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ABSTRACT We propose an orientation prediction algorithm based on Kalman-like error compensation for
virtual reality (VR) and augmented reality (AR) devices using measurements of an inertial measurement
unit (IMU), which includes a tri-axial gyroscope and a tri-axial accelerometer. First, the initial prediction
of the orientation is estimated by assuming linear movement. Then, to improve the prediction accuracy, the
accuracies of previous predictions are taken into account by computing the orientation difference between
the current orientation and previous prediction. Finally, we define a weight matrix to determine the optimal
adjustments for predictions corresponding to a given orientation, which is obtained by minimizing the
estimation errors based on the minimum mean square error (MMSE) criterion using Kalman-like error
compensation. Experimental results demonstrate that the proposed algorithm exhibits higher orientation
prediction accuracy compared with conventional algorithms on several open datasets.

INDEX TERMS Orientation prediction, inertial measurement units (IMUs), motion-to-photon (MTP)
latency, virtual reality (VR), augmented reality (AR), attitude and heading reference system (AHRS),
minimum mean square error (MMSE).

I. INTRODUCTION
Augmented reality (AR) and virtual reality (VR) technolo-
gies, which either enrich or replace real-world environments
with simulated ones, have recently garnered significant atten-
tion in both industry and academia [1], [2], [3], [4], [5],
[6]. However, VR and AR systems suffer from end-to-end
delay or latency, which affects user experience. In particular,
motion-to-photon (MTP) latency, which is defined as the time
between a user’s movement and the corresponding movement
rendered on the screen of a head-mounted display, is a major
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challenge that limits the applicability of VR and AR [7]. For
example, MTP latencies higher than 20 ms induce motion
sickness or dizziness in users [8], [9]. Therefore,MTP latency
reduction is essential for improving users’ virtual experience.
A common approach to reduce MTP latency is to predict
future head orientations by anticipating a user’s movements,
which enables VR and AR devices to render future scenes
in advance. Therefore, it is essential to develop algorithms
capable of accurately predicting head orientation in VR and
AR systems. In addition to AR andVR, orientation prediction
plays a vital role in various practical applications, such as
unmanned aerial vehicles [10], robotics [11], [12], and navi-
gation systems [13], [14], [15].
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Orientation prediction requires the prior estimation of cur-
rent orientation, which can be estimated using information
from various measurement sources, e.g., inertial sensors or
mono/stereo cameras. For example, in [13], [16], [17], [18],
[19], and [20], data measured from an inertial sensor and a
camera were merged to estimate the orientation of an object,
where an inertial sensor was used to determine orientation by
integrating measurements, while camera outputs were used
to compensate for errors. However, the use of visual infor-
mation increases the complexity of the process and makes it
unsuitable for resource-constrained devices. Further, changes
in illumination affect the performance of camera-based
algorithms.

The advancement of MEMS technology have led to the
development of small and inexpensive inertial sensors called
inertial measurement units (IMUs). Because of their high
sampling rates, minimal latency, and small size [21], [22],
IMUs have been employed in modern VR and AR devices
to acquire data for localization of locations and orientations.
A commercial IMU comprises a tri-axial gyroscope, a tri-
axial accelerometer, and/or a magnetometer. The gyroscope
measures angular velocity and integrates it over time to deter-
mine orientation angles. However, the integration process
also accumulates sensor errors; thus, the estimated orienta-
tions deviate from the true orientationwith time,making them
unreliable [23]. The accelerometer is used to overcome this
issue by measuring the Earth’s gravitational field, thereby
yielding a reference vector for correcting the estimated orien-
tations. Magnetometers, which measure the Earth’s magnetic
field, are also used for correcting angular velocity. However,
because of their high sensitivity tomagnetic disturbance, such
as those arising from metal or electrical equipment, their
applicability is limited [24].

Several orientation prediction algorithms for VR and AR
devices have been developed using IMUs based on Kalman
filters (KFs) and particle filters (PFs) [25], [26], [27], [28],
[29]. KF-based algorithms derive optimal estimators by
recursively performing two steps—prediction and correction.
In the prediction step, the filter predicts the future orientation
along with its uncertainty. Once the actual measurement is
observed, the prediction is corrected using weighted aver-
aging, where estimates with lower uncertainty are assigned
greater weights [30]. By contrast, a PF is a recursive Bayesian
state estimator that represents the probability density function
of a system state using random samples. Because PFs can
utilize a state space model in any form, they can be applied
to a wide range of models. However, despite their higher
complexity, PFs do not exhibit significant improvement over
KFs [31], [32]. Thus, KFs are more commonly employed in
orientation estimation and prediction.

