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Abstract
We propose three novel solvers for estimating the relative pose of a multi-camera system from affine correspondences (ACs).
A new constraint is derived interpreting the relationship of ACs and the generalized camera model. Using the constraint, we
demonstrate efficient solvers for two types of motions. Considering that the cameras undergo planar motion, we propose a
minimal solution using a single AC and a solver with two ACs to overcome the degenerate case. Also, we propose a minimal
solution using two ACs (a minimal number of one AC and one point correspondence) with known vertical direction, e.g., from
an IMU. Since the proposed methods require significantly fewer correspondences than state-of-the-art algorithms, they can
be efficiently used within RANSAC for outlier removal and initial motion estimation. The solvers are tested both on synthetic
data and on three real-world scenes. It is shown that the accuracy of the estimated poses is superior to the state-of-the-art
techniques. Source code is released at https://github.com/jizhaox/relative_pose_gcam_affine.

Keywords Relative pose estimation · Multi-camera system · Affine correspondence · Minimal solver

1 Introduction

Relative pose estimation from two views of a camera, or a
multi-camera system is regarded as a fundamental problem
in computer vision (Clipp et al., 2008; Hartley & Zisser-
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man, 2003; Scaramuzza & Fraundorfer, 2011; Schönberger
& Frahm, 2016; Zhao et al., 2020) which plays an important
role in simultaneous localization and mapping (SLAM) and
structure-from-motion (SfM). Thus, improving the accuracy,
efficiency and robustness of relative pose estimation algo-
rithms is always an important research topic (Agarwal et al.,
2017; Barath et al., 2020; Eichhardt & Barath, 2020; Guan
et al., 2018; Lee et al., 2014; Li et al., 2020; Ventura et al.,
2015). Motivated by the fact that multi-camera systems are
available in self-driving cars, micro aerial vehicles or AR
headsets, this paper investigates the problem of estimating
the relative pose of multi-camera systems from affine corre-
spondences (ACs), see Fig. 1.

Since a multi-camera system contains multiple individ-
ual cameras connected by being fixed to a single rigid body,
it has the advantage of large field-of-view and high accu-
racy (Fragoso et al., 2020; Sweeney et al., 2015a). The main
difference of a multi-camera system and a standard pinhole
camera is the absence of a single projection center (Pless,
2003). Due to the different camera model, the relative pose
estimation problem of multi-camera systems (Stewénius et
al., 2005) is different from the monocular cameras (Guan
et al., 2020, 2021c; Nistér, 2004), resulting in different
equations. In order to remove outlier matches, most of the
state-of-the-art SLAM and SfM pipelines using a multi-
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Fig. 1 An affine correspondence in a multi-camera system. It relates
two perspective cameras Ci and C j across two consecutive frames,
where Ci and C j can be the same or different cameras. The local affine
transformation Ak relates the infinitesimal patches around correspon-
dence (xk , x′

k )

camera system (Häne et al., 2017; Heng et al., 2019) apply
the relative pose estimation algorithms repeatedly in a robust
estimation framework, e.g. the Random Sample Consensus
(RANSAC) (Fischler & Bolles, 1981). The outlier removal
process has to be efficient since it has a large impact on the
total run-time of the applied the SLAM and SfM pipeline.
The computational complexity and, thus, the processing time
of the RANSAC procedure depends exponentially on the
number of points required for the relative pose estimation
of multi-camera system.

Therefore, exploring the minimal solutions for relative
pose estimation of multi-camera system is of significant
importance and has received sustained attention (Clipp et
al., 2008; Stewénius et al., 2005; Kneip et al., 2016; Kim et
al., 2009; Li et al., 2008; Lim et al., 2010; Ventura et al.,
2015). The idea of deriving minimal solutions for relative
pose estimation of multi-camera systems ranges back to the
work of Stewénius et al. with the 6-point method (Stewénius
et al., 2005). Other classical works have been subsequently
proposed, such as the 17-point linear method (Li et al., 2008)
and techniques based on iterative optimization (Kneip &
Li, 2014). The minimal number of necessary points can
be further reduced by taking additional motion constraints
into account (Lee et al., 2013) or exploiting the measure-
ments from other sensors, like an inertial measurement unit
(IMU) (Lee et al., 2014; Liu et al., 2017; Martyushev & Li,
2020; Sweeney et al., 2014, 2015b). Typically, the assump-
tion of planar motion or considering known vertical direction
are common for self-driving cars and ground robots (Choi &
Kim, 2018; Guan et al., 2020; Hajder & Barath, 2020; Li
et al., 2020; Saurer et al., 2016), which makes the outlier
removal more efficient and numerically more stable.

All previously mentioned relative pose solvers estimate
the pose parameters from a set of point correspondences
(PCs), e.g., coming from SIFT (Lowe, 2004) or SURF (Bay
et al., 2008) detectors. Due to containing more information
about the underlying surface geometry than PCs, ACs enable

to estimate the pose from fewer correspondences. The ACs
canbe established by applying the traditional affine-covariant
feature detectors (Mikolajczyk & Schmid, 2002) or view-
synthesizing approaches, such asASIFT (Morel&Yu, 2009),
MODS (Mishkin et al., 2015), and Hes-Aff-Net (Mishkin et
al., 2018). An AC yields three independent constraints on
the epipolar geometry estimation (Barath & Hajder, 2018;
Bentolila & Francos, 2014; Raposo & Barreto, 2016). These
geometric constraints are the basis for relative pose estima-
tion in two-view geometry. In this paper, we focus on the
relative pose estimation of a multi-camera system from ACs,
instead of PCs.We propose three novel minimal solutions for
the relative pose estimation of a multi-camera system. The
contributions of this paper are:

– A new constraint that interprets the relationship of ACs
and the generalized camera model is derived under gen-
eral motion. This constraint can be used in special cases
of multi-camera motion, e.g., planar motion and known
vertical direction.

– When the motion is planar (i.e., the body to which the
cameras are fixed moves on a plane; 3DOF), a single
AC is sufficient to recover the planar motion of a multi-
camera system. In order to deal with the degenerate case
of the 1AC solver, we also propose a new method to
estimate the relative pose from twoACs. The point-based
solver (Lee et al., 2013) requires at least two PCs and
requires the Ackermann motion model to hold.

– A third solver is proposed for the case when the vertical
direction is known (4DOF), e.g., from an IMU attached
to the multi-camera system. We show that two ACs are
enough to recover the relative pose. In contrast, the point-
based solver requires four PCs (Lee et al., 2014; Sweeney
et al., 2014).

This work is the extension of our previous conference
paper (Guan et al., 2021b). The main differences are: dis-
cussion of degenerate cases, additional comparisons and
real-world experiments, and more detailed derivations.

2 RelatedWork

Due to the absence of a single center of projection, the camera
model of multi-camera systems is different from the standard
pinhole camera. Pless proposed to express the light rays using
Plücker coordinates of lines and derived the generalized cam-
era model which has become a standard representation for
the multi-camera systems (Pless, 2003). Stewénius et al. pro-
posed the first minimal solution to estimate the relative pose
of a multi-camera system from 6 PCs, which produces up to
64 solutions (Stewénius et al., 2005). Li et al. provided several
linear solvers to compute the relative pose, among which the
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most commonly used one requires 17 PCs (Li et al., 2008).
Kneip and Li proposed an iterative approach for the relative
pose estimation based on eigenvalue minimization (Kneip &
Li, 2014). Ventura et al. used the first-order approximation
of the rotation to simplify the problem and estimated the rel-
ative pose from 6 PCs (Ventura et al., 2015). By considering
additionalmotion constraints or using additional information
provided by an IMU, the number of required PCs can be fur-
ther reduced. Lee et al. presented aminimal solutionwith two
PCs for the ego-motion estimation of a multi-camera system,
constraining the relative motion by the Ackermann motion
model (Lee et al., 2013). In addition, a variety of algorithms
have been proposed when a common direction of the multi-
camera system is known, i.e. an IMU provides the roll and
pitch angles of the multi-camera system. The relative pose
estimation with known vertical direction requires a minimal
number of 4 PCs (Lee et al., 2014; Liu et al., 2017; Sweeney
et al., 2014).

