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Abstract

Pothole detection in Intelligent Transportation Systems 
(ITS) vehicles has been a part of Advanced driver-
assistance systems (ADAS) for a long time. Various 

sensors have been used for this purpose so far: Accelerometer, 
Gyroscope, etc. However, the fusion of multiple modalities 
of information from different sensors remains a challenge, 
mainly owing to the different sampling rates and varying 
frame rates used by each sensor. Other sensor types like 
Radar and LIDAR, though precise, are difficult to use, thus 
forcing us to look for low-cost solutions. Our proposed work 
uses Accelerometer and Gyroscope sensor fusion to predict 
pothole presence in Indian scenarios. Previous works have 
mainly dealt with predicting potholes with data collected 
using either traditional machine learning techniques like 
Decision trees, (Support Vector Machines (SVM)’s and Light 
Gradient Boosting Machine (LGBM) and deep learning 

methods using neural networks and attention mechanisms. 
In this work, the main focus is on using Convolution Neural 
Network-based methods to extract information from the 
sensor data after appropriate preprocessing. Notably, time 
series models such as Long Short-Term Memory (LSTM), 
Gated Recurrent Unit (GRU), and Transformers integrated 
with lightweight attention units are then used to classify and 
predict the presence of potholes based on the information 
extracted. Further, different classes of neural networks and 
transformers like Involution Neural networks are investi-
gated for reliable predictions. Subsequently, this information 
is used to predict potholes and may be used to develop a 
Road Quality index for Indian Roads which will indicate the 
quality of a given stretch of road. This paper demonstrates 
how the proposed method would provide greater accuracy 
for the prediction of potholes when a vehicle passes through 
a particular road.

1.  Introduction

Potholes on Indian roads have become very common. 
Due to this reason, driving has become a menace. 
Vehicles also suffer a lot of damage from sudden 

movement over potholes. It is also the cause of many acci-
dental deaths related to vehicles overturning after coming in 
contact with potholes. An estimated total of 3,564 road acci-
dents occurred in India due to potholes in the year 2020, and 
4,775 deaths in the year 2019 [1]. Given these statistics, it is 
imperative to design an ADAS system for pothole prediction 
in Indian Road Traffic environments.

Existing systems have been using vision-based solutions 
for detecting potholes. For this purpose, many deep learning 
algorithms, namely R-CNN, Faster R-CNN, and YOLO [2] 
have been used. Camera-based solutions, though working 
well, aren’t sufficient. Additionally, camera-based solutions 
may not work well in adverse conditions like heavy rainfall, 

in which vision may get blocked or get partially covered, 
giving faulty information. Hence, we  consider the IMU 
sensor’s information for the prediction of pothole presence. 
IMU sensor consists of accelerometer and gyroscope readings 
along 3 axes (X, Y, and Z). We fuse this information before 
proceeding with our model architecture.

The key contributions of this proposed work are as follows:

 1. Multi-sensor fusion of information from 
Accelerometer and Gyroscope.

 2. Proposed a new architecture with INN 
and Transformers.

 3. Detailed ablation study comparing the performances 
of models.

Section II discusses the prior art. Section III explains the 
design and proposed deeper architectures. Section IV 
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illustrates the results obtained with a detailed ablation study. 
Finally, section V concludes the proposed work by providing 
the possible research directions.

2.  Related Work
Detecting the potholes is challenging in unstructured road 
traffic environments. Many works have tried to classify 
pothole detection with traditional Machine learning 
approaches like SVMs [3] or either used Deep learning 
methods which consist of using 1-D CNNs with a Multi-Layer 
Perceptron (MLP) head [4] to classify the resulting time series 
data we get from data collection or with Attention mecha-
nisms using LSTMs and GRU [5]. Pawar et al. [6] have dealt 
with data collection by collecting raw accelerometer data, over 
the X, Y, and Z-axis using a smartphone application. Five trips 
were made over a given selection of roads with sufficient 
pothole presence. The resulting corpus consisted of 24 input 
features and a resulting label for each row of data corre-
sponding to whether the point is a pothole or not. For prepro-
cessing the dataset, grouping over every 2-second interval was 
done, along with normalizing the dataset.