As the standard KF is an optimal estimator only under the
assumption of linearity, its variants, e.g., extended Kalman
filter (EKF) and unscented Kalman filter (UKF), are widely
used for orientation prediction in nonlinear systems [33].
In particular, EKF predicts orientation by linearizing state
transition functions, which are calculated based on the

previous estimate, to the current estimate. For instance, Zhao
and Wang [34] compensated for deviations in estimates by
fusing redundant data from ultrasonic sensors and magne-
tometers. Tong et al. [35] compensated for disturbances in the
measurements to improve orientation estimation accuracy.
Ghobadi et al. [36] used the covariance inflation technique to
adjust noise covariance and reduce measurement uncertainty.
Further, Park et al. [37] mitigated the effect of accelera-
tion and magnetic disturbance by adjusting the measurement
covariance using the ellipsoidal method. In [38], Sun et al,
decoupled roll and pitch estimated from the magnetometer
measurements to reduce the influence of the magnetic distur-
bances. However, when the state transition and observation
models are highly nonlinear, EKF may exhibit inferior per-
formance because of the propagation of uncertainty.

In UKF, linearization is replaced with a deterministic
sampling scheme known as unscented transformation, which
chooses a set of sample points around the mean. Sev-
eral recent orientation estimation algorithms have employed
UKF to improve estimation accuracy. For example, in [39],
Marina et al. used a tri-axial attitude determination algorithm
as the observation model. Chiella et al. [40] developed an
adaptive strategy based on covariance matching to tune mea-
surement covariance. Further, Tong et al. [41] divided the
measurement updates of the gravity vector and magnetic field
vector into two stages to avoid the undesirable correction of
the Euler angle error. Although having a large number of sam-
ple points improves accuracy, it also increases the complexity
of the algorithms; high computational loads are one of the
most crucial drawbacks. Therefore, UKF-based algorithms
are unsuitable for devices with limited computational power,
such as VR and AR devices.

In this work, we propose a novel orientation prediction
algorithm to improve prediction accuracy by addressing the
limitations of conventional prediction algorithms. The pro-
posed algorithm operates by estimating linear displacement
from the current orientation and subsequent adjustments to
compensate for the error caused by linear prediction. Current
predictions are adjusted based on the accuracies of previous
predictions. To this end, the orientation difference between
the previous linear prediction and the current orientation
is ascertained. Then, we define a weight matrix to deter-
mine the optimal adjustment of the current prediction based
on the orientation difference. Similar to the derivation of
KF—differences with lower uncertainty are assigned greater
weights—the optimal weight matrix is obtained as the mini-
mum mean square error (MMSE) estimator using the predic-
tion error between the current and previously predicted orien-
tations. Experimental results demonstrate that the proposed
algorithm outperforms conventional orientation prediction
algorithms on several open datasets.

In summary, the main contributions of this paper are as
follows:
• We propose an orientation prediction algorithm that uses
the accuracy of previous predictions to improve the cur-
rent prediction accuracy.
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FIGURE 1. Illustration of the quaternion as rotation of the earth frame E
to the sensor frame S by angle θ around a vector n.

• We develop a Kalman-like error compensation scheme
to determine a weight matrix for optimal adjustment
with respect to linear movement by minimizing the esti-
mation error in the MMSE sense.

• The proposed algorithm is experimentally verified to
outperform conventional orientation prediction algo-
rithms on several open datasets.

The rest of this paper is organized as follows. Section II
introduces the notations used in this paper. Section III
describes the proposed orientation prediction algorithm,
and Section IV discusses the experimental results. Finally,
Section V concludes the paper.

II. BACKGROUND
In this section, we briefly introduce the notations used
throughout this paper. Hereafter, scalar values are denoted
by italicized letters, and matrices and vectors by bold roman
uppercase and lowercase letters, respectively.

Two coordinate frames—the Earth frame E and the sen-
sor frame S—are used to represent orientation in three-
dimensional (3D) space. A rotation between the frames can
be represented using a rotation matrix, Euler angles, or a unit
quaternion. The rotation matrix is a 3 × 3 matrix that repre-
sents the orientation. In comparison, the unit quaternion rep-
resents orientation using only four elements. Therefore, com-
putations using the rotation matrix are more time-consuming
than those using the unit quaternion. Euler angles represent
orientation using three angles—roll, pitch, and yaw—and
they are commonly used because of their intuitive physical
representation. However, they exhibit a phenomenon known
as ‘‘gimbal lock,’’ which causes a singularity problem in ori-
entation representation [42]. Among the aforementioned rep-
resentations, unit quaternions are more compact, numerically
stable, and computationally efficient than rotation matrices.
Moreover, the use of quaternions prevents the loss of degrees
of freedom that appears when Euler angles are used [43].
Thus, unit quaternions are used to represent orientation in this
paper.