Exploiting the additional affine parameters besides the
image coordinates has been recently proposed for the rel-
ative pose estimation of monocular cameras, which reduces
the number of required points significantly. Bentolila et al.
estimated the fundamental matrix from three ACs (Bentolila
& Francos, 2014). Raposo and Barreto computed homogra-
phy and essential matrix using two ACs (Raposo & Barreto,
2016). Barath and Hajder derived the constraints between
the local affine transformation and the essential matrix
and recovered the essential matrix from two ACs (Barath
& Hajder, 2018). Hajder and Barath (2020) and Guan et
al. (2020, 2021c) proposed several minimal solutions for
relative pose from a single AC under the planar motion
assumption or with the knowledge of a vertical direction.
The above mentioned works are only suitable for the monoc-
ular perspective cameras which is different from the camera
model of multi-camera systems. For multi-camera systems,
Alyousefi and Ventura recently proposed a linear solver to
estimate the relative pose using 6 ACs (Alyousefi & Ven-
tura, 2020). Guan et al. estimated the relative pose from 2
ACs by utilizing the first-order rotation approximation (Guan
et al., 2021a). All the above relative pose estimation algo-
rithms are derived from the same geometric constraints of
AC observations. The main difference of the algorithms is
the different modeling and equation solving methods. In this
paper,we focus on theminimal number ofACs to estimate the
relative pose of a multi-camera system. Table 1 shows a sum-
mary of the relative pose solvers for multi-camera systems,
including the DOF of the motion, feature types and number
of points required. Since the proposed methods require the
fewest correspondences, they can be more efficiently used
within RANSAC for outlier removal and initial motion esti-
mation in comparison with state-of-the-art methods.

Table 1 Relative pose solvers for multi-camera systems

Solver Motion Feature Point #

Li et al. (2008) 6DOF PCs 17

Kneip and Li (2014) 6DOF PCs 8

Stewénius et al. (2005) 6DOF PCs 6

Ventura et al. (2015) 6DOF PCs 6

Alyousefi and Ventura (2020) 6DOF ACs 6

Lee et al. (2014) 4DOF PCs 4

Sweeney et al. (2014) 4DOF PCs 4

Liu et al. (2017) 4DOF PCs 4

Guan et al. (2021a) 6DOF ACs 2

Lee et al. (2013) 2DOF PCs 2

1AC plane 3DOF ACs 1

2AC plane 3DOF ACs 2

2AC vertical 4DOF ACs 2

3 Geometric Constraints from ACs

A multi-camera system is made up of multiple perspective
cameras, as shown in Fig. 1. AnAC in amulti-camera system
relates two perspective cameras Ci and C j across two con-
secutive frames, whereCi andC j can be the same or different
cameras. The extrinsic parameters of cameras Ci and C j

expressed in a multi-camera reference frame are represented
as (Ri , ti ) and (R j , t j ), respectively. Rotation matrices Ri

and R j represent relative rotations to the multi-camera ref-
erence frame. Translation vectors ti and t j represent relative
translations to the multi-camera reference frame.

AnACconsists of a point pair and a2×2 local affine trans-
formation. Let us denote the k-th AC between consecutive
frames as (xk, x′

k,Ak), where xk and x′
k are the homogeneous

image coordinates of the k-th feature point, which are cap-
tured by the cameraCi in the first frame and the cameraC j in
the second frame, respectively. Ak is the related local affine
transformation, whichmaps the infinitesimally close vicinity
of xk to that of x′

k (Barath, 2018).
For generalmotion, there is a 3DOF relative rotationR and

a 3DOF relative translation t between two reference frames.
Rotation R using Cayley parameterization and translation t
can be written as:

R = 1

1 + q2x + q2y + q2z
.

⎡
⎢⎣
1 + q2x − q2y − q2z 2qxqy − 2qz 2qy + 2qxqz

2qxqy + 2qz 1 − q2x + q2y − q2z 2qyqz − 2qx
2qxqz − 2qy 2qx + 2qyqz 1 − q2x − q2y + q2z

⎤
⎥⎦ ,

(1)

t = [
tx ty tz

]T
, (2)
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where [1, qx , qy, qz]T is a homogeneous quaternion vector.
Note that 180 degree rotations are prohibited when using the
Cayley parameterization, but this is a rare case for consecu-
tive frames.

3.1 Generalized Epipolar Constraint

We give a brief description of the generalized camera
model (GCM) (Pless, 2003). The image coordinates (pk,p′

k)

expressed in the multi-camera reference frame are written as

pk = Rixk, p′
k = R jx′

k . (3)

The unit direction of rays (uk,u′
k) expressed in the multi-

camera reference frame are given as: uk = pk/‖pk‖,
u′
k = p′

k/‖p′
k‖. The 6-dimensional Plücker coordinates cor-

responding to the rays are denoted as lk = [uTk , (ti ×uk)T]T,
l′k = [u′

k
T
, (t j × u′

k)
T]T. The symbol × represents the

cross product. The generalized epipolar constraint is writ-
ten as Pless (2003)

l′Tk
[
[t]×R, R
R, 0

]
lk = 0, (4)

where lk and l′k are the Plücker coordinates of a line cor-
respondence between two consecutive frames. The symbol
[t]× represents the skew-symmetric matrix of the translation
t.

3.2 Affine Transformation Constraint

We denote the transition matrix between the camera coordi-
nate system Ci in the first frame and the camera coordinate
system C j in the second frame as (Ri j , ti j ), which is repre-
sented as:

[
Ri j ti j
0 1

]
=

[
R j t j
0 1

]−1 [
R t
0 1

] [
Ri ti
0 1

]

=
[
RT

jRRi RT
j (Rti + t − t j )

0 1

]
. (5)

Essential matrix Ek of the two consecutive frames is

Ek = [ti j ]×Ri j = RT
j [Ri ti j ]×RRi , (6)

where
[
Ri ti j

]
× = R[ti ]×RT+[t]×−[t j ]×. The relationship

of essential matrix Ek and local affine transformation Ak is
formulated as follows (Barath & Hajder, 2018):

(ET
k x

′
k)(1:2) = −(ÂT

kEkxk)(1:2), (7)

where ET
k x

′
k and Ekxk denote the epipolar lines in their

implicit form in the frames of camerasCi andC j . Subscripts

1 and 2 represent the first and second equations of the equa-
tion system, respectively. Âk is a 3× 3 matrix, which can be
written as:

Âk =
[
Ak 0
0 0

]
.

By substituting Eq. (6) into Eq. (7), we obtain:

(RT
i R

T[Ri ti j ]T×R jx′
k)(1:2)

= −(ÂT
kR

T
j [Ri ti j ]×RRixk)(1:2). (8)

Based on Eq. (3), the above equation is reformulated and
expanded as follows:

(RT
i ([ti ]×RT + RT[t]× − RT[t j ]×)p′

k)(1:2)
= (ÂT

kR
T
j (R[ti ]× + [t]×R − [t j ]×R)pk)(1:2). (9)

Equation (9) interprets the new epipolar constraints which
a local affine transformation implies on camerasCi andC j in
two consecutive frames. It can be seen that anACyields three
independent constraints from Eqs. (4) to (9). When an AC in
a multi-camera system relates the same perspective camera
across two consecutive frames, i.e., Ci and C j are the same
camera (Ri = R j , ti = t j ), the constraints of Eqs. (4) and (9)
still hold.

For each AC (xk, x′
k,Ak), we get three polynomials for

six unknowns {qx , qy, qz, tx , ty, tz} based onEqs. (4) and (9).
After separatingqx ,qy ,qz from tx , ty , tz , we arrive at equation
system

1

1 + q2x + q2y + q2z

⎡
⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

⎤
⎦

︸ ︷︷ ︸
M(qx ,qy ,qz)

⎡
⎢⎢⎣
tx
ty
tz
1

⎤
⎥⎥⎦ = 0, (10)

where the elements of the coefficient matrix M(qx , qy, qz)
are formed by the polynomial coefficients and three unknown
variables qx , qy, qz . All the elements are quadratic polyno-
mials with three variables qx , qy, qz . Note that the multiple
1/(1 + q2x + q2y + q2z ) is not simply omitted in this paper.
As we will see later, the multiple can be used to reduce the
polynomial degree and improve the efficiency of the solution.

Equation (10) imposes three independent constraints on
six unknowns {qx , qy, qz, tx , ty, tz}. Motivated by scenarios
like self-driving cars, ground robots or AR headsets, we
investigate relevant special cases of multi-camera motion,
i.e., planar motion and motion with known vertical direc-
tion, see Figs. 2 and 4. The constraint equation (10) can be
used in special cases of multi-camera motion. We show that
two special cases can be efficiently solved with ACs.
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Fig. 2 Relative pose estimation under planar motion in top-view. There
are three unknowns: yaw angle θ , translation direction φ and translation
distance ρ

4 Relative Pose under Planar Motion

When assuming that the body, to which the camera system
is rigidly fixed, moves on a planar surface (as visualized in
Fig. 2), there are only a y-axis rotation and 2D translation
between reference frames. Similar to Eqs. (1) and (2), the
rotation R = Ry and the translation t from the first frame to
the second frame is written as:

Ry = 1

1 + q2y

⎡
⎣
1 − q2y 0 −2qy

0 1 + q2y 0
2qy 0 1 − q2y

⎤
⎦ ,

t = [
tx 0 tz

]T
. (11)

where qy = tan( θ
2 ), tx = ρ sin (φ), tz = −ρ cos (φ), ρ is the

distance between two multi-camera reference frames.