Bhatt et  al. have [3] tried to use Machine learning 
approaches, mainly the Support Vector Machines (SVM) 
based approach to classify accelerometer and gyroscope 
measurements. Feature engineering was done manually 
wherein the data were grouped and a set of 26 features were 
extracted from each of the resulting groups. Using this 
approach, an SVM was trained on the resulting data. Using 
the Radial basis function (RGF) kernel and gradient boosting, 
it achieved a test accuracy of 93.4% on their dataset. Zhang 
et al. [5] have proposed another method for the collection and 
preprocessing of the raw accelerometer and gyroscope data. 
Their work primarily deals with driver behavior detection, 
but the same method is quite useful for other tasks such as 
pothole detection as well. In their method, the raw data 
collected from the sensors have been rotated and corrected 
under “standard posture”, as the device placement was not in 
the position during data collection and also to counter the 
effect of gravity along the axes. This has been done by defining 
2 rotational matrices and multiplying the accelerometer values 
with them. The authors have noted that when theta = ±90°, 
they might be faced with the Gimbal Lock problem, but the 
vehicle can't reach ±90°, so this problem has been ignored. 
Furthermore, they have also proposed an attention-based 
module for their work in Driver activity recognition. 
Nidamanuri et al. [7] proposed the hybrid CNN-LSTM model 
for analyzing the driver distraction and driving behavior from 
the tr-axial sensor data measurements. Notably, the proposed 
hybrid model provides 99% of test accuracy on the test data 
values. The authors in [8] proposed a novel architecture for 
designing safe drive assistance considering both in-vehicle 
driver's distracted behavior and external road traffic environ-
mental scene perception. Additionally, a new dataset is 
collected for Driver In-vehicle distraction analysis and is used 
for real-time validation on challenging unstructured traffic  
scenes.

Machine learning approaches do not show greater 
accuracy, and feature extraction from sensor data also 
becomes tedious, hence we look at deep learning techniques 
which again pose a problem with regards to increasing 
complexity while maintaining greater accuracy. In this regard, 
we propose a Transformer-based model along with using a 
1D  - Involution Neural Network (INN)  - INN-former to 
improve accuracy for the prediction of potholes while main-
taining low complexity.

3.  Proposed Work:  
INN-former

This paper proposes using INN and Transformers (namely, 
the INN-former) to improve the accuracy of detection of 
potholes after the appropriate collection of data is needed. 
Further, this data is tested on already established baselines to 
get an estimate of the performance of the models which the 
proposed model can compare against. These have been done 
experiments keeping in mind that the raw data is time-series 
in nature.

3.1.  Data Collection and 
Preprocessing

For data collection of tri-axial raw sensor readings for both 
Accelerometer and Gyroscope, a smartphone application was 
used. Data collection was done in a 2-wheeler vehicle while 
holding the device in a frontal position, as shown in Fig 1. The 
trial was completed for a total duration of 3 minutes on a road 
with sufficient pothole presence. During this process, the 
vehicle was traveling at a constant speed and all the readings 
were recorded as the vehicle passed over the potholes. Fig. 2 
shows the raw sensor readings as collected from the trials 
along with the filtered data. For data preprocessing, a lowpass 
Butterworth filter has been used for filtering both the 
Accelerometer and the Gyroscope values. Mathematically, 
this can be described as follows:

 �� � � � �� �a x Butterworth a x  (1)

 �� � � � �� �g x Butterworth g x  (2)

 d x a x g x� � � � � � � �� �  (3)

In the above equations (1) and (2), a(x) and g(x) represent 
the raw accelerometer and gyroscope data respectively. g’(x) 
and a’(x) are the filtered data. The order of the Butterworth 
filter is taken as 2 and the cut-off frequency as 0.5 Hz. Further, 
the data of the Accelerometer and Gyroscope has been concat-
enated, hence fusing the information from the sensors. This 
is represented by d(x) in equation (3). The dataset has been 
annotated using the video that was recorded during the collec-
tion of the raw data. The presence of potholes has been anno-
tated as follows:
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 • POTHOLE = 1

 • NOT_POTHOLE = 0

Followed by which windowing has also been done to 
achieve uniformity concerning the sampling. A window 
length of 256 and a stride length of 6 has been chosen. The 
same strategy has been applied to the labels, with one change 
such that each row of windowed sensor readings consists of a 
target label. This has been achieved by using majority voting 
among the occurrences of both the label values. Finally, the 
dataset with labels that will be used for the prediction of 
potholes is prepared.