The quaternion q can be used to represent the orientation
of the sensor frame S relative to the Earth frame E . Specifi-
cally, the quaternion can be interpreted as a rotation around

an arbitrary axis in 3D space, as depicted in Figure 1, and can
also be considered to be a vector in a four-dimensional vector
space [42], given by

q =
[
cos

θ

2
,n sin

θ

2

]T
= [q0, q1, q2, q3]T , (1)

where q0 and [q1, q2, q3]T are the scalar and vector parts
of the quaternion, respectively, n denotes the normalized
rotational axis, and θ is the angle of rotation.

The product of two quaternions, q and p, is defined as [42]

q⊗ p = [q0, q1, q2, q3]T ⊗ [p0, p1, p2, p3]T

=


q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 − q1p3 + q2p0 + q3p1
q0p3 + q1p2 − q2p1 + q3p0

. (2)

Please note that the quaternion product is not commutative,
i.e., q⊗ p 6= p⊗ q.
Let us assume that the quaternion q represents the orienta-

tion of a rotating sensor frame relative to the reference Earth
frame. Then, the quaternion rate or the time-derivative of this
quaternion can be expressed in terms of the corresponding
angular velocity vector ω, which defines the rate at which the
sensor frame rotates relative to the Earth frame or the rate of
change in the orientation. The quaternion derivative is defined
as [44]

q̇ =
1
2
q⊗

[
0
ω

]
=

1
2
�(ω)q, (3)

where ω = [ωx , ωy, ωz]T represents the angular velocities of
the x-, y-, and z-axes in the sensor frame; and �(ω) denotes
the right quaternion multiplier related to ω, defined as

�(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

. (4)

A vector Ev ∈ R3 in the Earth frame can be rotated to the
vector Sv ∈ R3 in the sensor frame using the quaternion q
as [44]

Sv = R(q)Ev, (5)

where the rotation matrix R(q) is defined as

R(q)

=

q20+q21−q22−q23 2(q1q2+q0q3) 2(q1q3−q0q2)
2(q1q2−q0q3) q20−q

2
1+q

2
2−q

2
3 2(q2q3+q0q1)

2(q1q3+q0q2) 2(q2q3−q0q1) q20−q
2
1−q

2
2+q

2
3

 .
(6)

Quaternion arithmetic requires quaternion describing ori-
entation to be of unit length. Therefore, quaternions are first
normalized as

|q| =
√
q20 + q

2
1 + q

2
2 + q

2
3 = 1. (7)

In this paper, all quaternions used for representing orientation
are taken to be unit quaternions, i.e., qTq = 1.
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FIGURE 2. Illustration of prediction of head orientation.

III. PROPOSED ORIENTATION PREDICTION ALGORITHM
In this section, an overview of the proposed algorithm is
first provided. Then, the details of the proposed algorithm to
predict future orientations are described.

A. OVERVIEW
Traditional EKF- and UKF-based algorithms [45], [46] can
correct orientation prediction using only accelerometer read-
ings. However, a greater amount of yaw information of
orientations can be obtained from magnetometer readings.
Therefore, many extensions of EKF- and UKF-based algo-
rithms [34], [35], [36], [37], [38], [39], [40], [41] that use
additional information from magnetometer readings to com-
plement the accelerometer readings during correction have
been developed. However, these algorithms introduce addi-
tional computational complexity as they require the process-
ing of more information. In this work, to avoid additional
computations, we develop an efficient yet effective orien-
tation prediction algorithm, which uses only gyroscope and
accelerometer readings.

Figure 2 shows an overview of the proposed algo-
rithm, which comprises the estimation of linear displace-
ment from the current orientation and subsequent adjustment.
In Figure 2, head orientations at two consecutive time steps t
and (t + 1) are visualized. At time t , the current orientation
qt is obtained as indicated by the dark blue arrow. The linear
displacement q̂−t+1 is estimated, represented by the light green
arrow, based on the assumption that the head rotates linearly
with a constant angular velocity. However, movement can
also be nonlinear. Therefore, an adjustment Wt+1(qt − q̂−t )
is required to compensate for the error caused by linear
prediction by considering the accuracy of the previous linear
prediction. Finally, the future orientation q̂t+1, denoted by
the dark green arrow, is determined by combining the linear
displacement q̂−t+1 and the adjustmentWt+1(qt − q̂−t ).

