trunk AR
and Neck AR, and less than 12 degrees for the trunk FE, neck FE and neck LB (shown in
Figures 9 and 10 and Table 2). Limits of agreement (LOA) and relative ROM error for the
markerless method during SP-movements and the simulated surgery task are shown in
Table 2. There were systematic biases on trunk FE, trunk AR and neck AR (p < 0.05) for SP-
movements. The markerless method underestimated the ROM for trunk FE, trunk AR and
neck AR. During simulated surgery tasks trunk FE and neck LB ROM were systematically
underestimated (p < 0.05).

ICC (2,1) between markerless and marker-based kinematic computations showed
good validity of the trunk FE and neck FE movements and trunk LB ICC was within
acceptable ranges during SP-movements (Table 3). The ICCs (2,1) between the markerless
and marker-based kinematic computations were acceptable for trunk FE, trunk AR, neck LB
and neck AR. ICC (2,1) for trunk LB was good during the simulated surgery task. Table 3
shows the summary of ICCs results.
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4. Discussion

In this study, we aim to establish the validity and accuracy of the IMU and markerless
method against the marker-based method (Vicon). IMU-based computations of 3D neck and
trunk angles have good-to-excellent validity with 2–5 degrees RMSE accuracy as compared
to optoelectronic motion capture systems during simple and complex neck and trunk
movements. The markerless method shows an acceptable-to-good validity to establish
trunk kinematics only in the sagittal and frontal plane with RMSEs of 5–10 degrees during
both SP-movements and simulated surgery tasks. However, the markerless method shows
poor outcomes for neck kinematics. Our results show that IMU-based methods are valid
to assess neck and trunk kinematics during simulated surgery tasks but that markerless
methods such as DeepLabCut exceed the threshold for acceptable kinematic accuracy [37].

4.1. IMU Motion Capture Method

The RMSE and ROM difference values of the IMU method ranged between 1.0 to 5.5
degrees showing good accuracy for estimating neck and trunk kinematics during simulated
surgery tasks [37]. The accuracy results from the IMU-based methods are comparable to
previous studies reporting RMSEs and ROM for the trunk FE during laparoscopic surgery
tasks [17]. A characteristic for laparoscopic surgery tasks is that these activities involve only
small movements limiting the generalizability of the findings to other surgery tasks. We
add to these findings and show that IMU-based methods maintain a high level of accuracy
even during complex simulated open surgery tasks with larger ROM in the neck and trunk
segments. In addition, contrary to previous studies comparing optoelectronic systems with
IMU measurements we placed the retroreflective markers on anatomical landmarks rather
than on the IMU itself. While this methodology led to an increase in RMSE’s and ROM
differences we propose that using anatomical landmark definition allows better validation
of IMU based motion capture systems for movement analyses [38,39]. The ICC (2,1) results
from our studies showed good-to-excellent (0.80–0.99) agreement with the gold standard
in multiple planes and were also comparable to or even better than the previous studies
(0.63–0.99) [14,17]. The 95% CI for Trunk LB, AR and Neck FE for SP-movements of the
IMU method are large, the reason might be the small sample size and the fact that ROM
data were not normally distributed.

During SP movements in four out of six degrees of freedom, ROM differences were
significantly different as compared to the gold standard, but only two out of six differed
significantly during simulated surgery tasks. This might be explained by the fact that the
IMU method has similar relative ROM error in SP-movements and simulated surgery tasks,
but SP-movements generally have a larger ROM than the simulated surgical task. The
larger ROM may lead to a larger difference compared with the gold standard and lead to
a significant difference. For future studies, it is recommended to test more subjects and
consider measurements with variability in ROM.

In our study, when assessing movements with IMUs one should especially be careful
in interpreting the estimated rotation angles since they contain the largest ROM differences
and RMSE as compared to optoelectronic measures. A possible reason for underestimating
rotation angles is, that the IMUs are placed on the sternum and spine, while some of
the markers are placed more lateral on the clavicula. When rotating the trunk, pro-and
re-traction at the shoulder joint might have led to increased estimates of trunk rotation
angles with the optoelectrical system. In our study, the trunk segment is considered as
one rigid body, future studies might consider using a more complex model to establish
the extent to what the use of a limited number of IMUs leads to wrongly estimating the
amount of trunk rotation.

As compared to optoelectronic systems the practical advantage of IMU based motion
capture in work-related situations is large since there is no need for optical camera systems
and marker placement on the participants clothes (e.g., a surgeons’ gown). In the future
studies, monitoring kinematics of surgeons in the operating room can provide feedback and



Sensors 2022, 22, 8342 15 of 18

input (neck and trunk range of motion, estimated support force) for developing preventive
devices such exoskeletons.