3.2.  Model Architectures
In this section, various model architectures that have been 
experimented with have been described, followed by a detailed 
ablation study on the results that have been recorded from the 
experiments. First, a baseline model has been established for 
the proposed model to compare against. Following this, other 
various attention mechanisms have been explored to increase 
our accuracy and beat the baseline accuracy. Finally, 

Transformers, as well as Involution Neural Networks, have 
been explored for our tasks.

Wang et al. have suggested a 1-D CNN-based model - 
FCN (Fully Convolution Networks). The basic block consists 
of a Conv1D layer followed by a BatchNormalization and 
ReLU (Rectified Linear Unit) activation function. There are 3 
blocks of this in the proposed FCN network, followed by a 
GlobalPooling1D layer, and a Dropout layer. The model ends 
with a Dense layer with a SoftMax function, to get the per-
class probabilities. The class with the maximum probability 
has been selected as the predicted class. The number of classes 

 FIGURE 1  Raw sensor collection from Android application. 
The above image shows data collected from a random event. 
The app is “Sensor data collector”.

 FIGURE 2  Raw Accelerometer and Gyroscope readings 
were collected using the application.

 FIGURE 3  Raw Accelerometer readings compared to 
Filtered Accelerometer readings for one axes of Accelerometer 
readings. The same filtration strategy was applied for all 3 axes 
and also on the gyroscope readings.
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is kept as two (as defined before). Dropout layers have been 
added to counter the class imbalance, as the ratio of the road 
compared to potholes is largely on the side of the road, except 
in extremely bad road conditions.

3 . 2 .1 . Attent ion Model  with CNN  - 
Transformers The next model explored has been proposed 
by Zhang et al. A 1D CNN backbone has been adopted that is 
going to serve as a feature extractor. After this, the output is 
going to be split into the number of classes we need to predict. 
These chunks are then fed into attention units like LSTMs and 
GRUs. The model ends with a couple of Dense layers with the 
final layer having the number of classes to predict (2 in our case) 
as the number of neurons. It has a SoftMax function to give per 
class probabilities. Finally, the class with the maximum prob-
ability is chosen as the predicted class. For recording results, 
LSTM and GRU have been used separately in the attention part 
of the model and recorded the results.

Transformers have also been studied for the prediction of 
potholes to classify pothole prediction. In the model explored 
with the Transformer, only the encoder was considered and the 
decoder has been disregarded as this is not a sequence-to-
sequence translation task, the Dense layers after the Encoder 
perform the task of predicting the class outputs. Further, the 
encoder consists of Multi Headed Attention, which provides 
the attention mechanism in the encoder network.

Involution Neural Network (INN) was initially intro-
duced [9] for image classification, as compared to Conv2d 
layers that were being used. It was a method to develop an 
operation that was both location-specific and channel-
agnostic. This is achieved by generating each kernel based on 
the special location the kernel is currently covering. This is 
then reshaped and then multiplied with patches extracted 
from the images and then the final output is cast. In the 
proposed work, a 1D INN has been adopted for the prediction 
of sensor readings. The collected dataset consisting of raw 
sensor data has 6 channels corresponding to each of the axes 
of the sensor readings. First, the 1D INN-based Baseline 
model has been implemented, in which the Conv1D layers 

have been replaced with INN-1D layers. The same for the CNN 
backbone in the attention modules. Finally, an INN-based 
Transformer model has been proposed which will give greater 
accuracy as well.

3.2.2. The INN-Former In this network, the 1D-INN 
has been adopted in the encoder. Our encoder architecture 
consists of a LayerNormalization layer followed by 
MultiHeadedAttention and another LayerNormalization 
layer. The INN layer is followed by a Dropout and another 
Involution-1D layer. If need be  (for improving accuracy), 
multiple such encoder layers are chained before passing them 
through a Dense layer and predicting the class outputs.