Figure 3 shows the functional diagram of the pro-
posed algorithm to estimate q̂t+1, which consists of six

components—tracking, compensation, linear motion estima-
tion, weight matrix computation, adjustment computation,
and prediction. Note that the true head orientation at time t
is not given, but it is estimated using a tracking algorithm.
Therefore, tracking estimates the current head orientation qt
with respect to the global reference frame. As the main goal
of this work is the prediction of the future orientation q̂t+1,
any conventional tracking algorithm can be used as a tracker.
In this work, we employ the filter developed in [47] because
of its high accuracy and efficiency. The compensation process
corrects the gyroscope output using the tracked orientation qt
to obtain ωt . Both these components use the accelerometer
and gyroscope outputs, at and ωt , respectively, as input.
Following tracking and compensation, the linear motion esti-
mation component uses the output of the two components
to estimate the linear displacement. Next, the weight matrix
computation component computes the optimal weight matrix
for adjustment. Then, the adjustment computation component
uses the computed weight matrix and the orientation differ-
ence between the current tracked orientation and the preced-
ing linear prediction to generate the adjustment. Finally, the
prediction component predicts the future orientation by inte-
grating all the outputs from the aforementioned components.
Let us describe how we predict future orientation in greater
detail in the following subsections.

B. ORIENTATION PREDICTION
As the sampling rate of commercial IMUs is very high,
e.g., 8 kHz [48], we assume that the direction and velocity
of head movement between t and (t + 1) is identical to those
between (t − 1) and t . Then, as the orientation displacement
can be obtained by multiplying the quaternion derivative q̇
with the sampling period 1T , the future orientation can be
estimated as

q̂−t+1 = qt + q̇t1T . (8)

However, as mentioned previously, numerical integration
of the angular velocity ωt induces cumulative errors in q̇t
because of eventual deviation, significantly degrading the
prediction performance. Therefore, inspired by [49] and [50],
we remove the error component, which is defined as the
relative rotation between the measured inertial direction and
the predicted direction of the gravity field, from the measured
angular velocity ωt .

The direction vector of gravity in the Earth frame is given
by Eg = [0, 0, 1]T . Then, the direction vector of gravity in the
sensor frame Sgt is obtained by rotating the gravity direction
vector Eg with respect to the current orientation qt as

Sgt = R(qt )Eg. (9)

Thus, the error vector et in the sensor frame can be obtained
by [49] and [50]

et = at × Sgt , (10)

where at denotes the measurement vector obtained from the
accelerometer. Figure 4 illustrates gravity vectors in the two
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FIGURE 3. Block diagram of the proposed algorithm for estimating q̂t+1.

FIGURE 4. Illustration of gravity in the Earth frame E and the sensor
frame S.

frames E and S, as well as the error in frame S. Then, the
gyroscope output is corrected by compensating for the error
as

ωt = ωt − Ket , (11)

where K denotes the correction gain. When K = 0, the angu-
lar velocity, obtained from the gyroscope, is used directly
without compensation. AsK increases, more aggressive com-
pensation is made to remove error components from the
gyroscope readings. Note that, although the previously esti-
mated orientation q̂t−1 was used to rotate the gravity direction
vector in (9) for tracking in [49] and [50], we use the current
true orientation qt to ascertain the prediction at the same
time t , thereby achieving more accurate prediction of future
orientation.

Next, the adjusted rate of change in the orientation q̇ is
computed using (3) and the corrected angular velocity in (11)
as

q̇t =
1
2
�(ωt )qt . (12)

Then, the future head orientation in (8) can be rewritten as

q̂−t+1 = qt + q̇t1T =
[
I+

1T
2
�(ωt )

]
qt = Ftqt , (13)

where Ft = I+ 1T
2 �(ωt ) is the matrix defining the dynamic

system.
Note that the prediction in (13) is based on the assump-

tion of linear motion. Therefore, any nonlinear motion,
e.g., abrupt changes in velocity or direction, may degrade
the prediction accuracy. Further, prediction of the orientation
q̂−t+1 in (13) does not account for the prediction accuracy
at the previous time instance (t − 1), q̂−t . In this work,
to improve the accuracy of the current linear prediction q̂−t+1,
we consider the prediction accuracy of the previous predic-
tion, more specifically, the difference between the current
true orientation and the previous linear prediction, (qt − q̂−t ).
To this end, we define the weight matrix W ∈ R4×4 to
determine the adjustment of the prediction corresponding
to a given orientation difference (qt − q̂−t ). In this work,
the weight matrix is computed similarly to the derivation of
the Kalman filter [30]—differences with less uncertainty are
assigned greater weights. More specifically, the adjustment is
calculated as