4.1 Solver for Planar Motion

By substituting Eq. (11) into Eqs. (4) and (9), we get an
equation system of three polynomials for three unknowns
qy , tx and tz . Since an AC generally provides three indepen-
dent constraints for relative pose, a single AC is sufficient to
recover the planar motion of a multi-camera system. After
separating qy from tx , tz , the three independent constraints
from an AC form matrix equation:

1

1 + q2y

⎡
⎣
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦

︸ ︷︷ ︸
M(qy)

⎡
⎣
tx
tz
1

⎤
⎦ = 0, (12)

where the elements of the coefficient matrix M(qy) are
formedby the polynomial coefficients and one unknownvari-
able qy . All the elements are quadratic polynomialswith vari-
able qy . SinceM(qy) is a square matrix, Eq. (12) has a non-
trivial solution only if the determinant of M(qy)/(1 + q2y )

vanishes. The expansion of det(M(qy)/(1 + q2y )) = 0 gives

Fig. 3 Degenerate case under planar motion

a 4-degree univariate polynomial as follows:

quot

(
6∑

i=0

wi q
i
y, q

2
y + 1

)
= 0, (13)

where quot(a, b)means calculating the quotient of a divided
by b. w0, . . . , w6 are formed by the Plücker coordinates
of a line correspondence and the matrix elements of an
affine transformation between the corresponding feature
points.

Note that the coefficients are divided by q2y + 1 which
reduces the polynomial degree and improves the efficiency
of the solution. The univariate polynomial Eq. (13) leads
to an explicit analytic solution with a maximum of 4 real
roots. Once the solutions for qy are found, the remain-
ing unknowns tx and tz are solved by substituting qy into
M(qy) and solving the linear system via calculating its null
vector. Finally, the rotation matrix Ry is recovered from
Eq. (11).

4.2 Degenerate Case

In this section, we show that the solver using a single AC
has a degenerate case under planar motion, i.e., when the
distances between the motion plane and optical centers of
the cameras are equal.

Degenerate condition: Consider a multi-camera system
which is under planar motion. Assume the following three
conditions are satisfied. (1) The rotation axis is the y-axis,
and the translation is on xz-plane. (2) There is a single AC
across camera Ci in the first frame and camera C j in the
second frame (Ci and C j can be the same or different cam-
eras). (3) The optical centers of cameras Ci and C j have
the same y-coordinate. Then this case is degenerate. Specif-
ically, the rotation can be correctly recovered, while neither
the translation direction nor the translation scale can be esti-
mated.

Interpretation: Fig. 3 illustrates the degenerate case under
planar motion. Note that the multi-camera reference frame

123



International Journal of Computer Vision

is established in the multi-camera system, not in a certain
camera coordinate system. Our interpretation is based on the
following observation: whether a case is degenerate does not
depend on which relative pose estimation solver is used for
recovering (R, t). Based on this point, we construct a new
relative pose estimation solver which is different from the
proposed solver in Sect. 4.1.

(i) Since the multi-camera system is rotated around the y-
axis, camera Ci in the first frame and camera C j in
the second frame are under motion with known rota-
tion axis. For the relative pose estimation problem of
monocular cameras with known rotation axis, it has
been proven that a single AC is sufficient to estimate
the relative rotation and translation (only known up to
scale) between Ci and C j (Guan et al., 2020). This is
a minimal solver since one AC provides 3 independent
constraints and there are three unknowns (one unknown
for rotation, two unknowns for translation by exclud-
ing scale-ambiguity). Denote the recovered rotation and
translation between Ci and C j as (R′, t′), where t′ is
a unit vector. The scale of the translation vector can-
not be recovered at this moment. Denote the unknown
translation scale as λ.

(ii) From Fig. 3, we have

[
R t
0 1

]
=

[
R j t j
0 1

] [
R′ λt′
0 1

] [
Ri ti
0 1

]−1

=
[
R jR′RT

i λR j t′ + t j − R jR′RT
i ti

0 1

]
. (14)

From Eq. (14), we have

R = R jR′RT
i , (15)

t = λR j t′ + t j − R jR′RT
i ti . (16)

From Eq. (15), the rotation R between the first frame
and the second frame of the multi-camera system can
be recovered.
From Eq. (16), we have

λ(R j t′) − t + (t j − Rti ) = 0. (17)

In Eq. (17), note that t = [tx , 0, tz]T due to the planar
motion assumption. Thus this linear equation system
has 3 unknowns {λ, tx , tz} and 3 equations. Usually, the
unknowns can be uniquely determined by solving this
equation system. However, if the second entry of R j t′
is zero, three unknowns {λ, tx , tz} cannot be uniquely
computed. In other words, the translation direction and
the translation scale cannot be determined. This is a
degenerate case.

Fig. 4 Relative pose estimationwith knownvertical direction.There are
four unknowns: a y-axis rotationRy and 3D translation t̃ = [t̃x , t̃y, t̃z]T

(iii) Finally, we exploit the geometric meaning of the degen-
erate case, i.e., the second entry of R j t′ is zero. Denote
the normalized vector originated from Ci to C j as v.
Since v represents the normalized translation vector
between Ci and C j , the coordinates of v in reference
of camera C j is t′. Further, the coordinates of v in
the second frame is R j t′. The second entry of R j t′
being zero means that the endpoints of v have the same
y-coordinate in the second frame, which is the condi-
tion (3) in the degenerate condition.

This degenerate case might happen in the self-driving sce-
nario, leading to the situation when neither the translation
direction, nor its scale can be estimated from a single AC.
For example, when a multi-camera system undergoes planar
motion and a single AC is captured by the same camera over
two consecutive frames, this case is degenerate. To overcome
this issue, we use two ACs. For example, the first and sec-
ond constraints of the first AC, and the first constraint of the
second AC are selected as the three equations to be solved in
the three unknowns, just as Eq. (12). Note that the steps of
the solver remain the same, except for the code constructing
coefficient matrixM(qy).

5 Relative Pose with Known Vertical
Direction

In this section a minimal solution using two ACs (at least one
AC and one PC) is proposed for relative motion estimation
for multi-camera systems with known vertical direction, see
Fig. 4. In this case, an IMU is coupled with the multi-camera
system and the relative rotation between the IMU and the
reference frame is known. The IMU provides the known roll
and pitch angles for the multi-camera reference frame.
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5.1 Apply Roll and Pitch Angles

Based on the roll and pitch angles provided by the IMU,
the multi-camera reference frame can be aligned with the
measured vertical direction, such that the X − Z -plane of the
aligned reference frame is parallel to the ground plane and the
y-axis is parallel to the vertical direction. Let us denote the
rotation matrices from the roll and pitch angles of the two
corresponding multi-camera reference frames as Rimu and
R′
imu. Take the composition of the rotation matrix Rimu for

an example. Rotation matrix Rimu for aligning the reference
frame can be computed as follows:

Rimu = RpRr

=
⎡
⎣
1 0 0
0 cos(θp) sin(θp)
0 − sin(θp) cos(θp)

⎤
⎦

⎡
⎣

cos(θr ) sin(θr ) 0
− sin(θr ) cos(θr ) 0

0 0 1

⎤
⎦ ,

where θr and θp are roll and pitch angles provided by the
IMU, respectively.

There are only a y-axis rotation R = Ry and 3D trans-
lation t̃ = [t̃x , t̃y, t̃z]T to be estimated between the aligned
multi-camera reference frames. By leveraging IMUmeasure-
ment, the transitionmatrix between two reference frames can
be represented as follows:

[
R t
0 1

]
=

[
R′
imu 0
0 1

]−1 [
Ry t̃
0 1

] [
Rimu 0
0 1

]
. (18)

From Eq. (18), the relative pose between two reference
frames can be written as:

R = (R′
imu)

TRyRimu, (19)

t = (R′
imu)

T t̃. (20)

5.2 Geometric Constraints with KnownVertical
Direction

In this case, we show that the geometric constraints in Sect. 3
can be generalized to the multi-camera motion with known
vertical direction. By substituting Eq. (19) into Eq. (4), the
generalized epipolar constraint with known vertical direction
is written as

([
R′
imu 0
0 R′

imu

]
l′k

)T

︸ ︷︷ ︸
l̃′k

[[
t̃
]
×Ry Ry

Ry 0

]

([
Rimu 0
0 Rimu

]
lk

)

︸ ︷︷ ︸
l̃k

= 0, (21)

where l̃k ↔ l̃′k are the corresponding Plücker coordinates of
line correspondences expressed in the aligned multi-camera
reference frame.