The Involution operation serves here as a method of 
extracting information in a channel-agnostic way. Conv-1D 
layers were channel-specific, in which regard, we hope to 
extract information that the kernel extracts in a spatial 
agnostic and channel-specific manner. It is to be noted here 
that the Encoder part can be stacked, i.e., we can use multiple 
encoders to improve accuracy if needed. The Multi- Headed 
Attention provides the attention mechanism, similar to the 
one provided in the previous attention networks. The input 
to the second LayerNormalization layer is the summation of 
the original Input and the output from the Dropout layer. 
Similarly, the output from the Transformer is the summation 
of the output of the Involution-1D layer and the input that 
goes into the LayerNormalization layer. The output then serves 
as an input to another Transformer encoder (if needed) or it 
passes through Dense layers, before another Dense layer with 
SoftMax activation to give the final output.

4.  Results
The experiments have been done by comparing the proposed 
model with the same collected dataset after appropriate 
filtering and annotation. For experiment purposes, 70% of the 
filtered dataset has been chosen for the training corpus and 
30% rest for the testing corpus. Following the experiments, 
the number of parameters used in each of the models has been 
recorded, and a detailed ablation study on each of the models 
and the parameter space covered has been done. Table 1 
records the train and test accuracies as well as the test loss 
achieved by each model.

 FIGURE 4  The Attention Model with CNN backbone. The 
dotted line shows the interior of the CNN backbone. It consists 
of chaining Conv1D and MaxPooling1D layers before being split.

 FIGURE 5  The INN-based Transformer network. We have 
used the Transformer encoder. The final layer gives the 
prediction outputs.
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4.1.  Analysis
From Table 1, it is clear that the accuracy of the proposed 
INN-former shows greater accuracy than the other models. 
The number of parameters and the hyperparameters used 
with each model has also been recorded. The hyperparameters 
have been tuned (using the Keras tuner [10]) to achieve the 
highest accuracy of each model.

The proposed model, INN with Transformer has a 
training accuracy of 97.94% and a test accuracy of 97.00%, 
and it easily beats the Baseline model (FCN network) by a 
good margin. The Attention with CNN backbone also does 
well compared to the Baseline model, but the test accuracy of 
Attention with CNN models (both the LSTM and GRU ones) 
are pretty close to the Baseline test accuracy. There is not much 
change in test accuracy between using GRU and LSTM for 
the attention network using the CNN backbone.

The vanilla Transformer encoder network shows good 
performance, compared to both the Baseline and Attention 
networks, beating both the train and test accuracies. The 
Baseline model with INN does not show immediate improve-
ment over the first baseline model we used, which consisted 
of the Conv1D layers. This is because the INN is channel-
agnostic, and does not capture the complexity between the 
channels, however, this model consists of lesser parameters 
which can be a big deciding factor considering deployment. 
Considering the INN backbone with the Attention model, 
both the GRU and LSTM show an improvement over the 
Baseline INN model. The Attention model with GRU and INN 
backbone shows greater accuracy compared to the Attention 
with CNN backbone-based models. Comparing Table 1 and 
Table 2 we can see that the INN-former model, though having 
more parameters, shows greater accuracy as well.

4.2.  Model Parameters
INNs are also effective in reducing model parameters, which 
can be useful for deployment purposes. While deploying, the 
main goal is to make the model as light as possible and to get 

inference as quickly as could be. In Table 2, it can be observed 
that stacking transformer encoder layers (with INN and CNN 
backbone) lead to better accuracy. But with increasing layers 
and adding Multi Headed Attention, complexity also increases. 
From the conducted experiments, it has been found that 
increasing the size of Dense layers preceding the output layers 
can improve accuracy but it leads to extreme overfitting as 
well as it does not generalize well over new data. Due to this 
reason, methods to reduce complexity are preferred. INN 
show less complexity with increasing model architecture, even 
with our baseline model, we can see a difference between the 
FCN network and the adapted 1D-INN network. There is a 
slight increase in parameters while using INN with attention 
using GRU or LSTM but this is mainly due to the change in 
the size of the Dense layers. The INN-former shows greater 
parameters compared to the other models, but this is mainly 
due to stacking a greater number of encoder networks to 
increase the accuracy.