Wt+1(qt − q̂−t ). (14)

Then, the future orientation q̂t+1, calculated using the linear
displacement in (13) and the adjustment in (14), can be
predicted as

q̂t+1 = q̂−t+1 +Wt+1(qt − q̂−t )

= Ftqt +Wt+1(qt − q̂−t ). (15)

The weight matrix Wt+1 in (15) can be obtained by min-
imizing the error between the true orientation qt+1 and the
predicted orientation q̂t+1. However, at current time t , infor-
mation regarding the future orientations qt+1 and q̂t+1 is
unavailable. Therefore, estimating the optimal weight matrix
Wt+1 is impossible at this time. However, note that, as IMUs
can measure samples at a very high sampling rate, the dif-
ference between two consecutive samples is very small. This
implies that the orientations at time t and (t + 1) are similar.
Thus, we assume that the weight matrices at time t and (t+1)
are similar and use the optimal weight matrix at the previous
time instance Ŵt for the current prediction, i.e.,Wt+1 = Ŵt .
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The optimal weight matrix Ŵt is determined to minimize
the prediction error εt in the orientation at time t , which is
defined as

εt = qt − q̂t , (16)

where qt and q̂t denote the true and predicted orientations,
respectively. However, note that the true orientation qt is
unavailable at time instance t . Therefore, instead, we use the
tracked orientation qt to approximate the true orientation.
However, as a tracking algorithm is imperfect, the tracked
orientation contains observation noise vt as

qt = qt + vt
= Ftqt−1 + vt , (17)

where vt is zero-mean Gaussian noise with a covariance
matrix C ∈ R4×4, i.e., vt ∼ N (0,C). Next, using (15), the
predicted orientation q̂t in (16) can bewritten as the following
function of the weight matrixW,

q̂t = Ft−1(qt−1 + vt−1)+Wt (qt−1 + vt−1 − Ft−2qt−2)

' Ft−1qt−1 +Wt (qt−1 + vt−1 − Ft−2qt−2). (18)

In (18), based on the assumption that both1T and ‖vt−1‖
are small and E[vt−1] = 0, Ft−1vt−1 is approximated as
Ft−1vt−1 ' 0. Note that, although this approximation is
somewhat aggressive, it greatly facilitates the derivation of
the closed-form solution, as will be described subsequently.
Therefore, the prediction error εt in (16) becomes

εt = (Ft− Ft−1)qt−1−Wt (qt−1 + vt−1 − Ft−2qt−2)

= (Ft− Ft−1)qt−1−Wtvt−1−Wt (qt−1− Ft−2qt−2).

(19)

Then, we define the cost function as themean squared error
of the prediction error

J (Wt ) = E
[
εTt εt

]
= E

[
tr
(
εtε

T
t

)]
= tr

(
E
[
εtε

T
t

])
. (20)

Because C = E
[
vtvTt

]
and E[vt ] = 0, by the definition of the

prediction error ε in (19), we have

E
[
εtε

T
t

]
= [(Ft − Ft−1)qt−1][(Ft − Ft−1)qt−1]

T

− (Ft − Ft−1)qt−1(qt−1 − Ft−2qt−2)
TWT

t

+WtCWT
t

−Wt (qt−1 − Ft−2qt−2)[(Ft − Ft−1)qt−1]
T

+Wt (qt−1 − Ft−2qt−2)(qt−1 − Ft−2qt−2)
TWT

t . (21)

Our objective is to determine theMMSE estimator with the
optimal weight matrix Ŵt that minimizes J (Wt ) in (20), i.e.,

Ŵt = argmin
Wt

J (Wt ). (22)

TABLE 1. Details of test datasets used for evaluation.

Based on the properties of the trace derivative provided in the
Appendix, the partial derivative of J (Wt ) with respect toWt
is given by

∂J (Wt )
∂Wt

= −2(Ft − Ft−1)qt−1(qt−1 − Ft−2qt−2)
T

+ 2Wt [(qt−1 − Ft−2qt−2)(qt−1 − Ft−2qt−2)
T
+ C].