4.2. Markerless Motion Capture Method

The markerless method shows ROM and RMSE accuracy within 3 to 12 degrees for
the neck and trunk kinematics during the simulated surgery task. The accuracy results
were comparable to the previous research on 2D kinematics of human walking [21], which
reported angle errors of less than 16 degrees in over 90% of frames and less than 10 degrees
in over 75% of frames. Our study showed the markerless method had an acceptable-to-good
agreement (ICC 0.55–0.83) on trunk kinematics in the sagittal and frontal plane during both
SP-movements and simulated surgery tasks. The markerless ICC results are comparable
with previous research reporting ICCs ranged from 0.37 to 0.82 during a bilateral squat in
the sagittal plane [24]. We add to this finding that the markerless method can also establish
similar ICC values in the frontal plane for trunk kinematics during both SP and simulated
surgery tasks.

The markerless method is not stable. Generally, three reasons could exist for the
poor kinematics of the markerless method. The first and most important reason is the
occlusion of tracking points during the movement. Tracking points can be blocked when
the participant reaches the limit of the ROM and can be blocked by their own segment
(Figure 11). In the case of occlusion of multiple successive frames, the deep learning
model loses accuracy and fails to accurately predict the tracking point position. Inaccurate
estimates of tracking points’ positions in turn lead to inaccurate estimates of joint angles
and body postures [25]. The second reason is the chosen camera setup. In our setup, the
four cameras were mainly positioned in the sagittal and frontal planes (Figure 3). As a
consequence, the change of tracking point position in the transverse plane is smaller than
in the frontal and sagittal planes, in other words, the markerless system in our setup has a
low resolution for transverse plane movements. This setup may magnify the tracking point
error in the transverse plane and may lead to larger RMSE and ROM differences for neck
and trunk AR. Sufficient cameras to track all key points across possible pose configurations
can lead to a better result [21].
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Figure 11. Example of tracking points bad detection. In the left figure, only tracking point 4 was
tracked correctly, in the right figure, no tracking points were tracked correctly.

The third reason is the tracking error of the DeepLabCut algorithm. To track the head
segment, we select the eyebrows and chin as tracking points. The eyebrow and chin may
not be obvious features as retroreflective markers. Therefore, it can lead to tracking errors
even if there is no occlusion of the head during the movement. In further research, we
recommend putting ‘stickers’ on the head to make the tracking points easy to recognise
and improve neck kinematic results.
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In addition to the main reasons, it should be mentioned that, we had to take out the
SD cards from each camera to obtain calibration videos and put them back after calibration.
This process may slightly change the orientation and position of the cameras, which can
possibly affect triangulation and may cause bad neck and trunk kinematics results.

4.3. Limitations and Recommendation

There were several limitations in this study: (1) the sample size of our pilot study
is ten and the participants were all young participants (21~30 years.) and not surgeons,
a larger sample size can provide a better estimation on intraclass correlation coefficient,
RMSE, LOA and paired t-test. Besides, the participants’ movement patterns may differ
from surgeons, limiting the generalizability of the systems. It is recommended to perform
the test with medical staff in a real OR environment in future research. (2) In this study, we
used sound signal for synchronizing the 4 cameras. It might be better to use cameras with
built-in synchronization functions to achieve higher synchronization accuracy. (3) Training
model: In this study, we trained 200 frames for the deep learning model and these frames
may not include rare behaviours. The model can fail to predict the right position of tracking
points if there are rare movements in the videos. This may lead to tracking errors. In our
preliminary observations, the markerless method can yield good results in 3D kinematics
if the tracking errors and tracking points occlusion are minimized. Therefore, a neural
network which is trained by more frames including rare movements should give better
tracking points detection. It may help to produce more accurate and stable 3D kinematics
results. (4) We did not assess long-term motion capture and the influence of magnetic
field on IMU based outcomes. Therefore, further research should include trials of longer
duration and in magnetic fields similar to ones present at an OR.

5. Conclusions

In this study, we validated IMU and markerless motion capture-based methods to
measure neck and trunk kinematics against the gold standard optoelectronic motion capture
method for movements primarily in a single plane and simulated surgery tasks. The IMU-
based method has shown good-to-excellent validity compared to the gold standard for
simulated surgery tasks. The present markerless method is not yet sufficiently valid, but
it might have the potential for 3D movement analysis in the OR if the camera setup and
model training are improved and tested. It is recommended to use IMU for the kinematics
analysis of head and trunk motions in the OR.
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