For the Baseline model and the CNN backbone used in 
the Attention models, experimentation has been done 
concerning both increasing and decreasing the number of 
Conv1D layers. It has been observed that with increasing 
layers, there is a danger of overfitting a lot, especially the more 
the number of such layers, the more the overfitting. The 
number of layers has been kept to a balanced number of 3, to 
avoid such problems. Further experimentation has been done 
with increasing the number of filters. Using a greater number 

TABLE 1 Collection result of all the accuracy of the models 
which were tried on the dataset.

Model name
Train 
accuracy (%)

Test 
accuracy (%) Test Loss

Baseline (FCN) 89.98 92.45 0.22

Attention - (Using CNN 
backbone) -LSTM

91.88 92.87 0.23

Attention - (Using CNN 
backbone) -GRU

91.68 92.88 0.25

Transformer - (Using 
CNN)

95.03 93.73 0.16

Baseline - Using INN 84.33 82.90 0.37

Attention (Using INN 
backbone)-LSTM

89.83 89.88 0.24

Attention (Using INN 
backbone)-GRU

94.80 94.15 0.12

INN-former (Proposed 
Model)

97.94 97.00 0.08

TABLE 2 The number of total parameters used by 
every model.

Model name
Number of total 
parameters

Baseline (FCN) 1,018

Attention - (Using CNN backbone) - LSTM 1,442

Attention - (Using CNN backbone) - GRU 1,442

Transformer - (Using CNN) 1,083

Baseline - Using INN 809

Attention with INN backbone-LSTM 1,001

Attention with INN backbone-GRU 1,001

INN-former (Proposed Model) 6,554 (Using 
dual encoder)

 FIGURE 6  A. Train Accuracies of all the models over 
100 epochs.
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of filters (around 64 or more) shows signs of overfitting, the 
training accuracy is much greater than the test accuracy. 
Increasing the kernel size allows the Conv1D to capture more 
information, but increases the complexity as well, which leads 
us to choose a tradeoff between the two.

In the case of using Involution neural networks, changing 
the kernel size and the stride leads to a change in the accuracy. 
Using a big kernel size and a big stride leads to information 
loss. Due to this reason, we have kept the number of kernel 
size 5 and the stride to 2. This balances the loss of information 
to overfitting. Increasing kernel size also leads to increasing 
parameter size, but it is compensated by increasing accuracy 
as well. In the case of using the transformer encoder layers, 
using 1 encoder layer for the CNN model and 2 encoders 
stacked for the INN model shows the desired results. Fig 6. 
shows the accuracies of train and validation for the models 
after we have tuned the hyperparameters.

It is to be  noted that pothole occurrences might not 
be very high as compared to the rest of the road, leading to a 
class imbalance in the dataset, which might contribute to 
overfitting. Such overfitting has been tried to be reduced by 
tuning the hyperparameters, reducing the Dense layers, and 
adding Dropout layers. The probability of the Dropout layers 
has been kept as a hyperparameter, and after tuning and 

experimenting with various values, it has been found that the 
appropriate dropout probability is 0.2. Increasing this value 
leads to a loss of information and decreasing the value 
increases overfitting.

5.  Conclusion
In this work, we have proposed a method of using Involution 
Neural Networks along with Transformers for improving 
accuracy in detecting potholes in Indian Roads after fusing 
Accelerometer and Gyroscope sensor readings. Various 
models consist of non-attention-based models like the Baseline 
model (FCN) and attention-based models, in which we use 
CNN and INN-based backbones and record our observations. 
Furthermore, we have experimented with Transformer-based 
networks, where we have used the Transformer encoder (and 
using Multi headed attention) and using INN with 
Transformers. We have noted that our proposed model - the 
INN-former, shows a test accuracy of 97.00%. With this work, 
we hope to make the detection of potholes easier for ADAS 
systems so that it can navigate Indian Roads better.

In view of further work, information from vision-based 
sensors can be also fused along with the currently imple-
mented IMU sensors. Along with this, GPS information fusion 
can also be considered for increased accuracy as well. One 
possible future extension to this proposed work would 
be deploying the model on edge devices and validating it in 
unstructured Indian road scenarios.
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