(23)

Then, by setting the derivative in (23) to zero, we obtain the
optimal weight matrix

Ŵt = (Ft − Ft−1)qt−1(qt−1 − Ft−2qt−2)
T

×[(qt−1 − Ft−2qt−2)(qt−1 − Ft−2qt−2)
T
+ C]−1

= (qt − q̂−t )(qt−1 − q̂−t−1)
T

×[(qt−1 − q̂−t−1)(qt−1 − q̂−t−1)
T
+ C]−1. (24)

Finally, assuming that the observation noise is negligible
and substituting qt in (17) and Ŵt in (24) into (15), we obtain
the optimally predicted future orientation as

q̂t+1 = Ftqt + (qt − q̂−t )(qt−1 − q̂−t−1)
T

×[(qt−1− q̂−t−1)(qt−1− q̂−t−1)
T
+ C]−1(qt− q̂−t ).

(25)

IV. EXPERIMENTAL RESULTS
We evaluate the performance of the proposed orientation
prediction algorithm in comparison with those of five con-
ventional prediction algorithms: EKF, UKF, and three of their
extensions, i.e., covariance inflated-multiplicative extended
Kalman filter (CI-MEKF) [36], decoupled orientation estima-
tion approach (DOEA) [38], and robust adaptive unscented
Kalman filter (RAUKF) [40]. For reproducibility, we provide
the source codes on our project website.1

A. EXPERIMENTAL SETTINGS
Six real-world test datasets with different sampling frequen-
cies and types of movements are used for evaluation—three
test datasets with ground-truth orientations (LOPSI [51],
FKF [47], and BROAD [52]) and three test datasets without
ground-truth orientations [53] (spiralStairs, straightLine, and
stairsAndCorridor). The LOPSI dataset is collected using a
foot-mounted IMU, which contains sensor data of a straight
trajectory at a sampling rate of 100 Hz. The FKF test dataset

1https://github.com/hueledao/Orientation_Prediction
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includes motion randomly generated using a human hand at
a sampling rate of 500 Hz, which is the highest sampling
rate in the test datasets considered in this paper. BROAD
is a benchmark for robust inertial orientation estimation,
collected by rotating an IMU with measurements recorded
at a sampling rate of 286 Hz. All datasets without ground-
truth orientations [53] are obtained from IMUs attached to
feet and contain measurements of different types of motion
recorded at a sampling rate of 256 Hz. All the datasets con-
tain seven components [ωx , ωy, ωz, ax , ay, az,1T ]T , where
ω and a denote the x-, y-, and z-components of gyroscope and
accelerometer readings, respectively, at each time instance,
and 1T denotes the sampling period. Further details of test
datasets are listed in Table 1.

The parameter K in (11) is fixed to 0.5 as recommended
in [50], and the observation uncertainty C in (24) is set
to C = 10−4 × I, unless otherwise specified, to achieve
the best overall performance. The predicted orientations are
evaluated in Euler angles as in [42] to facilitate comparison
and visualization. We evaluate the prediction performance
by comparing the root-mean-square error (RMSE) between
the predicted and ground-truth orientations on test datasets
with ground-truth orientations and that between predicted
orientations and tracked orientations on test datasets without
ground-truth orientations. The RMSE error is defined as

RMSE =

√√√√ 1
N

N∑
i=1

‖ui − ûi‖2, (26)

where û = [ûr , ûp, ûy]T and u = [ur , up, uy]T denote the
predicted and ground-truth (or tracked) Euler angles, i.e., roll,
pitch, and yaw, respectively, and N is the number of samples
in each test dataset.

B. QUANTITATIVE EVALUATION
Table 2 compares the prediction performance on the test
datasets with ground-truth orientations. The EKF algorithm
yields the worst results in all cases. This can be attributed
to the use of the output of only two sensors (not the magne-
tometer output) and linearization of state transition functions
of the current estimation to predict future orientations. The
UKF algorithm uses unscented transformation instead of lin-
earization to improve the prediction performance. However,
the yaw angles predicted by UKF remain inaccurate, as it
also does not use a magnetometer to gain information on
yaw angles. CI-MEKF, DOEA, and RAUKF use additional
information from amagnetometer; thus, they yield better yaw
angle predictions than EKF and UKF. However, as magnetic
disturbance negatively affects the roll and pitch predictions,
they exhibit lower accuracy in the roll and pitch predictions
than EKF and UKF. For example, on the LOPSI test dataset,
CI-MEKF and DOEA predict the yaw angle with lower errors
than EKF but exhibits higher prediction errors for the roll
and pitch angles. RAUKF exhibits better performance than
CI-MEKF and DOEA. In particular, RAUKF yields signif-
icantly lower prediction errors than CI-MEKF and DOEA

TABLE 2. Comparison of RMSE values for euler angles (◦) between
prediction and ground-truth orientations. For each euler angle, The
boldface numbers denote the best results for each test dataset.