Next, we derive the affine transformation constraint with
known vertical direction. Substituting Eq. (18) into Eq. (5)
yields

[
Ri j ti j
0 1

]
=

([
R′
imu 0
0 1

] [
R j t j
0 1

])−1

[
Ry t̃
0 1

]([
Rimu 0
0 1

] [
Ri ti
0 1

])
. (22)

We denote that

[
R̃imu t̃imu

0 1

]
=

[
Rimu 0
0 1

] [
Ri ti
0 1

]
,

[
R̃′
imu t̃′imu
0 1

]
=

[
R′
imu 0
0 1

] [
R j t j
0 1

]
. (23)

By substituting Eq. (23) into Eq. (22), we obtain

[
Ri j ti j
0 1

]

=
[
(R̃′

imu)
TRyR̃imu (R̃′

imu)
T(Ry t̃imu + t̃ − t̃′imu)

0 1

]
. (24)

It can be seen that Eq. (24) has a similar composition to
Eq. (5). Similar toEq. (9), the affine transformation constraint
with known vertical direction can be directly given as

(R̃T
imu([t̃imu]×RT

y + RT
y [t̃]× − RT

y [t̃′imu]×)p̃′
k)(1:2)

= (ÂT
k (R̃′

imu)
T(Ry[t̃imu]× + [t̃]×Ry − [t̃′imu]×Ry)p̃i j )(1:2)

(25)

where p̃k = R̃imuxk and p̃′
k = R̃′

imux
′
k are the image coordi-

nates expressed in the aligned multi-camera reference frame.

5.3 Solver for Motion with KnownVertical Direction

Based on Eqs. (21) and (25), we get an equation system of
three polynomials for four unknowns qy , t̃x , t̃y and t̃z . Recall
that there are three independent constraints provided by one
AC. Thus, one more equation is required which can be taken
from a second AC. In principle, one arbitrary equation can be
chosen from Eqs. (21) to (25), for example, three constraints
of the first AC, and the first constraint of the second AC, i.e.,
four constraints provided by one AC and one PC, are stacked
into 4 equations in 4 unknowns:
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1

1 + q2y

⎡
⎢⎢⎣

M̃11 M̃12 M̃13 M̃14

M̃21 M̃22 M̃23 M̃24

M̃31 M̃32 M̃33 M̃34

M̃41 M̃42 M̃43 M̃44

⎤
⎥⎥⎦

︸ ︷︷ ︸
M̃(qy)

⎡
⎢⎢⎣
t̃x
t̃y
t̃z
1

⎤
⎥⎥⎦ = 0, (26)

where the elements of the coefficient matrix M̃(qy) are
formed by the polynomial coefficients and one unknown
variable qy . All the elements are quadratic polynomials with
variable qy . Since M̃(qy)/(1+q2y ) is a squarematrix, Eq. (26)

has a non-trivial solution only if det(M̃(qy)/(1 + q2y )) = 0.
The expansion of the determinant equation gives a 6-degree
univariate polynomial:

quot

(
8∑

i=0

w̃i q
i
y, q

2
y + 1

)
= 0, (27)

where w̃0, . . . , w̃8 are formed by the Plücker coordinates of
two line correspondences and the matrix elements of two
affine transformations between the corresponding feature
points.

This univariate polynomial leads to a maximum of 6
solutions. Equation (27) can be efficiently solved by the com-
panion matrix method (Cox et al., 2013) or Sturm bracketing
method (Nistér, 2004). Once qy has been obtained, rota-
tion matrix Ry is recovered from Eq. (11). For the relative
pose between two multi-camera reference frames, the rota-
tion matrix R is recovered from Eq. (19) and the translation
is computed by t = (R′

imu)
T t̃ based on Eq. (20).

6 Experiments

In this section, we conduct extensive experiments on both
synthetic and real-world data to evaluate the performance of
the proposed methods. Our solvers are compared with state-
of-the-art techniques.

For relative pose estimation under planar motion, the
solvers using one AC and two ACs proposed in Sect. 4
are referred to as 1AC plane method and 2AC plane
method, respectively. The accuracy of 1AC plane and
2AC plane are compared with the methods 17pt-Li (Li
et al., 2008), 8pt-Kneip (Kneip & Li, 2014), 6pt
-Stewénius (Stewénius et al., 2005), 2pt-Lee (Lee et
al., 2013) and 6AC-Ventura (Alyousefi &Ventura, 2020).

For relative pose estimation with known vertical direc-
tion, the solver proposed in Sect. 5 is referred to as
2AC vertical method. We compare the accuracy of
2AC vertical with the methods 17pt-Li (Li et al.,
2008),8pt-Kneip (Kneip&Li, 2014),6pt-Stewénius
(Stewénius et al., 2005), 6pt-Ventura (Ventura et al.,

2015), 4pt-Lee (Lee et al., 2014), 4pt-Sweeney
(Sweeney et al., 2014), 4pt-Liu (Liu et al., 2017),
6AC-Ventura (Alyousefi & Ventura, 2020) and 2AC
-Guan (Guan et al., 2021a).

In the experiments, all the solvers are integrated within
RANSAC to reject outliers. For the point-based solvers,
only the point coordinates of ACs are used. The relative
pose which produces the highest number of inliers is cho-
sen. The confidence of RANSAC is set to 0.99 and an inlier
threshold angle is set to 0.1◦ by following the definition in
OpenGV (Kneip & Furgale, 2014). We also show the feasi-
bility of our methods on the KITTI dataset (Geiger et al.,
2013), nuScenes dataset (Caesar et al., 2020) and EuRoc
MAV dataset (Burri et al., 2016). These experiment demon-
strates that our methods are well suited for visual odometry
in real scenarios.

6.1 Efficiency Comparison

The runtimes of the solvers are evaluated on an Intel(R)
Core(TM) i7-7800X 3.50GHz. All algorithms are imple-
mented in C++. Methods 17pt-Li, 8pt-Kneip and
6pt-Stewenius are provided in the OpenGV library
(Kneip & Furgale, 2014). We implemented the meth-
ods 4pt-Lee, 2pt-Lee and 2AC-Guan. For methods
6pt-Ventura, 4pt-Sweeney, 4pt-Liu and 6AC-
Ventura, we used their publicly available implementa-
tions fromGitHub.The average, over 10,000 runs, processing
times of the solvers are shown in Table 2. The runtimes of the
methods 4pt-Liu, 1AC plane and 2AC plane are the
lowest, because thesemethods solve the 4-degree polynomial
equation. The methods 2pt-Lee and 2AC vertical
which solve the 6-degree polynomial equation also requires
low computation time.

6.2 Numerical Stability

Figure 5 reports the numerical stability of the solvers in
the noise-free case. The procedure is repeated 10,000 times.
The empirical probability density functions (vertical axis)
are plotted as the function of the log10 estimated errors
(horizontal axis). Methods 1AC plane, 2AC plane,
2AC vertical, 17pt-Li, 4pt-Lee, 4pt-Sweeney,
2pt-Lee and 6AC-Ventura are numerically stable. The
4pt-Sweeneymethodhas a small peak, both in the rotation
and translation error curves, around 10−2. The correspond-
ing density of the small peak is about 0.02. The 8pt-Kneip
method based on iterative optimization is susceptible to
falling into localminima.Due to the use of first-order approx-
imationof the relative rotation, themethods6pt-Ventura,
4pt-Liu and 2AC-Guan inevitably has greater than zero
error in the noise-free case.
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Table 2 Run-time comparison of relative pose estimation algorithms (unit: µs)

Methods 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 1AC plane 2AC plane 2AC vertical

Timings 43.3 102.0 3275.4 29.8 26.5 22.2 3.7 5.3 38.1 28.6 3.6 3.6 17.8

Bold values indicate the best results

(a)

(b)

Fig. 5 Probability density functions over estimation errors in the noise-
free case (10 000 runs). The horizontal axis represents the log10 errors
and the vertical axis represents the density. Plot a reports the rotation
error. Plot b reports the translation error. The proposed 1AC plane
method, 2AC plane method and 2AC vertical are compared
against 17pt-Li (Li et al., 2008), 8pt-Kneip (Kneip & Li, 2014),
6pt-Stewénius (Stewénius et al., 2005), 6pt-Ventura (Ventura
et al., 2015), 4pt-Lee (Lee et al., 2014), 4pt-Sweeney (Sweeney
et al., 2014), 4pt-Liu (Liu et al., 2017), 2pt-Lee (Lee et al., 2013),
6AC-Ventura (Alyousefi & Ventura, 2020) and 2AC-Guan (Guan
et al., 2021a)

6.3 Experiments on Synthetic Data

We made a simulated 2-camera rig system by following the
KITTI autonomous driving platform. The baseline length
between two simulated cameras is set to 1 meter and the
cameras are installed at different altitudes. The multi-camera
reference frame is set at the center of the camera rig and the
translation between two multi-camera reference frames is
3m. The resolution of the cameras is 640 × 480 pixels and
the focal lengths are 400 pixels. The principal points are set
to the image center (320, 240).