TABLE 3. Comparison of RMSE values for the euler angles (◦) between
predicted and tracked orientations. For each Euler angle, The boldface
numbers denote the best results for each test dataset.

in yaw. Finally, the proposed algorithm exhibits the best
overall prediction errors because it leverages the accuracy of
previous predictions and utilizes tracked orientation instead
of predicted orientation, unlike the conventional algorithms.
Nevertheless, note that, since the proposed algorithm uses
only two sensors, whereas RAUKF uses three sensors, the
proposed algorithm yields higher prediction errors for yaw
angle on the FKF dataset. In addition, because the BROAD
dataset contains significant fluctuations in roll and pitch, the
proposed algorithm that uses the accuracy of the previous
predictions yields relatively large errors.
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FIGURE 5. Comparison of the predicted Euler angles on the LOPSI test dataset.

FIGURE 6. Comparison of the predicted euler angles on the FKF test dataset.

FIGURE 7. Comparison of the predicted Euler angles on the spiralStairs test dataset.

Table 3 lists the RMSE between the predicted and tracked
Euler angles on test datasets without ground-truth orien-
tations. As in the previous case, EKF yields the highest
errors on all test datasets, especially for yaw prediction, as it
does not use magnetometer outputs. CI-MEKF, DOEA, and
RAUKF exhibit higher overall prediction accuracy than EKF
and UKF as well, especially for yaw prediction, as they use
more sensors. However, their roll and pitch predictions are
worse than those of EKF and UKF because of the mag-
netic disturbances that affect the measurement of the roll
and pitch angles. The proposed algorithm exhibits signifi-
cantly higher prediction accuracy for all Euler angles with-
out exception—its RMSE values are significantly smaller
than those of the conventional algorithms. This is because
the proposed algorithm predicts future orientation based on
the current tracked orientation, whereas the conventional
algorithms do the same based on previous predictions of
orientation.

Figures 5–7 plot the Euler angles predicted by each algo-
rithm and the ground-truth on selected datasets. To facilitate
the analysis, only a part of samples is plotted. Figures 5(a)–(c)
compare predictions of the roll, pitch, and yaw, respectively,
on the LOPSI test dataset with the zoomed insets correspond-
ing to the yellow boxes. As the proposed algorithm uses
tracked orientation for prediction, its predictions of the roll
and pitch angles are closer to the ground-truth, as depicted
in Figures 5(a) and (b). The conventional algorithms exhibit
larger errors for these angles. Although, the roll trajectories
of UKF and RAUKF and the pitch predictions of all con-
ventional algorithms are similar to the ground-truth, certain
deviations are observed as these algorithms utilize previous
predictions of orientations unlike the proposed algorithm.
Figure 5(c) demonstrates that the proposed algorithm exhibits
the lowest yaw prediction error, where the LOPSI test dataset
does not contain yaw rotation. This indicates that, although
information from only two sensors is used, the proposed
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FIGURE 8. Comparison of euler angle prediction errors on the LOPSI test dataset.

algorithm effectively avoids large errors by incorporating the
accuracy of previous predictions into the prediction process.

Figures 6 and 7 compare roll, pitch, and yaw predictions
on the FKF and spiralStairs datasets, respectively. The results
reveal tendencies similar to those in Figure 5. In particular,
as depicted in Figure 6, the proposed algorithm predicts all
Euler angles with significantly higher accuracy than con-
ventional algorithms. The EKF-based algorithms, i.e., EKF,
CI-MEKF, and DOEA, yield larger errors on this test dataset;
their curves exhibit significant deviation from the ground-
truth. CI-MEKF, DOEA, and RAUKF outperform EKF and
UKF in terms of all Euler angles. Predictions of RAUKF and
the proposed algorithm agree with the ground-truth orienta-
tions. Figure 7 also indicates that the predictions obtained
using the proposed algorithm are in close agreement with
the tracking orientations—the curve corresponding to the
proposed algorithm (red curve) and the ground-truth curve
(black curve) are almost identical.