The synthetic scene is composed of a ground plane and 50
random planes. All 3D planes are randomly generated within
the range of −5 to 5m (along axes X and Y ), and 10 to 20m
(Z -axis direction), that are expressed in the respective axis
of the multi-camera reference frame. The equation of 3D
plane can be represented as AX + BY + CZ + D = 0. The
normal vector to the 3D plane is given by N = [A, B,C]T .
For a ground plane, the corresponding normal vector is set
to [0, 1, 0]T , which is consistent with the Y -axis direction of
the multi-camera reference frame. For 50 random planes, the
corresponding normal vectors are randomly generated. Then,
we choose a random3Dpoint (X0,Y0, Z0) in the range of the
synthetic scene. Finally, the parameter D can be computed
based on the normal vector and the chosen 3D point. Thus, by
the above procedure, the ground plane and 50 random planes
can be randomly generated in the synthetic scene.

We choose 50 ACs from the ground plane and an AC
from each random plane randomly, thus, having a total of
100 ACs. For each AC, a random 3D point from a 3D
plane (X0,Y0, Z0) is reprojected onto two cameras to get the
image point pair (xk, x′

k). The corresponding affine transfor-
mation (Ak) is obtained by the following procedure. First,
four sampled image points are chosen as the vertices of a
square in the 2D image plane of view 1, where the cen-
ter of the square is the point coordinates of AC. The side
length of the squareW is set as 20 or 40 pixels. A larger side
length causes smaller noise of affine transformation. The four
sampled image point in the first view can be computed as fol-
lows: (xk + [−W/2, −W/2]T , xk + [W/2, −W/2]T , xk +
[−W/2, W/2]T , xk+[W/2, W/2]T ). Second, the four cor-
responding sampled image points in the second view are
directly calculated by the ground truth homography. Third,
four sampled point pairs are contaminated byGaussian noise,
which is similar to the noise added to the coordinates of
image point pair. Fourth, the noisy homography matrix is
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(a) (c)(b)

(d) (f)(e)

Fig. 6 Rotation and translation error under planar motion. a–c varying image noise under perfect planar motion. d–f varying planar motion noise
and fixed 0.5 pixel std. image noise

estimated using the four sampled point pairs. The noisy affine
transformation is the first-order approximation of the noisy
homography matrix. The implied noisy local affine frame is
then calculated via projective geometry. This can be seen
as perturbing the 3D plane centered on the observed 3D
point. This procedure enables an indirect but geometrically
interpretable way of adding noise to the affine transforma-
tion (Barath & Kukelova, 2019).

A total of 1000 trials are carried out in the synthetic exper-
iment. In each test, 100 ACs are generated randomly. The
ACs for the methods are selected randomly and the error
is measured on the relative pose which produces the most
inliers within the RANSAC scheme. This also allows us to
select the best candidate frommultiple solutions by counting
their inliers in a RANSAC-like procedure. The median of
errors are used to assess the rotation and translation error.
The rotation error is computed as the angular difference
between the ground truth rotation and the estimated rotation:
εR = arccos((trace(RgtRT)−1)/2), whereRgt andR are the
ground truth and estimated rotation matrices. Following the
definition inQuan andLan (1999);Lee et al. (2014), the trans-
lation error is defined as: εt = 2

∥∥(tgt − t)
∥∥ /(

∥∥tgt
∥∥ + ‖t‖),

where tgt and t are the ground truth and estimated transla-
tions. Due to the limited display range of the figures, some
curves with large errors are invisible or partially invisible.

6.3.1 Planar Motion Estimation

In this scenario, the planar motion of the multi-camera sys-
tem is described by (θ , φ), see Fig. 2. The magnitudes
of both angles ranges from −10◦ to 10◦. Suppose we are
given Gaussian image noise with a standard deviation rang-
ing from 0 to 1 pixel. Figure 6a–c shows the performance
of the proposed 1AC plane and 2AC plane methods
against image noise. Since the noise magnitude of affine
transformation is influenced by the support region of sampled
points, the AC-based methods have better performance with
larger support region at the same magnitude of image noise.
It can be seen that 2AC plane performs better than the
other compared methods under perfect planar motion, even
though the size of the square is 20 pixels. The 1AC plane
method performs better than the PC-based methods and
the 6AC-Ventura method in rotation estimation, but has
worse performance in translation estimation. Since the planar
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motion of the multi-camera system does not satisfy the Ack-
ermann motion assumption, the 2pt-Leemethod has large
errors and its error curves are out of the display range. As
shown later in Sect. 6.3.3, the 2pt-Lee method performs
well when the Ackermann motion holds. In Fig. 6c, we plot
the translation direction error as an additional evaluation. It
is interesting to see that when the side length of the square
is 40 pixels, the 1AC plane method performs better than
the PC-based methods and the 6AC-Ventura method in
translation direction estimation.

We also evaluate the accuracy of the proposed meth-
ods 1AC plane and 2AC plane for increasing planar
motion noise. To test such noise, we added a small ran-
domly generated X -axis, Z -axis rotation and a Y Z -plane
translation (Choi & Kim, 2018) to the motion of the multi-
camera system. The magnitude of non-planar motion noise
ranges from 0◦ to 1◦ and the standard deviation of the image
noise is set to 0.5 pixel. Figure 6d–f show the performance
of the proposed 1AC plane method and 2AC plane
method against planar motion noise. Methods 17pt-Li,
8pt-Kneip, 6pt-Stewénius and 6AC-Ventura deal
with the 6DOF motion case and, thus they are not affected
by the noise in the planarity assumption. The 2pt-Lee
method does not have an obvious trend with non-planar
motion noise levels, because the accuracy of this method
mainly depends on whether the Ackermann motion assump-
tion is well fulfilled. It can be seen that the rotation accuracy
of the 2AC plane method performs better than compara-
tive methods when the planar motion noise is less than 0.2◦.
Since the estimation accuracy of translation direction of the
2AC plane method in Fig. 6f performs satisfactory, the
main reason for poor performance of translation estimation
is that the metric scale estimation is sensitive to the planar
motion noise. In comparison with the 2AC planemethod,
the 1AC planemethod has similar performance in rotation
estimation, but performspoorly in translation estimation. The
translation accuracy decreases significantly with the increase
of the planar motion noise.

In addition to efficiency and numerical stability, another
important factor for a solver is the minimal number of
required image points. The iteration number N of RANSAC
can be computed by N = log(1 − p)/ log(1 − (1 − ε)s),
where s is the number of minimal image points, ε is the out-
lier ratio, and p is the success probability. For a probability
of success p = 99%, the RANSAC iterations needed with
respect to the outlier ratio needed are shown in Fig. 7. It
can be seen that the iteration number of the RANSAC esti-
mator increases exponentially with respect to the number of
image points needed. For example, in a percentage of out-
liers ε = 50%, when the solvers require 1, 2, 4, 6, 8 and 17
points, the RANSAC estimator need 7, 16, 71, 292, 1177 and
603,607 iterations, respectively. The proposed 1AC plane
methodwhich only uses a singleAC requires the lowest num-

Fig. 7 Comparison of the RANSAC iteration number for 99% of suc-
cess probability

ber of RANSAC iterations. Since the proposed 2AC plane
method need two ACs, the iteration number of RANSAC
is also low in comparison to PC-based methods. Thus, our
solvers can be used efficiently for detecting a correct inlier
set when integrating them into the RANSAC framework.

We evaluate the performance of the proposed 1AC
plane method and 2AC plane method for outlier detec-
tion in presence of outliers. The outlier ratio is set to 50%.The
other configurations of this synthetic experiment are set as
same as using in Fig. 6d–f. Figure 8 shows the performance of
the proposed methods against planar motion noise. It is inter-
esting to see that the 1AC plane method recovers more
than 50% inliers and requires fewer number of RANSAC
iterations, even though it performs poorly in translation esti-
mation as shown in Fig. 6e–f. Thus, the1AC planemethod
has the advantage of detecting a correct inlier set efficiently,
which can then be used for accurate motion estimation with
non-linear optimization.

6.3.2 Motion with Known Vertical Direction

In this set of experiments, the translation direction of two
multi-camera reference frames is chosen to produce either
forward, sideways or random motions. The second refer-
ence frame is rotated around three axes randomlywith angles
ranging from −10◦ to 10◦. Assuming known roll and pitch
angles, the multi-camera reference frame is aligned with
the vertical direction. Fig. 9a, d show the performance of
2AC vertical against image noisewith perfect IMUdata
under random motion. The proposed method is robust to
image noise and performs better than the other methods.
The iterative optimization in 8pt-Kneip is prone to falling
into local minima. Since the methods 6pt-Ventura,
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(a)

(b)

Fig. 8 Rotation and translation error with varying planar motion noise.
The image noise is fixed at 0.5 pixel and the outlier ratio is set to 50%

4pt-Liu and 2AC-Guan use the first-order approxima-
tion of the relative rotation, the error of these methods is not
zero even for image noise-free input.

Figure 9b, e and c, f show the performance of 2AC
vertical against IMU noise in the random motion case,
while the standard deviation of the image noise is fixed at
0.5 pixel. Note that the methods 17pt-Li, 8pt-Kneip,
6pt-Stewénius, 6pt-Ventura, 6AC-Ventura and
2AC-Guan are not influenced by IMU noise, because these
methods do not use the known vertical direction as a prior.
Themethods4pt-Lee,4pt-Sweeney and4pt-Liu use
the known vertical direction as a prior. It is interesting to see
that the proposedmethod outperforms the comparativemeth-
ods in the random motion case, even though the IMU noise
is around 0.4◦.

Figure 10 shows the performance of the proposed 2AC
vertical under forward motion. It can be seen that
2AC vertical outperforms the comparative methods
against image noise and provides comparable accuracy for
increasing IMU noise, even though the size of the square
is 20 pixels. Figure 11 shows the performance of the pro-
posed 2AC vertical under sideways motion. The results
demonstrate that when the side length of the square is 40 pix-
els, the 2AC vertical performs basically better than all
compared methods against image noise and achieves com-
parable performance for increasing noise on the IMU data.

6.3.3 AckermannMotion Case

In this scenario, we evaluate the accuracy of the proposed
methods 1AC plane and 2AC plane under Ackermann
motion. The relative motion of the multi-camera system is
constrained by the Ackermann motion model (Scaramuzza
et al., 2009), which is described by a rotation angle and a
translation distance. Specifically, the multi-camera system
moves along circular trajectories about the instantaneous
center of rotation and the translation direction satisfies the
circular motion constraint. The magnitude of the rotation
angle ranges from −10◦ to 10◦. The other configurations
of this synthetic experiment are set as same as using in
Fig. 6. This scenario is suitable for the methods with Ack-
ermann motion assumption, such as 2pt-Lee. Suppose we
are given Gaussian image noise with a standard deviation
ranging from 0 to 1.0 pixel. Figure 12a–c shows the per-
formance of the proposed 1AC plane and 2AC plane
methods against image noise under perfect Ackermann
Motion. When the Ackermann motion assumption is well
fulfilled, the 2pt-Lee outperforms the other methods in
rotation estimation and translation direction estimation. The
methods 2AC plane and 2pt-Lee have similar perfor-
mance in translation estimation.Moreover, it can be seen that
2AC plane performs better than the comparative methods
which do not constrain the relative motion by the Ackermann
motion model.

We also evaluate the accuracy of the proposed meth-
ods 1AC plane and 2AC plane for increasing non-
Ackermann motion noise. To test such noise, we added
a small randomly generated angle error to the translation
direction of the multi-camera system in X Z -plane. The rel-
ative motion of the multi-camera system is deviating from
Ackermann motion, but still satisfying planar motion. The
magnitude of non-Ackermann motion noise ranges from 0◦
to 1◦ and the standard deviation of the image noise is set
to 0.5 pixel. Figure 12d–f show the performance of the
proposed 1AC plane method and 2AC plane method
against non-Ackermann motion noise. Methods 17pt-Li,
8pt-Kneip, 6pt-Stewénius, 6AC-Ventura, 1AC
plane and 2AC plane deal with the planar motion case
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Rotation and translation error under random motion with known vertical direction. Upper row: rotation error. Bottom row: translation error.
a, d varying image noise. b, e and c, f varying IMU angle noise and fixed 0.5 pixel std. image noise

and, thus they are not affected by non-Ackermann motion
noise. The accuracy of the 2pt-Lee method decreases sig-
nificantly with the increase of the non-Ackermann motion
noise. It can be seen that the 2AC planemethod performs
better than comparative methods when the non-Ackermann
motion noise is more than 0.4◦. In comparison with the
2AC plane method, the 1AC plane method has simi-
lar performance in rotation estimation, but performs poorly
in translation estimation.

6.3.4 Small Rotation Case

In this scenario, we evaluate the accuracy of the proposed
2AC vertical method under small rotation motion. The
rotation angles between two multi-camera reference frames
are kept constant at 1◦ (Ventura et al., 2015). The translation
direction of two multi-camera reference frames is chosen
to produce random motion. The other configurations of this
synthetic experiment are set as same as using in Fig. 9. Since
the relative rotation between two consecutive frames is small,
several methods with first-order approximation to relative
rotation are suitable, such as 6pt-Ventura (Ventura et al.,
2015), 4pt-Liu (Liu et al., 2017) and 2AC-Guan (Guan et

al., 2021a). Assuming known roll and pitch angles, themulti-
camera reference frame is aligned with the vertical direction.

Figure 13a, d show the performance of 2AC vertical
against image noise with perfect IMU data under small rota-
tionmotion. It canbe seen that the proposed2AC vertical
method performs better than the other methods. Themethods
6pt-Ventura, 4pt-Liu and 2AC-Guan achieve good
performance when the small rotation motion assumption is
well fulfilled. Fig. 13b, e and c, f show the performance of
2AC vertical against IMU noise under small rotation
motion, while the standard deviation of the image noise is
fixed at 0.5 pixel. The results demonstrate that when the side
length of the square is 40 pixels, the 2AC vertical basi-
cally outperforms the comparative methods, even though the
IMU noise is around 0.2◦.

6.4 Using PCs Converted from ACs

In this set of experiments, we evaluate the performance of
PC-based solvers using the PCs converted from ACs. Three
generated PCs include an image point pair of AC and two
hallucinated image point pairs calculated by the local affine
transformation. Since local affine transformations are defined
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Rotation and translation error under forward motion with known vertical direction. Upper row: rotation error. Bottom row: translation error.
a, d varying image noise. b, e and c, f varying IMU angle noise and fixed 0.5 pixel std. image noise

as the partial derivative, w.r.t. the image directions, of the
related homography, they are valid only infinitesimally close
to the image coordinates of AC. Thereby, one AC can only
provide three approximate PCs—the error is not zero even
for noise-free input (Barath & Hajder, 2018). Three approx-
imate PCs converted from one AC can be computed as
follows (Barath et al., 2020): (xk, xk+[w, 0]T , xk+[0, w]T )

and (x′
k, x

′
k +Ak[w, 0]T , x′

k +Ak[0, w]T ), where w deter-
mines the distribution area of the generated PCs. To evaluate
the performance of PC-based solvers with different distribu-
tion area, w is set to 1, 5 and 10 pixels, respectively.

Take relative pose estimation with known vertical direc-
tion for an example. A total of 1000 trials are carried
out in the synthetic experiment. In each test, 100 ACs
are generated randomly with 40*40 support region. In the
RANSAC loop, six ACs and two ACs are selected ran-
domly for the 6AC-Ventura method and the proposed
2AC vertical method, respectively. The hallucinated
PCs converted from a minimal number of ACs are used
as input for the PC-based solvers. Thus, 6, 3 and 2 ACs
are selected randomly for the 17pt-Li solver (Li et al.,
2008), the 8pt-Kneip solver (Kneip & Li, 2014), and
the solvers 6pt-Stewénius (Stewénius et al., 2005),

6pt-Ventura (Ventura et al., 2015), 4pt-Lee (Lee
et al., 2014), 4pt-Sweeney (Sweeney et al., 2014) and
4pt-Liu (Liu et al., 2017), respectively. Note that the hallu-
cinated PCs converted fromACs are only used for hypothesis
generation, and the inlier set is found by evaluating the image
point pairs of ACs. The solution which produces the highest
number of inliers is chosen. The other configurations of this
synthetic experiment are set as same as using in Fig. 9.