To facilitate the evaluation, Figures 8–10 visualize the pre-
diction errors computed as the difference between the ground-
truth (or tracked) orientations and predicted orientations on
the LOPSI, FKF, and spiralStairs test datasets, respectively.
The roll and pitch errors in Figures 8–9(a) and (b), respec-
tively, demonstrate that the prediction errors of the proposed
algorithm are the smallest, indicating the most accurate pre-
diction of orientations. In Figure 8(b), the pitch error of the
proposed algorithm is high only corresponding to samples
with rapid changes inmovement. In Figure 9, RAUKF and the
proposed algorithm exhibit almost identical errors and error
ranges, whereas the other algorithms exhibit higher errors for
all Euler angles. Finally, Figure 10 compares the prediction
errors on the spiralStairs dataset. As the proposed algorithm
uses tracked orientations rather than previously predicted
orientation during the prediction process, it also exhibits the
smallest errors for all Euler angles.

C. EFFECTIVENESS OF WEIGHT MATRIX W
As discussed in Section III-B, the weight matrix in (24) deter-
mines the adjustments of the prediction based on the accuracy
of previous predictions to improve the prediction accuracy.
We evaluate the effects of the weight matrix on the prediction

performance. Table 4 compares the prediction performance
for various configurations of the weight matrix W. First,
W = 0, which corresponds to linear prediction, yields the
worst overall prediction performance. This is because previ-
ous prediction accuracy is not taken into account during pre-
diction. Second, fixed weight matrix yields better prediction
performance by adjusting linear prediction based on the pre-
diction accuracy of the previous prediction. However, as the
prediction performance is affected by the characteristics of
test sets, it is difficult to obtain the optimal weight matrix. For
example, whereas W = 10−2 × I yields the lowest overall
error on LOPSI, W = 10−1 × I is optimal for spiralStairs.
Finally, the proposed algorithm, which adaptively estimates
W in an MMSE sense to minimize the expected prediction
error, yields the best overall prediction performance.

D. IMPACTS OF COVARIANCE MATRIX C
We analyze the effects of the observation uncertainty C
in (24), which is the covariance matrix of the observation
noise vt in (17), to the prediction performance. Table 5 com-
pares the prediction performances of the proposed algorithm
for different values of C on the LOPSI and spiralStairs test
datasets. Although different values of C yield the minimum
roll, pitch, and yaw angle errors, C = 10−4 × I pro-
vides the lowest overall errors for both datasets. Therefore,
to achieve the overall best prediction performance, we fixed
C = 10−4 × I in this work.

E. COMPUTATION TIMES
Table 6 compares the average execution times obtained by
different algorithms over 100 independent runs on the LOPSI
dataset. In this test, we use MATLAB version R2021a on a
computer with a 3.60 GHz CPU and 32 GB RAM.

Although EKF is the most efficient in terms of com-
putation time, it exhibits the highest error, as shown in
Tables 2 and 3. As mentioned previously, UKF is more
complex than EKF. As CI-MEKF, DOEA, and RAUKF use
additional information from a magnetometer, they require
significantly longer execution times than their counterparts,
i.e., EKF and UKF. Although the proposed algorithm is more
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FIGURE 9. Comparison of euler angle prediction errors on the FKF test dataset.

FIGURE 10. Comparison of euler angle prediction errors on the spiralstairs test dataset.

TABLE 4. Prediction performance evaluation for various settings of
weight matrix W in terms of RMSE values for the Euler angles (◦).

TABLE 5. Prediction performance evaluation for different covariance
matrices C in terms of RMSE values for the Euler angles (◦).

complex than EKF and requires longer computation time,
it exhibits higher accuracy compared to existing algorithms.

TABLE 6. Average execution time per sample in microseconds of each
algorithm over 100 independent runs.

V. CONCLUSION
In this work, we proposed an orientation prediction algorithm
for VR and AR devices equipped with an IMU based on
Kalman-like error compensation. The main contribution of
this work is the improvement of the the current prediction
accuracy based on the previous prediction accuracy and the
determination of the optimal adjustment for predictions based
on the orientation difference. To this end, we first estimated
initial future orientations based on the assumption of linear
movement. Then, we adjusted the orientation displacement
by considering a weighted difference between the current
orientation and the previous linear prediction. The weights
were computed by considering the estimation errors based
on the MMSE criterion using Kalman-like error compen-
sation. Experimental results demonstrated that the proposed
algorithm exhibits higher orientation prediction accuracy for
all Euler angles than conventional algorithms on several
real-world test datasets.

APPENDIX
The derivatives of traces of matrices [54] used in this paper
are

∂

∂X
tr(AXT ) = A (27)
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∂

∂X
tr(XA) = AT . (28)

Further, if A is symmetric, then

∂

∂X
tr(XAXT ) = 2XA. (29)
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