Figure 14 shows the performance of the PC-based solvers
against image noise in the random motion case. The estima-
tion results using the image point pairs ofACs are represented
by solid lines. The estimation results using the hallucinated
PCs generatedwith different distribution area are represented
by dashed line (w = 1 pixel), dash–dotted line (w = 5 pix-
els) and dotted line (w = 10 pixels), respectively. We have
the following observations. (1) The PC-based solvers using
the hallucinated PCs perform worse than using the image
point pairs of AC. Because the conversion error between
each AC and three PCs is newly introduced. It can be seen
that the estimation error of PC-based solvers using the hal-
lucinated PCs is not zero even for image noise-free input.
Moreover, the hallucinated PCs generated by each AC are
near each other which may be a degenerate case for the
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Rotation and translation error under sideways motion with known vertical direction. Upper row: rotation error. Bottom row: translation
error. a, d varying image noise. b, e and c, f varying IMU angle noise and fixed 0.5 pixel std. image noise

PC-based solvers. The error curves of the 6pt-Ventura
method are out of the display range when the hallucinated
PCs is used. (2) The performance of PC-based solvers is
influenced by the different distribution area of hallucinated
PCs. Since a smaller distribution area causes smaller con-
version error between ACs and PCs, the PC-based solvers
have better performance with smaller distribution area. (3)
The performance of the proposed 2AC verticalmethod
is best. Because the AC-based solvers use the relationship
between local affine transformations and epipolar lines, i.e.,
Eq. (9). This is a strictly satisfied constraint and does not
result in any error for noise-free input. In addition, the 2AC
vertical method is robust to image noise and performs
better than the methods 6AC-Ventura and 2AC-Guan.

6.5 Experiments on Real Data

To demonstrate the suitability of our methods in real scenar-
ios, we validate the performance of the proposed solvers on
three public datasets. TheKITTIdataset (Geiger et al., 2013)
and thenuScenes dataset (Caesar et al., 2020) are collected
on an autonomous driving environment. The EuRoc MAV
dataset (Burri et al., 2016) are collected on an unmanned

aerial vehicle environment. We compare our solvers against
state-of-the-art techniques in these two popularmodern robot
applications.

6.5.1 Experiments on KITTI Dataset

We test the performance of our methods on the KITTI
dataset (Geiger et al., 2013) that consists of successive video
frames from a forward facing stereo camera. The ground
truth pose is provided from the built-in GPS/IMU units. We
ignore the overlap in their fields of view and treat it as a
general multi-camera system. The sequences labeled from
0 to 10, which have ground truth, are used for the evalua-
tion. Therefore, the methods were tested on a total of 23,000
image pairs. The ACs between consecutive frames in each
camera are established by applying the ASIFT (Morel & Yu,
2009) detector. The extraction of ACs can also be sped up by
MSER (Matas et al., 2004), GPU acceleration, or approxi-
mating ACs from SIFT features for subsequent video frames.
The ACs across the two cameras are not matched and the
metric scale is not estimated as the movement between con-
secutive frames is small. Besides, integrating the acceleration
over time from an IMU is more suitable for recovering the
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Rotation and translation error under Ackermann motion. a–c Varying image noise under perfect Ackermann motion. d–f Varying non-
Ackermann motion noise and fixed 0.5 pixel std. image noise

scale (Nützi et al., 2011). All the solvers have been integrated
into a RANSAC scheme.

The proposed methods 2AC plane and 2AC
vertical are compared against 17pt-Li (Li et al.,
2008),8pt-Kneip (Kneip&Li, 2014),6pt-Stewénius
(Stewénius et al., 2005), 6pt-Ventura (Ventura et al.,
2015), 4pt-Lee (Lee et al., 2014), 4pt-Sweeney
(Sweeney et al., 2014), 4pt-Liu (Liu et al., 2017),
2pt-Lee (Lee et al., 2013), 6AC-Ventura (Alyousefi &
Ventura, 2020) and 2AC-Guan (Guan et al., 2021a). Since
the KITTI dataset is captured by a stereo rig with both cam-
eras having the same altitude, that is a degenerate case for
the 1AC plane method, it is not performed in the exper-
iment. For the 2AC plane method, the results are also
compared to the ground truth of the 6DOF relative pose,
even though this method only estimates two angles (θ , φ)
with the plane motion assumption. For the 2AC vertical
method, the roll and pitch angles obtained from theGPS/IMU
units are used to align the multi-camera reference frame with
the vertical direction (Saurer et al., 2016; Guan et al., 2020;
Li et al., 2020). To ensure the fairness of the experiment,
the roll and pitch angles are also provided for the methods

4pt-Lee (Lee et al., 2014), 4pt-Sweeney (Sweeney et
al., 2014) and 4pt-Liu (Liu et al., 2017), which use the
known vertical direction as a prior. Table 3 shows the results
of the rotation and translation estimation. The median error
for each individual sequence is used to evaluate the esti-
mation accuracy. The runtime of RANSAC averaged over
KITTI sequences combined with different solvers is shown
in Table 4. The reported runtimes include the robust relative
pose estimation without feature extraction, i.e., recovering
the relative pose by RANSAC combined with a minimal
solver.

The proposed 2AC vertical method offers the best
overall performance among all the methods. The 6pt
-Stewénius method performs poorly on sequence 01,
because this sequence is a highway with few trackable close
objects, and this method always fails to select the best
candidate from multiple solutions under forward motion
in the RANSAC scheme. Besides, it is interesting to see
that the translation accuracy of the 2AC plane method
basically outperforms the methods 6pt-Stewénius and
6pt-Ventura, even though the planar motion assumption
does not fit the KITTI dataset well. Because the KITTI

123



International Journal of Computer Vision

(a) (b) (c)

(d) (e) (f)

Fig. 13 Rotation and translation error under small rotation motion. Upper row: rotation error. Bottom row: translation error. a, d Varying image
noise. b, e and c, f varying IMU angle noise and fixed 0.5 pixel std. image noise

dataset has obvious ups and downs, which will affect the
accuracy of relative pose estimation under the planar motion
assumption. We also show the empirical cumulative error
distributions for KITTI sequence 00. These values are cal-
culated from the same values which were used for creating
Table 3. Figure 15 shows the proposed 2AC vertical
method offers the best overall performance in comparison to
state-of-the-art methods.

To visualize the comparison results, the estimated tra-
jectory for sequence 00 is plotted in Fig. 16. We are
directly concatenating frame-to-frame relative pose mea-
surements without any post-refinement. The trajectory for
2AC vertical is compared with the two best perform-
ing comparison methods in sequence 00 based on Table 3:
2AC-Guan in 6DOF motion case and 4pt-Sweeney in
4DOF motion case. Since all methods were not able to esti-
mate the scale correctly, in particular for the many straight
parts of the trajectory, the ground truth scale is used to plot the
trajectories. Then the trajectories are aligned with the ground
truth and the color along the trajectory encodes the absolute
trajectory error (ATE) (Sturm et al., 2012). Even though all
trajectories have a significant accumulation of drift, it can still
be seen that the 2AC vertical method has the smallest

ATE among the compared trajectories. Due to the benefits of
computational efficiency, both the 2AC planemethod and
the 2AC vertical method are quite suitable for finding
a correct inlier set, which is then used for accurate motion
estimation in visual odometry.

6.5.2 Experiments on nuScenes Dataset

We also test the performance of our methods on the
nuScenes dataset (Caesar et al., 2020), which consists of
consecutive keyframes from 6 cameras. All the keyframes
of Part 1 are used for the evaluation and there are 3376
images in total. The ground truth pose is provided from a
lidar map-based localization scheme. Similar to the exper-
iments on KITTI dataset, the ACs between consecutive
keyframes in each camera are established by applying
the ASIFT (Morel & Yu, 2009) detector. The proposed
methods 2AC plane and 2AC vertical are compared
against 17pt-Li (Li et al., 2008), 8pt-Kneip (Kneip
& Li, 2014), 6pt-Stewénius (Stewénius et al., 2005),
6pt-Ventura (Ventura et al., 2015), 4pt-Lee (Lee
et al., 2014), 4pt-Sweeney (Sweeney et al., 2014),
4pt-Liu (Liu et al., 2017), 2pt-Lee (Lee et al., 2013),
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(b)

(a)

Fig. 14 Rotation and translation error with varying image noise under
randommotion with known vertical direction. Solid line indicates using
image point pairs of ACs. Dashed line, dash–dotted line and dotted line
indicate using the hallucinated PCs, which are generated with different
distribution area w = 1, 5, 10 pixels, respectively

6AC-Ventura (Alyousefi & Ventura, 2020) and 2AC-
Guan (Guan et al., 2021a). All solvers are used within
RANSAC.

Table 5 shows the results of the rotation and translation
estimation for the Part1 of nuScenes dataset. The median
error is used to evaluate the estimation accuracy. It can be
seen that the proposed 2AC vertical method offers the
best performance among all the methods. This experiment
also demonstrates that both planar motion and known ver-
tical direction assumptions are met in practical self-driving
situations.

6.5.3 Experiments on EuRoC Dataset

We further evaluate the performance of the proposed solvers
in an unmanned aerial vehicle environment. The EuRoC
MAV dataset (Burri et al., 2016) is used for the evaluation
in this experiment, which is collected with a stereo camera
mounted on a micro aerial vehicle. The ground truth pose is
provided from the nonlinear least-squares batch solution over
the Leica position and IMU measurements. The sequences
labeled from MH01 to MH05, which are collected in a large
industrial machine hall, are used for performance compar-
ison. Since the industrial environment is unstructured and
cluttered, it renders these sequences challenging to process.
Considering that the movement between consecutive frames
is small, we choose the part of image pairs for relative pose
estimation by an amount of one out of every four images.
Besides, we crop the image pairs with insufficient motion
in this experiment. Therefore, the methods were tested on a
total of 3000 image pairs.

Since the Ackermann motion assumption and the pla-
nar motion assumption do not fit the EuRoC MAV dataset,
the methods 2pt-Lee, 1AC plane and 2AC plane are
not performed in the experiment. The 2AC vertical
method are compared against 17pt-Li (Li et al., 2008),
8pt-Kneip (Kneip & Li, 2014), 6pt-Stewénius
(Stewénius et al., 2005), 6pt-Ventura (Ventura et al.,
2015), 4pt-Lee (Lee et al., 2014), 4pt-Sweeney
(Sweeney et al., 2014), 4pt-Liu (Liu et al., 2017),
6AC-Ventura (Alyousefi & Ventura, 2020) and 2AC
-Guan (Guan et al., 2021a). Similar to the experiments on
KITTI dataset, all the solvers have been integrated into a
RANSAC scheme. The ACs between consecutive frames in
each camera are established by applying the ASIFT (Morel
&Yu, 2009) detector. Table 6 shows the results of the rotation
and translation estimation for EuRoC sequences. Themedian
error for each individual sequence is used to evaluate the esti-
mation accuracy. The proposed 2AC vertical method
offers the best performance among all the methods. This
experiment demonstrates that the 2AC vertical method
is well suited for relative pose estimation in the unmanned
aerial vehicle environment.

7 Conclusion

By exploiting the geometric constraints which interprets the
relationship of ACs and the generalized camera model, we
have proposed three solutions for the relative pose estimation
of a multi-camera system. Under the planar motion assump-
tion, we present two solvers to recover the relative pose of
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Table 3 Rotation and translation error on KITTI sequences (unit: ◦)

Seq. 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 2AC plane 2AC vertical

00 0.139 0.130 0.229 0.125 0.065 0.050 0.066 0.301 0.142 0.118 0.280 0.031

01 0.158 0.171 0.762 0.178 0.137 0.125 0.105 0.189 0.146 0.140 0.168 0.025

02 0.123 0.126 0.186 0.248 0.057 0.044 0.057 0.254 0.121 0.208 0.213 0.030

03 0.115 0.108 0.265 0.210 0.064 0.069 0.062 0.261 0.113 0.172 0.238 0.037

04 0.099 0.116 0.202 0.212 0.050 0.051 0.045 0.131 0.100 0.098 0.116 0.020

05 0.119 0.112 0.199 0.157 0.054 0.052 0.056 0.199 0.116 0.122 0.185 0.022

εR

06 0.116 0.118 0.168 0.168 0.053 0.092 0.056 0.145 0.115 0.111 0.137 0.023

07 0.119 0.112 0.245 0.188 0.058 0.065 0.054 0.202 0.137 0.141 0.173 0.023

08 0.116 0.111 0.196 0.166 0.051 0.046 0.053 0.225 0.108 0.146 0.203 0.024

09 0.133 0.125 0.179 0.274 0.056 0.046 0.058 0.234 0.124 0.169 0.189 0.027

10 0.127 0.115 0.201 0.195 0.052 0.040 0.058 0.265 0.203 0.174 0.223 0.025

00 2.412 2.400 4.007 2.272 2.469 2.190 2.519 2.746 2.499 2.133 2.243 1.738

01 5.231 4.102 41.19 4.217 4.782 11.91 3.781 2.179 3.654 3.012 2.486 1.428

02 1.740 1.739 2.508 2.422 1.825 1.579 1.821 2.506 1.702 1.891 1.975 1.558

03 2.744 2.805 6.191 4.208 3.116 3.712 3.258 2.065 2.731 2.571 1.849 1.888

04 1.560 1.746 3.619 2.966 1.564 1.708 1.635 2.385 1.725 1.892 1.768 1.228

05 2.289 2.281 4.155 3.013 2.337 2.544 2.406 2.735 2.273 2.279 2.354 1.532

εt

06 2.071 1.862 2.739 2.675 1.757 2.721 1.760 2.543 1.956 1.978 2.247 1.303

07 3.002 3.029 6.397 4.354 2.810 4.554 3.048 3.105 2.892 2.601 2.902 1.820

08 2.386 2.349 3.909 2.537 2.433 2.422 2.457 3.200 2.344 2.572 2.569 1.911

09 1.977 1.806 2.592 2.947 1.838 1.656 1.793 2.673 1.876 1.901 1.997 1.440

10 1.889 1.893 2.781 2.659 1.932 1.658 1.888 2.955 2.057 2.230 2.296 1.586

Bold values indicate the best results

Table 4 Runtime of RANSAC averaged over KITTI sequences combined with different solvers (unit: s)

Methods 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 2AC plane 2AC vertical

Mean time 52.82 10.36 79.76 5.71 0.85 0.63 0.45 0.11 6.83 0.59 0.07 0.09

Standard deviation 2.62 1.59 4.52 0.73 0.093 0.057 0.058 0.014 0.61 0.067 0.0071 0.0086

Bold values indicate the best results

Table 5 Rotation and translation error on nuScenes sequences (unit: degree)

Part 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 2AC plane 2AC vertical

01 0.161 0.156 0.203 0.179 0.083 0.078 0.108 0.371 0.143 0.127 0.344 0.057

εR

01 2.680 2.407 2.764 2.521 1.780 1.659 1.941 2.327 2.366 2.195 2.284 1.469

εt

Bold values indicate the best results
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(a) (b)

Fig. 15 Empirical cumulative error distributions for KITTI sequence
00. a Reports the rotation error. b Reports the translation error. The
proposed 2AC plane method and 2AC vertical are compared
against 17pt-Li (Li et al., 2008), 8pt-Kneip (Kneip & Li, 2014),
6pt-Stewénius (Stewénius et al., 2005), 6pt-Ventura (Ventura

et al., 2015), 4pt-Lee (Lee et al., 2014), 4pt-Sweeney (Sweeney
et al., 2014), 4pt-Liu (Liu et al., 2017), 2pt-Lee (Lee et al., 2013),
6AC-Ventura (Alyousefi & Ventura, 2020) and 2AC-Guan (Guan
et al., 2021a)

(a) (b) (c)

Fig. 16 Estimated trajectories without any post-refinement. The rel-
ative pose measurements between consecutive frames are directly
concatenated. The colorful curves are the trajectories estimated by

2AC-Guan (Guan et al., 2021a), 4pt-Sweeney (Sweeney et al.,
2014) and 2AC vertical. Black curves with stars are the ground
truth trajectories. Best viewed in color

a multi-camera system, including a minimal solver using a
single AC and a solver based on two ACs. In addition, a
minimal solution with two ACs is proposed to solve for the
relative pose of the multi-camera systemwith known vertical
direction. Both planar motion and known vertical direction
assumptions are realistic in popular modern robot applica-

tions. We evaluate the proposed solvers on synthetic data
and three real image sequence datasets. The experimental
results clearly showed that the proposed methods provide
better efficiency and accuracy for relative pose estimation in
comparison to state-of-the-art methods.
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Table 6 Rotation and translation error on EuRoC sequences (unit: ◦)

Seq. 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 6AC-Ven. 2AC-Guan 2AC vertical

MH01 0.113 0.109 0.124 0.623 0.030 0.027 0.029 0.106 0.443 0.022

MH02 0.106 0.112 0.144 0.636 0.022 0.027 0.022 0.102 0.394 0.020

εR

MH03 0.137 0.148 0.181 0.835 0.039 0.040 0.052 0.133 0.561 0.034

MH04 0.154 0.170 0.175 0.745 0.043 0.041 0.045 0.165 0.806 0.033

MH05 0.167 0.158 0.179 0.852 0.038 0.040 0.035 0.176 0.718 0.029

MH01 2.928 2.865 3.555 7.348 1.947 2.170 2.075 2.858 4.682 1.792

MH02 2.494 2.553 2.908 6.339 1.573 1.786 1.707 2.483 4.045 1.489

εt

MH03 2.412 2.276 3.068 5.104 2.177 1.787 1.977 2.075 3.728 1.675

MH04 2.950 3.127 5.531 6.369 2.261 2.098 2.591 2.966 5.945 1.949

MH05 3.071 2.753 4.275 7.971 1.957 2.130 2.004 2.904 5.034 1.751

Bold values indicate the best results
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